
The Object Oriented Petri Net Component Model

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Czech Republic

email: {koci,janousek}@fit.vutbr.cz

Abstract—The formalism of Object Oriented Petri Nets (OOPN) is
a part of the work dealing with the method of system development
in simulation. The work is based on the idea that system models
are always executed even if they contain only one simple element
or any changes are performed. Moreover, this idea does not
distinguish between system models, prototypes, or target system;
everything should be presented by the same means. Nevertheless,
it should be possible to use different formalisms to describe
models. It follows that a common platform is needed. The
platform has to be simple and has to allow to change models
on the fly. The formalism of Discrete Event System Specification
(DEVS) has been used to specify the platform, because it enables
to compose system using components, whereas each such a
component can be modeled by different formalism. Proposed
approach preserves the advantages of using OOPN for behavior
modeling of components and makes it possible to hierarchize
models using DEVS-based platform. The paper defines a platform
based on DEVS and OOPN formalisms and deals with a question
of safe changes of components on the fly.

Keywords–Object Oriented Petri Nets; DEVS; component plat-
form; interface consistency.

I. INTRODUCTION

This paper is part of the System in Simulation Development
(SiS) work [1] based on the formalism of Object oriented
Petri nets (OOPN) [2]. The basic SiS principle consists in
continuous incremental development of models in the live
system with the goal to come to the target system without
a need of implementation—there is no difference between
models, prototypes, or target system. The SiS concept re-
quires three basic conditions. First, models have to be able
to combine different formalisms or languages, e.g., Petri nets
and Smalltalk language. For instance, the control part of
the developed system can be modeled by OOPN, which has
to be able to communicate to sensors—the communication
channel can be implemented in Smalltalk language. Second,
models can be execute in different simulation modes that are
suitable for design, testing, in-the-loop simulation, and system
deployment [3]. Third, there has to be a possibility to exchange
any elements of the models on the fly; the model elements
should be exchanged with no changes in the depending model
elements [4].

To achieve presented requirements, a common platform is
needed. The platform has to be simple and has to fulfill the
SiS requirements, mainly changing models on the fly. The
formalism of Discrete Event System Specification (DEVS)
has been used to specify the common platform. It enables to
compose system using DEVS-based components, whereas each
such a component is modeled by means of OOPN. It preserves

the advantages of using OOPN for behavior modeling and
makes it possible to hierarchize models.

So far, there have been works dealing with a usage of
OOPN and DEVS formalisms, but the compact definition of
common platform has not been introduced and a question
about safe replacement has not been solved. The paper defines
the OOPN component model based on the DEVS common
platform to which the formalism of OOPN is incorporated.
The question about component interfaces and their consistency
during the component changes will also be discussed.

The paper is organized as follows. We describe concepts
of the common platform in Section III. Then, we define the
OOPN component model based on the common platform in
Section IV. The Section V describes a problem of the compo-
nent interface consistency and introduces interface constraints.
Section VI deals with a realization of constraints based on
the formalism of OOPN. The summary and future work is
described in Section VII.

II. RELATED WORK

The modeling of software system in live environment is
not new idea. Model-Driven Software Development [5][6] uses
executable models, e.g., Executable UML [7], which allows
to test systems using models. Models are then transformed
into code, but the resulted code has to often be finalized
manually and the problem with imprecision between models
and transformed code remains unchanged. Further similar work
based on ideas of model-driven development deals with gaps
between different development stages and focuses on the usage
of conceptual models during the simulation model develop-
ment process—these techniques are called model continuity
[8]. While it works with simulation models during design
stages, the approach proposed in this paper focuses on live
models that are used in target environments, i.e., when the
system is deployed.

The research activities in the area of system changes on the
fly are usually focused on direct or indirect approaches. The
direct approach uses formalisms containing intrinsic features
allowing to change the system. Formalisms are usually based
on kinds of Petri nets. Reconfigurable Petri Nets [9] introduces
a special place describing the reconfiguration behavior. Net
Rewriting System [10] extends the basic model of Petri nets
and offers a mechanism of dynamic changes description. This
work has been improved [11] by a possibility to implement
net blocks according to their interfaces. Intelligent Token Petri
Nets [12] introduces tokens representing jobs by that the

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

dynamic changes can be easily modeled. Their disadvantage
is that they usually do not define the modularity.

