
ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 477

Recovering Lost Software Design with the Help of
Aspect-based Abstractions

Kiev Gama
Centro de Informática

Universidade Federal de Pernambuco (UFPE)
Recife, PE

email: kiev@cin.ufpe.br

Didier Donsez
Laboratoire d’Informatique de Grenoble

University of Grenoble
Grenoble, France

email: didier.donsez@imag.fr

Abstract— In this paper, we propose an unconventional usage of
aspect-oriented programming, presenting and discussing a novel
approach for recovering layered software design. It consists of a
reengineering pattern based on aspect abstractions that work as a
strategy for recovering software design. By using our approach it is
possible to employ general purpose aspects that represent software
layers. This is useful for capturing such design in systems where a
layered architecture exists but was not documented or where it has
been inconsistently translated from design to code. The pattern is a
generalization of our initial validation performed in a case study on
the Open Service Gateway Initiative (OSGi) service platform. We
could verify that its software layers are well defined in the
specification and design, however when analyzing the actual
Application Programming Interface (API), such layers are
completely scattered over interfaces that inconsistently accumulate
roles from different layers. By extracting the layered design into
separate aspects, we were able to better understand the code, as
well as explicitly identifying the affected layers when applying
dependability crosscutting concerns to a concrete aspect solution on
top of three different implementations of the OSGi platform.

Keywords-Software architecture; Software layers; Software
reengineering; Aspect-oriented programming.

I. INTRODUCTION
Reverse engineering, Reengineering and Restructuring are

close terms, with subtle differences. Definitions from [3]
indicate reengineering as the examination and alteration of a
system to reconstitute it to a new form, while restructuring
consists of transforming the system code keeping it at the same
relative abstraction level, and preserving its functionality.
Reverse engineering would consist of analyzing a system in
order to identify its components and to create abstract
representations of it.

Recovering lost information (e.g., design) and facilitating
reuse are important reasons for reengineering [3]. Other reasons
[4] leading to reengineering a software system are: insufficient
documentation, improper layering, lack of modularity,
duplicated code or functionality are among the coarse-grained
problems. As a part of the reengineering process, one may
employ techniques, such as refactoring [7] as a form of code
restructuring. Refactoring consists of “the process of changing a
software system in such a way that it does not alter the external
behavior of the code yet improves its internal structure”. Aspect-
oriented programming (AOP) [15] is a paradigm that is very
useful when restructuring and reengineering systems. It allows
changing the system without actually changing the system's

source code. It is possible to keep cross-cutting concerns
separate from the target system code at development time. Such
concerns can be later integrated by “weaving” them to the target
application either at compile time or during runtime.

Typical usages of AOP are straightforward solutions that
either refactor crosscutting concerns out of the system code or
introduce crosscutting concerns in the form of aspects woven in
the system. Sometimes it may not be clear which system layers
are being crosscut by which aspects, especially in systems with
weak design or where the implemented design differs from
documentation. In this paper, we propose the usage of aspects
for providing another level of indirection that helps
understanding systems that are reengineered with AOP. We
provide an AOP refactoring pattern that helps capturing system
design by aspectizing software layers, which can be reused by
aspects that are applying concrete aspects as concerns that
crosscut such layers (and consequently the system). Such
abstractions we propose are useful for better understanding
software architectures in systems with weak design (e.g.,
monolithic systems) or where design has been badly translated
from the specification during its implementation. Therefore, the
contributions of this paper are: 1) an approach for using aspects
as an abstraction for capturing lost architectural design; 2) the
refactoring of specific aspects that will target such abstractions
instead of coding the aspects directly against the target system
code; and 3) a reengineering pattern that guides through the
process of extracting such design.

The pattern described here was validated in a case study of
the OSGi [17] service platform. We present an architectural
perspective that is useful in the context of reverse engineering
for recovering lost design information, as well as in the context
of reengineering when applying changes to the system and
reusing the definitions of such abstractions that recover lost
design. The remainder of this paper is organized as follows:
Section 2 provides an overview of the problem, Section 3
describes the reengineering pattern, Section 4 details the case
study in the OSGi platform, Section 5 discusses related work,
followed by Section 6 that concludes this article.

II. OVERVIEW
Software layers [1] are an architectural pattern extensively

used for grouping different levels of abstraction in a system. By
employing such pattern for layered architectures, it is a good
practice to design a flat interface that offers all services from a
given layer. In a purist layer design, a layer of a system should
only communicate with its adjacent layers, via such flat

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 478

interfaces. Such type of design gives a commonly used
architectural view of systems. We find cases where the system is
well designed in terms of layering, but the corresponding
implemented code does not represent explicitly such
architecture. In other (worst) cases, the system lacks good
abstraction during design, resulting in a monolithic
architecture which is hard to understand.

From now on in this article, the term reengineering will be
employed as a general task – which may involve reverse
engineering and restructuring – for improving system code and
design. By reengineering the code, it is possible to arrive at a
system whose architecture is more transparent, and easier to
understand. In [4], extracting the design is considered as a first
step for performing new implementations. Either if
reimplementing the system or just applying the required
changes, this step is very important.

A. Aspect-oriented Programming
The principle of Aspect-oriented Programming [15] is a

paradigm that improves the modularity of applications by
employing the principle of Separation of Concerns (SoC)
advocated by Dijkstra [6]. In SoC, one should focus on one
aspect of a problem at a time, as a way to have a better reasoning
on a specific aspect of a system. An aspect should be studied in
isolation from the other aspects but without ignoring them.

Putting these concepts into practice, AOP allows the
separation of concerns (e.g., logging, transactions, distribution)
that crosscut different parts of an application. These crosscutting
concerns are kept separate from the main application code
instead of being scattered over different parts of the system, as
illustrated in Figure 1. A source file (e.g., module, class) may
also have code that accumulates different responsibilities not
necessarily related, giving an impression of tangled code.

Figure 1. Illustration of how aspects are maintained outside the target

application code, and then are intermixed with it.

AOP employs its own terminology, from which we briefly

clarify some of the commonly used expressions that are going to
be frequently cited throughout this article. Join points are
constructs that capture specific parts of program flow (e.g.,
method call, constructor call). Pointcuts are elements that pick
one or more specific join points in the program flow. The code
that is injected into pointcuts during the weaving process is
called advice in AOP terminology.

B. Lost Design
AOP is useful in the context of reengineering either to apply

changes to code by introducing new crosscutting concerns, or by

refactoring out from code existing crosscutting concerns into
aspects. When in such AOP usage, we propose to give more
semantics to pointcuts in a way that it is possible to represent
part of the system design, by grouping the pointcuts in
meaningful abstractions (e.g., layers) that could be reused. Our
proposition does not involve changes in the aspect language
level, but rather relies on existing constructs for building such
abstract representations. Figure 2 illustrates an example where
aspects are applied directly to the system code, and later layers
are introduced as reusable aspects that contain more semantics.

Figure 2. Aspects defining pointcuts (circles) on the reengineered system that are
logically grouped in intermediary abstractions (layers as apects) that can be used
to “visualize” the system’s layers.

In a typical utilization of aspects, we define pointcuts using

join points that directly reference the code of the target system,
without any intermediary abstractions. This may end up with
redundant pointcut definitions, especially in larger systems or in
systems where aspects represent a significant part of the code.
This redundancy is illustrated in Figure 2 by the pointcuts B, H,
I and M, which are used by more than one aspect. If each
definition involves several join points (e.g., method calls,
method executions, instantiations), it may be difficult to give
some reusable semantics to it. In addition, if the same set of join
points is to be used in another aspect, we end up with redundant
code. Indeed, we can give aliases to pointcuts for better
expressiveness and reuse within the same aspect as we illustrate
further.

C. Approach
At large, what we propose is to logically group pointcuts in

general purpose aspect definitions that do not provide advices

Aspect Weaver

Application
code

Woven code

Aspects

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 479

but only pointcut definitions. That gives more semantics to the
aspects, allowing us to logically represent software layers that
were not correctly (or not at all) represented in the original
system. In the case from our example, the monolithic design of
the target system is now represented with aspects that mimic
layers (e.g., data access layer, GUI layer). They provide a new
abstraction that captures such design concept. We also avoid
redundant definitions of pointcuts. For instance, instead of
aspects A2 and A3 having to write pointcut B twice, such
pointcut is going to be logically grouped together with B in an
aspect layer (AL2). The code from A2 and A3 can then reuse the
pointcuts from AL2. After this change we now know explicitly
that aspects A2 and A3 crosscut the layer represented by AL2.
Another conclusion that can be drawn is that layer AL4 is
crosscut by all aspects.