The indirect approach handles system changes using extra
mechanisms. Model-based control design method, presented
by Ohashi and Shin [13], uses state transition diagrams and
general graph representations. Discrete-event controller based
on finite automata has been presented by Liu and Darabi [14].
The presented methods use external mechanisms, nevertheless,
most of them do not deal with validity of changes.

The approach presented in this paper combines direct
and indirect methods. To define platform allowing to change
component on the fly, the intrinsic features of the formalism
of DEVS is used in combination with application framework
allowing to work with simulation in live environment.

III. COMMON PLATFORM

As we mentioned above, we need to have a common
platform allowing to interconnect different formalisms, as well
as to change model element on the fly. We have decided [4] to
use DEVS [15] approach to specify the platform. This section
describes a formal base of the common platform and introduces
a simple example to demonstrate its features and usage.

A. Discrete Event System Specification Platform

The formalism of DEVS can represent any system whose
input/output behavior can be described as a sequence of events.
The model consists of atomic models M . Their behavior is
described by functions that work with input event values X
and produce output event values Y . These functions are not
important from the paper point of view, so that we will abstract
them. Atomic models can be coupled together to form a
coupled model CM . The later model can itself be employed as
a component of a larger model. The atomic model, as well as
the coupled model, corresponds to the term component. This
way the DEVS formalism brings a hierarchical component
architecture. The platform based on DEVS will be called
common component platform and will be denoted M. The set
of components of the platform M will be denoted D.

B. Component Interface

Sets X and Y of the component are usually specified
as structured sets. It allows to define input and output ports
for input and output events specification, as well as for
coupling specification. Let us have the structured set X =
{(v1, v2, . . . , vn)|v1 ∈ X1, . . . , vn ∈ Xn)}, where vi repre-
sents a value of the ith variable from the domain set Xi. We
will denote members v1, v2, . . . , vn as input ports and will
write X = (VX , X1×X2×· · ·×Xn), where VX is an ordered
set of n input ports. The set of output ports VY is defined
similarly on the structured set Y . The component interface is
then built up from input ports VX and output ports VY .

The component platform consists of components that
are coupled through their ports. We define a relationship

coupling
D
⇁ ⊆

⋃
i∈D V i

Y ×
⋃

i∈D V i
X meaning that

there are channels for data transmission between ports
of components. We will denote input port, resp. output
port, by the notation component name⊕port name, resp.

component name⊖port name. Then, the notation c1⊖p1
D
⇁

c2⊕p2 means that there is the coupling between the output
port p1 of the component c1 and the input port p2 of the

component c2. The relationship
D
⇁ can also be written in

opposite direction
D
↽ .

Then, the common component platform is defined M =

(D,
D
⇁ ,V M

X , V M
Y), where V M

X =
⋃

i∈D V i
X and V M

Y =⋃
i∈D V i

Y represent ports that are accessible from the platform
neighborhood.

C. Component Changes on the Fly

The component in the common platform is a model de-
scription, as well as its executable form. There is no difference
between static and dynamic (live) representation of models.
In comparison with classic object oriented approach, we need
not care about classes, new instances, and reference changes
(i.e., how to detach old objects and to attach new objects) at
the moment of component changes. We simply create the new
component and change the connections (couplings).

D. Example Specification

The concepts presented in the paper will be demonstrated
on the small example consisting of sensor nets, a module
collecting data from sensors, and a module making decision
based on the data (the form of decision is not important). Other
parts will be abstracted.

Figure 1. An example—class diagram.

In the classic object approach, we can define two analytical
classes Control (decision maker) and Sensor (data collector).
The class Sensor defines operations allowing to start or stop
the data collection (start) and to get acquired data from sensors
(getData). The class Control defines operations to attach and to
detach a sensor (addSensor and removeSensor) and to control
the process (main). The class diagram is shown in Figure
1. The basic algorithm of the method main is illustrated in
the note window—it starts data collection and then performs
following operations in the loop: gets data, makes decision,
and waits for a while.