To clarify this proposition, we provide some code illustrating
our approach. By taking the example of Figure 2 (a), the origin
of the links toward the pointcuts (A through M, in the figure)
denotes where the corresponding pointcut definitions are
located. In such approach, it is normal to have the same pointcut
definitions that may be present in different aspects, which
represents redundant code as exemplified in Figure 3. The
anonymous pointcut definition in A2 is the same used in A4 but
cannot be reused, working as a sort of ad hoc pointcut. In
contrast, the pointcut X of aspect A4 can be used by different
advices just by referring to its name. Based on that reuse
possibility, we suggest reusable pointcut definitions logically
grouped, providing the semantics of a software layer.

In Figure 2 (b), our approach proposes the introduction of an
intermediary abstraction that uses aspects for gathering cohesive
pointcuts that would refer to join point in the same software
layer. We can use these groupings to represent software layers
and also to reuse the pointcut definitions with more semantics.
Whenever reusing a pointcut, one would know which layer it
refers to. In the example, each aspect layer (AL) illustrated will
just group pointcut definitions (A to M) that belong to the same
software layer, thus providing a representation of that layer as an
aspect. The actual crosscutting concerns should be coded in
aspects that refer to the pointcut definitions of these layer
aspects, instead of repeating them in their code.

The code in Figure 4 that illustrates the layers is presented in
Figure 2 (b) where we provide the example of the aspect layer
AL3, which represents an architectural layer (e.g., data access
layer) that was “captured” using two pointcuts. The other two
aspects of the example, A2 and A4, reuse the definition of the
pointcut M. It is clear that both aspects A2 and A4 crosscut the
layer represented by AL3. In the case of aspect A4, one can
easily identify just by reading the code that it also crosscuts the
layer represented by AL4. The illustrated advice of AL4 will be
used whenever the program flow reaches the join points defined
by pointcuts AL3.M or AL4.K.

III. PROPOSED PATTERN
A reengineering pattern is more related with the discovery

and transformation of a system, than with the design structure
[4]. It is important to note, however, that our proposed
reengineering pattern describes a discovery process that involves
the identification of a design element (an architectural pattern).

In the next subsections, we employ a similar organization
(intent, problem, solution, tradeoffs) to the patterns defined in
the Object Oriented reengineering patterns book [4] for
describing our pattern named as “Aspectize the Software
Layers”.

A. Intent
Utilizing reusable aspects for extracting the layered design of

the system and clarifying where (and which) are such software
layers.

B. Problem
Common usages of AOP are basically employed in two

ways. The first one consists of refactoring crosscutting concerns
out of the system code. The second case consists of introducing
previously non-existent crosscutting concerns into the system, in
the form of aspects. Both cases typically employ straightforward

public aspect A2 {

 void around(): execution(void Foo+.set*(..))
 || execution(void Bar.setFoo(Foo)){

 //advice code

 }}

public aspect A4 {

 pointcut X(): execution(void Foo+.set*(..))
 || execution(void Bar.setFoo(Foo));

 void around(): X() {

 //advice code

 }}

Figure 3. The same pointcut definition in the form of an anonymous
pointcut in aspect A2 and as a named pointcut in aspect A4.

public aspect AL3 {

 pointcut J(): /* */

 pointcut M(): execution(void Foo+.set*(..))
 || execution(void Bar.setFoo(Foo));

}

public aspect A2 {

 void around(): AL3.M() {

 //code

 }

}

public aspect A4 {

 void around(): AL3.M() || AL4.K(){

 //code

 }

}

Figure 4. Layer aspect AL3 defines the redundant pointcut of previous
example.

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 480

solutions that do not use intermediary abstractions. It is not clear
which system layers are being affected (i.e., crosscut), especially
in systems with weak design (e.g., monolithic systems) or where
design has been badly translated from the specification during its
implementation. In larger solutions, pointcuts tend to be repeated
where reuse could be possible. An extra level of indirection
could introduce more semantics and pointcut reuse.

C. Solution
Introduce general purpose aspects (i.e., without advices)

logically grouping correlated pointcuts, allowing to provide
representations of the software layers used in the systems. The
pointcut can be reused with better semantics than previously.

Before actually executing the necessary steps, it is important
to understand the system being refactored. Applying some of the
reverse engineering patterns defined in [4] can help:
• Speculate about design. It will allow making hypotheses

about existing design so we are able to understand which
ones are the existing layers.

• Refactor to understand. This is important to understand
the code; even if these performed refactorings are not
taken into account later (it might be the case when
changing existing code is not desired).

• Look for the contracts. The proposed intent of this
pattern is to infer the usage of class interfaces by
observing how client code uses it. In the context of our
pattern, this may be the case when contracts are not
specific.

After identifying which are the layers and which to be

abstracted, it is necessary to create their corresponding aspects.
Each aspect will define the pointcuts that represent the services
provided by a layer. The granularity level depends on the usage
or what is necessary to be represented. For example, a data
access layer abstraction could include pointcuts defining the
general CRUD (create, read, update, delete) operations as the
layer’s services.

The layer aspects themselves do not provide any code for
advices; therefore alone they are useless. The layer aspects
should be reused by advices from other aspects that apply
crosscutting concerns (e.g., logging, transactions, distribution) to
the target system. In the case where such crosscutting concerns
already exist in the form of aspects, it is necessary to apply the
look for the contracts pattern in order to understand how these
aspects use the target system. Wrapping the aspectized layers as
a library that can be imported by the concrete aspects consists of
a good reuse practice that should be employed whenever
possible.

D. Trade-Offs
Following the format proposed in [4], the following trade-

offs can be considered.
Pros:
• Higher level abstractions
• Clarification of the existing architecture through the

extracted design
• Reusable pointcut definitions
Cons:

• Depending on the coverage of the aspects (e.g.,
crosscuts only parts of the system) the resultant design
that was extracted may not completely describe the
system architecture

• Poor knowledge of the system may also result in an
incomplete representation

IV. CASE STUDY
Our initial validation of the proposed pattern was performed

on the OSGi Service Platform [17], a dynamic environment
where components may be installed, started, stopped, updated or
unloaded at runtime. The API is standardized and the common
point for different implementations. When aspects target the API
they become applicable to any of the implementations. In the
case of OSGi, we could verify this in our experiment involving
the open source implementations of that API: Apache Felix,
Equinox and Knopflerfish. We initially applied dependability
aspects that were scattered over layers. Our approach used
Aspect-J and the Eclipse IDE for defining and weaving the
aspects in those implementations. An important fact to be
pointed out is that the OSGi implementations in question did not
use any aspect-oriented language prior to our intervention.

When we needed to identify which layers were being
affected by which aspects, we could not easily tell because the
way the specification presents the layers is much cleaner and
less entangled that the reality in the API. The next subsections
show the steps taken for applying our reverse engineering
pattern.

A. Disentangling OSGi layers
As part of our analysis (speculate about design and look for

the contracts) we have noted that useful concepts described in
the OSGi specification are not well represented in its API,
making it difficult to distinguish the layers in the specification
from their counterparts in the API. The OSGi specification
proposes a layered architecture, as depicted in the gradient boxes
in Figure 5. The service, lifecycle, module and security layers
are provided by the OSGi implementations, while the bundles
layer represents the third party components that are deployed
and executed on the OSGi platform. However, the software
layers specified by OSGi are scattered over different interfaces,
which accumulate roles from different layers.

Figure 5. The proposed aspects simulate a single point of access (dashed

ellipse) for each layer in OSGi's pseudo-layered architecture.