Now, we take the example specification to the com-
mon component platform. Figure 2 shows an example of
the platform M1 containing two components Control and
Sensors, where Sensors represents a communication channel
to the sensor nets and Control receives acquired data and
makes decisions about the system. Due to simplification of
notation, we will write cn and sn instead of full names.

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Then, the platform consists of D1 = {cn, sn}, where the
components interfaces consists of V cn

X = {data, run, stop},
V cn
Y = {start, request}, V sn

X = {start, request}, and
V sn
Y = {data}.

Now, we can compare DEVS-based common platform
with object approach. First, the class Sensor and the com-
ponent sn. The method start is represented by the input port
sn⊕start receiving a command to start or stop data collecting.
The method getData is represented by a pair of input port
sn⊕request and output port sn⊖data. If any component asks
for data, it puts a command to sn⊕request and the component
reacts by putting data to sn⊖data.

Controldata

request

Sensors

data

start start

request
run

stop

Figure 2. Common platform M1.

Second, the class Control and the component cn. There
is no port equivalent to the method main because of intrin-
sic definition of the component behavior. Nevertheless, ports
cn⊕run and cn⊕stop serve to start and to stop main loop of
the component cn. These ports are not connected inside the
platform; they will be used from outside to control platform
run. The communication to cn surroundings is represented by
ports cn⊖start (starting a data collection), cn⊖request (a
request for acquired data) and cn⊕data (an answer for data
requesting). The component cn sends commands to the com-

ponent sn by carrying data through cn⊖start
D
⇁ sn⊕start

and cn⊖request
D
⇁ sn⊕request. The component sn reacts

by sending data through the coupling cn⊕data
D
↽ sn⊖data.

IV. OOPN COMPONENT MODEL

The common platform based on DEVS formalism of-
fers component approach allowing to wrap another kind of
formalisms, so that each such a formalism is evaluated by
own means. The Object oriented Petri Net component model
(OOPN component model) consists of DEVS components that
are described by the OOPN formalism. This section introduces
the OOPN formalism and its relationship to the common
platform M.

A. Object Oriented Petri Nets

First of all, let us agree upon the following definitions in
the OOPN component system. The Object oriented Petri net is
a tuple (Σ, c0), where Σ is a system of classes and c0 is an ini-
tial class. Σ contains sets of OOPN elements, which constitute
classes. For the paper purpose, we will denote only selected
elements that are used. The system of classes Σ is defined as
follows Σ = (CPN ,MSG,NO, NM , SP,NP, P, T), where
CPN is a set of OOPN classes, MSG is a set of message
selectors, NO is a set of object nets, NM is a set of method
nets, SP is a set of synchronous ports, NP is a set of negative
predicates, P is a set of places, and T is a set of transitions.
The message selectors MSG corresponds to method nets,
synchronous ports, and negative predicates. Object nets de-
scribe possible autonomous activities of objects, while method

nets describe reactions of objects to messages. A class C
is defined as C = (MSGC , onC , NC

M , SPC , NPC), where
MSGC ⊆ MSG, onC ∈ NO, N

C
M ⊆ NM , SPC ⊆ SP , and

NPC ⊆ NP . Every net consists of places (a subset of P) and
transitions (a subset of T).

The OOPN dynamics comprises the system of objects Γ.
Elements from C describe a structure of simulation model and
have to be instantiated to simulate the model. If the class C ∈
CPN is instantiated (the object o is created), the instance of
object net onC is created immediately. If the message m ∈
MSG is sent to the object o, an instance of the method net is
created. Then, we can define Γ = (OBJ, INV), where OBJ
is a set of objects including their object net instances and INV
is a set of invoked method nets.

B. OOPN in Common Platform

In the common platform, there is no difference between
a static representation of the model and its live (running,
executed) form. To include the OOPN formalism, we introduce
the live model of OOPN as the tuple Π = (Σ,Γ, c0, obj0),
where c0 ∈ CPN is an initial class and obj0 ∈ OBJ is an
initial object of the class c0.

In the common platform, the OOPN model is split up into
submodels, whereas each submodel has its own initial class
c0 and initial object obj0. Let MPN = (M,Π, P inp

c0 , P out
c0)

be a DEVS component M , which wraps an OOPN submodel
Π. The initial class c0 is instantiated immediately the com-
ponent MPN is created. The component interface (VX , VY)
is represented by subsets of places P

inp
c0 , P out

c0 ⊆ P , where
P is a set of object net places of the initial class c0 and

P
inp
c0 ∩ P out

c0 = ∅. There are bijections mapinp : P inp
c0 → VX

and mapout : P out
c0 → VX mapping ports and places and

the mapped places then serve as input or output ports of the
component.

C. OOPN Example

Let us continue with the example from Figure 2. Figure 4
shows an OOPN model of the component Sensors (sn) and
Figure 3 shows an OOPN model of the component Control
(cn). Both models have the same basis—the loop driven by an
external stimulus (a token placed in the place s).

data

request

#getData

stop
v

run

v

self hold: h.

h

h

h

h

h

v

h

v > 0

self process: lst.
lst

start
true

false

tStart

tStop

s

Figure 3. OOPN model of the component Control.

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

First, let us have a look at the component Control (Figure
3). Input port cn⊕run expects a number h representing an
interval of asking data from the component sn. Input port
cn⊕stop expects any value—it only activates transition tStop,
which suspends the loop. Both ports generate a command for
coupled components through the output port cn⊖start (they
put true or false to the mapped place start). The component
cn asks for data by putting a symbol #getData to output port
cn⊖request and waits for data (input port cn⊕data). When
the data are acquired, the method process: of the initial class
c0 is called and data are processed. Then, the loop waits for a
given time unit h (the method hold:) and asks for data again.

data

#getData
request

list

v

start

v

d := self getData.

self hold: h.

10

h

(h, d)

(h, d)

h

h

list

list

h

list

v == true

v == false

data

add

s

tStart

tStop

list add: d.

MyData new.

Figure 4. OOPN model of the component Sensor

Second, let us have a look at the component Sensor
(Figure 4). Input port sn⊕start expects values true or false
activating transitions tStart or tStop that start or suspend the
loop. The component receives a request for data by input port
sn⊕request and puts data to the output port sn⊖data.

The component sn acquires data in the loop, where the
method getData is called, the new data d is add by the
transition add, and, finally, the loop waits for a given time unit
h. The place data contains an object (an instance of the class
MyData) and the transition add simply adds new item by the
method add:. Instance of the class MyData is created and put
into the place data in the moment of object net instantiation
(it is a place initialization, as shown in Figure 4).

D. Data Model Interface

So far, we did not care about actual data. Their form is not
important for this paper (real numbers, integral numbers, etc.),
only the way of data manipulation will be taken into account.
It comes to this, that the data interface is important. Figure 5
shows identified interfaces and classes.

Figure 5. Classes and interfaces of data.

The component sn uses data storage by only way—adds
a new item. So, the interface SData containing the operation

add: can be identified. Let us suppose, that the component
cn needs following operations: get (getting an item), avg
(average value), max (maximum value), and min (minimum
value). These operations on data are performed within the
method process:. Then, the interface CData can be identified.
The data storage (instance of the class MyData) used in the
component sn (see Figure 4) has to implement the SData
interface. The storage object used in the component cn has
to implement the CData interface. Because both objects are

identical (the object is carried through sn⊖data
D
⇁ cn⊕data),

the class MyData has to implement both interfaces, as shown
in Figure 5.

V. COMPONENT INTERFACE CONSISTENCY

The System in Simulation (SiS) concept assumes that
components can be exchanged with no changes in the other
components. In conjunction with the application framework
[16], the component can be suspended, resumed, or changes
any time during the system simulation. Therefore, it is neces-
sary to be concerned with the problem of component interface
consistency, in other words, the question whether component
interfaces are compatible and whether its exchange is safe.

The component communication is provided by data pass-
ing [4]—the calling component (client) sends a data to the
called component (server); the client does not need to wait for
an answer. We will distinguish the structural aspect and the
behavioral aspect of the component interface. The structural
aspect is defined by ports and couplings. There is no problem
to check if the components can be coupled or not. The
behavioral aspect corresponds to the concrete data and their
form.