We found no single entity to describe individual layers in

OSGi neither single access points for accessing the services
provided by each layer. However, with such layer concept lost
when a specification is translated into an API, we lose
modularity as well. In the OSGi platform, the bundles layer

Hardware/OS

Execution Environment

Module S
ec

ur
ityLife Cycle

Service
Bundles

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 481

freely accesses the other three layers (Figure 5). But, in practice,
such access in OSGi is not done through a single interface per
layer. Actually, there is no such flat interface for explicitly
representing layers in OSGi’s API. The functionality of each
layer is scattered over different interfaces which may accumulate
roles from different layers. In our case study targeting OSGi we
have employed our pattern for abstracting the Service, Lifecycle
and Module layers, and then refactoring the dependability
patterns to use it. We have not handled the security layer
because it is an optional layer in OSGi implementations. The
“aspectization” of the lifecycle layer (service and module layers
were left out due to space limitations) is illustrated in Figure 6
and is a result of the next step when applying our pattern. The
refactor to understand pattern was also helpful, and in our case it
happened previously, at the time we applied the dependability
aspects.

In Figure 6, the methods and transitions that concern bundle

lifecycle are scattered across four interfaces (Bundle,
BundleContext, BundleActivator, PackageAdmin) that already
have roles other than lifecycle management. The different state
transitions of a bundle’s lifecycle are scattered over different
interfaces. The install state transition is actually fired in the
BundleContext interface. The resolve transition is defined in the
PackageAdmin service interface, while the update and uninstall
can be found in the Bundle interface. The refresh transition is
part of the package admin, which is not part of the core API but
rather declared in the PackageAdmin. The start and stop are both
located in the Bundle and BundleActivator interfaces. In case of

a Bundle having a BundleActivator, those calls are delegated to
it. In the LifeCycle aspect we have rather called it as activation
and deactivation, respectively.

A simple illustration of the lifecycle layer aspect being
reused is shown in the advice from Figure 7, which provides a
practical usage of an aspect targeting that layer by reusing the
Lifecycle aspect (i.e., an aspect that abstract a software layer).
The semantics of the code becomes clearer with a higher level
concept. Although the original definition of the start pointcut
involves only one join point in the Bundle interface, other cases
that involve long pointcut definitions would gain more in terms
of reuse and semantics gain.

B. Discussion

Reverse engineering is a fundamental part of the
reengineering process, since understanding the system is an
important step before changing or reconstructing it. The usage of
our pattern allowed us to recover lost information (the translated
design) in OSGi, and also facilitated the reuse of that
abstraction, thus achieving essential goals of reengineering.
Although this article focuses only on one architectural pattern,
software layers, we could illustrate how to use aspects to capture
an architectural abstraction without needing to restructure the
code, which in addition can be reused to apply other crosscutting
concerns. The lack of an automated approach was a major
drawback that required the manual analysis of the target system
code. This would represent an obstacle for applying such
approach in systems with significant size. Therefore, the
development of auxiliary tools for applying that reengineering
pattern would significantly improve the efficiency of using such
approach.

V. RELATED WORK
Other approaches, such as [5][12][14][16] and [20],

employed pattern-based reverse engineering, which consists of
detecting design patterns in software. An important motivation
for providing such mechanisms is that patterns provide a
common idiom for developers. Therefore by understanding what
patterns where employed, the effort necessary to understanding
the whole software will be reduced [20]. These approaches help
identifying the architectural elements based on the recognition of
patterns. Although a method for software architecture
reconstruction is discussed in [12], the process is based on
design patterns recognition. In summary, most of the above
strategies try to automate the lookup of the more traditional

public aspect LifeCycle {

 pointcut install():
 execution(Bundle
BundleContext+.installBundle(String,..));

 pointcut stop():
 execution(void Bundle+.stop(..));

 pointcut start():
 execution(void Bundle+.start(..));

 pointcut uninstall():
 execution(void Bundle+.uninstall());

 pointcut update():
 execution(void Bundle+.update(..));

 pointcut resolve():
 execution(boolean
 PackageAdmin+.resolveBundles(Bundle[]));

 pointcut refresh():
 execution(void
 PackageAdmin+.refreshPackages(Bundle[]));

 pointcut activate():
 call(void
 BundleActivator+.start(BundleContext));

 pointcut deactivate():
 call(void
 BundleActivator+.stop(BundleContext));
}

Figure 6. Aspect representing OSGi’s lifecycle layer

public aspect ComponentIsolation {
void around(Bundle b): LifeCycle.start()
 && !cflowbelow(LifeCycle.start())&&
 this(b){
 if (!PlatformProxy.isSandbox() &&
 PolicyChecker.checkIsolation(b)){
 PlatformProxy.start(b.getBundleId());
 } else {
 proceed();
 }
 }
}

Figure 7. Example of layer aspect being reused

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 482

design patterns [9], with tools inferring patterns based on graph
analysis and visual tools showing such relationships and pattern
match.