A. Type constraints

Although the formalism of OOPN is pure object-based
system and there is no need to define special kind of types
instead of class, we will have special requirements to the set
of types that can be checked:

• a class or a subclass – we need to check if the object
is an instance of the class or its subclasses

• an object interface – we need to check if the object
complies with the interface

Since we will check the type constraints, we have to define
the term type in the context of the OOPN component system.
CLenv is a set of classes from the product environment (the
notation product environment is understood as the environment
including language in which the application framework is
implemented), CLprim ⊂ CLenv is a set of primitive classes
(numbers, characters, and symbols), I ⊆ P(MSG) is a set
of object interfaces, and ε represents a special kind of type
meaning unspecified type. We define the interface I in the
general way, as a set of operations that are independent from
classes. The type is then TY PE = CLPN ∪CLenv ∪I ∪{ε}.

Let TP be a surjection TP : P → P(TY PE) assigning
a set of types to a given place. The type of the place can be
derived from the associations between classes, whereas there
is no necessary to define only one type (and, thus, to allow all
subtypes), but the set can be extended to next types. Implicitly,

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

each place has assigned the type ε. To discriminate between
different levels of type constraints, we introduce following
operators based on TP :

• �: OBJ × TY PE meaning the object is an instance
of the class or derived classes, ∀o ∈ OBJ : o � ε

• ≻: OBJ × I , meaning the object complies with the
interface, ∀o ∈ OBJ : o ≻ ε

Let us continue with the example defined in Section IV-C.
Figure 6–a shows type constraints defined on the input ports
stop and data of the component Control (cn). The port stop
requires any value of any type, so that the constraint is set to
ε. The port data requires objects of the class MyData, so
that ∀o in the place data : o � MyData. The constraint will
be written � {MyData}.

stop
v

h

h

ε

data
lst

≥{MyData}

data
lst

>{CData}

data
lst

>{SData}

a)

b)

Figure 6. An example of type constraints.

Let us investigate a variant of interface usage—it is shown
in Figure 6–b. There are depicted the input port Control.data
and the output port Sensor.data. Each of them operates with
the different interface. Control.data demands objects under-
standing methods defined by the interface CData, whereas
Sensor.data offers object understanding methods defined by
the interface SData (interfaces are discussed in Section IV-D).

B. Data constraints

Since the interface of the common platform is based on
the principle of data passing, there will often be a request
for constraints on data. First, let us define two auxiliary
notions. Let IG be a function IG : TY PE → P(TY PE)
assigning a set of generalized classes to the given class and
IS : TY PE → P(TY PE) be a function assigning a set
of specialized classes to the given class. Then, CLprim =
IS(Number) ∪ IS(Character) ∪ IS(Symbol). To discrimi-
nate between different levels of data constraints, we introduce
following notions:

• an enumeration η = {e1, e2, . . . }, to check if the
object o gets one of the listed values, o ∈ η; it can be
used for symbols, numbers, or characters CLprim

• an interval ι(i1, i2), to check if the object o gets a
value from the interval, o ∈ ι(i1, i2); it can be used
for numbers I(Number); there is a special value ω
represents a maximal value or infinity

request
#getData

run

v

h

v
v > 0

ι(0,ω)

η{#getData}

s

start
v

η{true, false}

v == true

v == false
v

Figure 7. An example of data constraints.

Let us continue with the example defined in Section
IV-C. Figure 7–a shows data constraints defined on the input
port cn⊕run. It requires a number from interval ι(0, ω).
Figure 7–b shows data constraints defined on the input port
sn⊕(request, start). They require an enumeration of symbols
or boolean values.

VI. CONSTRAINTS REALIZATION

Although the OOPN classes bring more intuitive modeling
of behavior, they do not offer intrinsic definitions of constraints
such as invariants or type checking. Nevertheless, there is very
simple way how to define and test these conditions by means of
OOPN [17]. Tests are generated by the application framework
in accordance to required constraints defined on ports.

A. Type Constraints Testing

The test of class constraints is defined as θ�(p,ET) =
∃x ∈ p ∧ ∄t ∈ ET : x � t, where x is an object in the place
p and ET is a set of expected types. The test of interface
constraints is defined as θ≻(p,ET) = ∃x ∈ p ∧ ∄t ∈ ET :
x ≻ t, where x is an object in the place p and ET is a set of
expected types.