The work in [5] slightly differs from such approaches
because it allows looking for anti-patterns and “bad smells” that
may negatively affect the architecture recovery. In contrast to
our work, although the previously mentioned approaches
provide a sort of (semi-) automated discovery of patterns, they
are rather focused on a fine grain perspective of patterns (i.e.,
design patterns), while we intend to employ a strategy that gives
us a coarse grain perspective of an architectural pattern
(currently limited do software layers).

The relationship between patterns and AOP that we found in
literature mainly deals with the implementation of design
patterns with the help of AOP [13], and studies that analyze
impacts and drawbacks of such implementations [2][11][23].
Under the perspective of software architectures, for instance,
some research efforts focused on establishing a way to represent
aspects in the software architecture early in the design phase,
using aspect-oriented architectural models [8] – sometimes
identifying them even earlier, during the requirements elicitation
phase [22] – and more specific forms of expressing them such as
the definition of representations of aspects using the Unified
Modeling Language (UML), as found in [18] and [25]. Another
example in the architectural level is that of specific Architecture
Description Languages [10][19][21] that are able to express
aspects and other crosscutting concerns. However, the above
cases of aspect usage focus on how to represent in the
architecture the aspects that crosscut the system elements (e.g.,
components, modules, subsystems), while our approach uses an
aspect abstraction to mimic an architectural pattern.

Specifically talking about the layers architectural pattern, the
only study we have found explicitly dealing with software layers
and AOP was performed in [24]. However, that report deals with
software layers and aspects using a perspective that differs from
our work. Their approach consists in the assessment of the
impact of using AOP on layered software architectures.

VI. CONCLUSIONS AND FUTURE WORK
The reengineering of systems may be motivated by different

reasons, such as lack of modularity, improper layering, duplicate
code or functionality. Refactoring with the help of aspect-
oriented programming provides a way of performing
reengineering by employing the separation of concerns principle.
It allows cross-cutting concerns to be separated from the
application, allowing better maintenance and readability.

This article proposed the usage of aspects in a novel way. It
was used to provide an abstraction that provides a correct
perspective of a layer architecture that was not well represented
in the system code. It refactors specific aspects in order to use
such abstractions instead of targeting the system code, and we
also propose a reengineering pattern describing such process.
In the case study, the usage of aspects allowed us to abstract
logical layers that were scattered over the OSGi API, providing a
vision that disentangles the OSGi layers from the interfaces and
classes that accumulate responsibilities from different layers.
The resulting aspectized layers were reused for applying
concrete aspects that concerned dependability. Since analyzing a
single case study may be a limitation of the generalized

perspective provided in this article, for future work we plan to
apply this pattern in other systems for evaluating its occurrence,
as well as getting a deeper understanding of its advantages and
drawbacks. Another interesting path to take is to evaluate how
employ aspects to recover and represent other architectural
patterns.

ACKNOWLEDGEMENT
This work was supported by INES - Instituto Nacional de

Ciência e Tecnologia para Engenharia de Software
(http://www.ines.org.br/) - with financial support from CNPq
(CNPq grant #573964/2008-4). Kiev Gama was also supported
by the CNPq grant #485420/2013. The work presented here was
initially carried out as part of the ASPIRE project, co-funded by
the European Commission under the FP7 programme, contract
#215417.