Both tests are implemented by negative predicates as
shown in Figure 8. It follows the example defined in Sec-
tion IV-C and shows two possibilities. First, the type con-
straint � {MyData} is defined for the input place data
of the component Control. This notion is equivalent to
θ�(Control.data, {MyData}). There is generated negative
predicate cT ypeData and associated place ET containing a
set of names of expected types. Names are stored in the form
of symbols.

Firablity of the negative predicate is defined in two cases as
follows. First, it is firable if there is no object in the associated
place. Second, it is firable if the place is not empty and
there is at least one object, which does not satisfy predicate
conditions—on other words, the negative predicate finds all
objects x that do not satisfy conditions. The condition is
represented by arc expression t and calling special method
isKindOf : t on the object x. The method is a part of
object’s metaprotocol and resolves in true or false depending

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

data
x

≥{MyData}

#MyData
tcTypeData

x isKindOf: t

data
x

>{CData, SData}

#CData,

#SData

tcTypeData

x compliesWith: t

ET

ET

Figure 8. Type constraints realization.

on decision if the object is an instance of the class t (or its
subclasses) or not. So, the predicate cT ypeData is firable if
there is an object in the place data and this object is not the
instance of MyData.

Second possibility represents the type constraint ≻
{CData, SData} defined for the input place data of
the component Control. This notion is equivalent to
θ≻(Control.data, {CData, SData}). The constraint realiza-
tion is the same as for � except that it uses the method
compliesWith: instead of isKindOf :.

B. Data Constraints Testing

The tests of data constraints are implemented by negative
predicates as shown in Figure 9. It follows the example defined
in Section IV-C and shows two possibilities. First, the data
constraint ι(0, ω) is defined for the input place start of the
component Control. There is generated negative predicate
cDataStart having a condition corresponding to the defined
interval. The predicate is firable if the condition is not satisfied.

request
x

start

x

ι(0,ω)

η{#getData}

#getData
x

cDataStart

x > 0

cDataRequest

Figure 9. Data constraints realization.

Second, the data constraint η{#getData} is defined for
the input place request of the component Sensor. There is
generated negative predicate cDataRequest and associated
place containing a set of expected symbols. The predicate is
firable if there is found a symbol in the place request that is
not in the predefined set.

C. Exceptions

Constraints realizations presented in previous sections can-
not be evaluated without calling them. Therefore, the new
element of exception is introduced to the formalism of OOPN.
The exception is demonstrated on the example of type con-
straint � {MyData} from Figure 8. The syntax is shown
in Figure 10-a. The exception checks type constraint and if
the constraint is not satisfied, it removes an object from the
place data and the associated ”any action” is performed. The
implementation is shown in Figure 10-b.

data

≥{MyData}

data
x

#MyData
tcTypeData

x isKindOf: t

"any action"

E

self cTypeData

v

"any action"

eData

eData

data

≥{MyData}

E "any action"

eData

a)

b)

c)

subst

Figure 10. Invariants and testing conditions.

The exception may also have a side effect, e.g., it may offer
substitute object and place it back to the place data (shown
in Figure 10-c).

D. Example of Component Changes

Let us continue with the example of common platform
presented in Figure 2. The component Sensors will be re-
placed by the component Sensors2 having the same structural
interface, i.e., the same sets of input and output ports, as shown
in Figure 11.

Controldata

request

Sensors

data

start start

request
run

stop

Sensors2

data

start

request

>{SData}

>{CData}

Figure 11. Common platform M2.

Let us suppose that the classMyData has been changed to
MyData2 containing only add: and get operations. Now, we

will be only interested with sn⊖data
D
⇁ cn⊕data coupling.

The constraint≻ {SData} is satisfied (operation add:), but the
constraint ≻ {CData} is not satisfied (operations avg, max,
and min are not present). Watching such incorrect changes,
that do not have to be simply detected, allows to prevent
systems from unexpected behavior.

VII. CONCLUSION AND FUTURE WORK

The paper dealt with the concept of component platform
based on DEVS and OOPN formalisms. It defined component
interface and constraints above input and output ports. The
interface is described by the means of OOPN places. Although
they has assigned no type, for constraint testing it is possible to
assign a set of types or constraints the objects have to satisfy.
The concept of exception has been introduced to OOPN.
Exceptions are a form of interface constraint testing. Incorrect
changes done inside components do not have to easily be
in evidence at the interface level. Constraints together with
exceptions in languages that do not work with types allow to
safe modification and changing component.

Future work will be aimed to a possibility to derive a set
of types or constraints from the model analysis or simulation.

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

The component interface will be also generalized to other
formalisms that can be incorporated into common DEVS
platform.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project
FIT-S-14-2486 and the EU/Czech IT4Innovations Centre of
Excellence project CZ.1.05/1.1.00/02.0070).

REFERENCES

[1] R. Kočı́ and V. Janoušek, “Modeling and Simulation-Based Design
Using Object-Oriented Petri Nets: A Case Study,” in Proceeding of the
International Workshop on Petri Nets and Software Engineering 2012,
vol. 851. CEUR, 2012, pp. 253–266.

[2] M. Češka, V. Janoušek, and T. Vojnar, PNtalk — a computerized tool
for Object oriented Petri nets modelling, ser. Lecture Notes in Computer
Science. Springer Verlag, 1997, vol. 1333, pp. 591–610.

[3] R. Kočı́ and V. Janoušek, “Formal Models in Software Development
and Deployment: A Case Study,” International Journal on Advances in
Software, vol. 7, no. 1, 2014, pp. 266–276.

[4] R. Kočı́ and V. Janoušek, “System Composition Using Petri Nets and
DEVS Formalisms,” in The Ninth International Conference on Software
Engineering Advances. Xpert Publishing Services, 2014, pp. 309–315.

[5] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software Develop-
ment. Springer-Verlag, 2005.

[6] M. Broy, J. Gruenbauer, D. Harel, and T. Hoare, Eds., Engineering
Theories of Software Intensive Systems: Proceedings of the NATO
Advanced Study Institute. Kluwer Academic Publishers, 2005.

[7] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model
Driven Architecture with Executable UML. Cambridge University
Press, 2004.

[8] D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuity in
discrete event simulation: A framework for model-driven development
of simulation models,” ACM Transactions on Modeling and Computer
Simulation, vol. 25, no. 3, 2015.

[9] S. U. Guan and S. S. Lim, “Modeling adaptable multimedia and self-
modifying protocol execution,” Future Gener. Comput. Syst., vol. 20,
no. 1, 2004, pp. 123–143.

[10] M. Llorens and J. Oliver, “Structural and dynamic changes in concurrent
systems: Reconfigurable petri nets,” IEEE Transactions on Automation
Science and Engineering, vol. 53, no. 9, 2004, pp. 1147–1158.

[11] J. Li, X. Dai, and Z. Meng, “Automatic reconfiguration of petri net con-
trollers for reconfigurable manufactoring systems with an improved net
rewriting system based approach,” IEEE Transactions on Automation
Science and Engineering, vol. 6, no. 1, 2009, pp. 156–167.

[12] N. Q. Wu and M. C. Zhou, “Intelligent token petri nets for modelling
and control of reconfigurable automated manufactoring systems with
dynamic changes,” Transactions of the Institute of Measurement and
Control, vol. 33, no. 1, 2011, pp. 9–29.

[13] K. Ohashi and K. G. Shin, “Model-based control for reconfigurable
manufacturing systems,” in Proc. of IEEE International Conference on
Robotics and Automation, 2011, pp. 553–558.

[14] J. Liu and H. Darabi, “Control reconfiguration of discrete event systems
controllers with partial observation,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, Cybertetics, vol. 34, no. 6, 2004, pp.
2262–2272.

[15] B. Zeigler, T. Kim, and H. Praehofer, Theory of Modeling and Simu-
lation. Academic Press, Inc., London, 2000.

[16] R. Kočı́ and V. Janoušek, “The PNtalk System,” 2015. [Online].
Available: http://perchta.fit.vutbr.cz/pntalk2k/

[17] R. Kočı́ and V. Janoušek, “Specification of UML Classes by Object
Oriented Petri Nets,” in ICSEA 2012, The Seventh International Con-
ference on Software Engineering Advances. Xpert Publishing Services,
2012, pp. 361–366.

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