REFERENCES

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, “Pattern-Oriented Software Architecture: A System of
Patterns”, Wiley, 1996, ISBN: 978-0-471-95869-7

[2] N. Cacho, C. Sant'Anna, E. Figueiredo, A. Garcia, T. Batista, and
C. Lucena, “Composing design patterns: a scalability study of
aspect-oriented programming“. In Proceedings of the 5th
international conference on Aspect-oriented software development.
ACM, 2006, pp. 109-121, ISBN:1-59593-300-X,
doi:10.1145/1119655.1119672

[3] E. Chikofsky and J. Cross II, “Reverse Engineering and Design
Recovery: A Taxonomy”. IEEE Software 7, 1, January 1990, pp.
13-17, ISSN:0740-7459, doi:10.1109/52.43044

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Object Oriented
Reengineering Patterns”. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002, ISBN: 978-3952334126

[5] M. Detten and S. Becker, “Combining clustering and pattern
detection for the reengineering of component-based software
system” Joint ACM SIGSOFT conference -- QoSA and ACM
SIGSOFT symposium -- ISARCS on Quality of software
architectures -- QoSA and architecting critical systems. ACM,
New York, NY, USA, 2011, pp. 23-32, ISBN: 978-1-4503-0724-6,
doi:10.1145/2000259.2000265

[6] E. Dijkstra, “On the role of scientific thought”, EWD 447, 1974,
appears in E.W.Dijkstra, Selected Writings on Computing: A
Personal Perspective, Springer Verlag, 1982

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
“Refactoring: Improving the Design of Existing Code”. Addison
Wesley, 1999, ISBN: 978-0201485677

[8] R. France, I. Ray, G. Georg, and S. Ghosh, “Aspect-oriented
approach to early design modeling” Software, IEE Proceedings-
Vol. 151, No. 4, 2004, pp. 173-185, doi: 10.1049/ip-sen:20040920

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley, Menlo Park, CA, 1995, ISBN: 978-0201633610

[10] A. Garcia, C. Chavez, T. Batista, C. Sant’Anna, U. Kulesza, A.
Rashid, and C. Lucena, “On the modular representation of
architectural aspects” Software Architecture, Springer Berlin

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 483

Heidelberg, 2006, pp. 82-97, ISBN 978-3-540-69272-0 doi:
10.1007/11966104_7

[11] A. Garcia et al. “Modularizing design patterns with aspects: a
quantitative study” Transactions on Aspect-Oriented Software
Development I, 2006, pp. 36-74, ISBN: 1-59593-042-6
doi:10.1145/1052898.1052899

[12] G.Y Guo, J. M. Atlee, and R. Kazman, “A software architecture
reconstruction method”. In Proceedings of the TC2 First Working
IFIP Conference on Software Architecture (WICSA1), Kluwer,
The Netherlands, 2006, pp. 15-34, ISBN:0-7923-8453-9

[13] J. Hannemann and G. Kiczales, “Design pattern implementation in
Java and AspectJ”. Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA ’02), ACM SIGPLAN
Notices, 2002, pp. 161-173, ISBN:1-58113-471-1
doi:10.1145/582419.582436

[14] R. K. Keller, R. Schauer, S. Robitaille, and P. Page, “Pattern-
Based Reverse-Engineering of Design Components” 21st
International Conference on Software Engineering, IEEE
Computer Society Press, May 1999, pp 226–235, ISBN: 1-58113-
074-0

[15] G. Kiczales, G., et al. “Aspect-Oriented Programming” European
Conference on Object-Oriented Programming (ECOOP), Springer-
Verlag, Finland, 1997, ISBN: 978-3-540-69127-3, doi:
10.1007/BFb0053381

[16] J. Niere, W. Shafer, J. P. Wadsack, L. Wendehals, and J. Welsh,
“Towards pattern-based design recovery” International Conference
on Software Engineering, IEEE Computer Society Press, May
2002, pp. 338–348, ISBN: 1-58113-472-X

[17] OSGi Alliance. OSGi Service Platform. http://www.osgi.org
[retrieved: 09, 2015]

[18] R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L. Seinturier,
and L. Martelli, “A UML notation for aspect-oriented software
design” Proceedings of the AOM with UML workshop at AOSD,
Vol. 2002.

[19] N Pessemier, L. Seinturier L., T. Coupaye, and L. Duchien, “A
model for developing component-based and aspect-oriented
systems” Software Composition. Springer Berlin Heidelberg,
2006, pp. 259-274, ISBN: 978-3-540-37659-0, doi:
10.1007/11821946_17

[20] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann, “An
approach for reverse engineering of design patterns” Software
Systems Modeling, 2005, pp. 55–70, ISSN: 1619-1374 , doi:
10.1007/s10270-004-0059-9

[21] M. Pinto and L. Fuentes, “AO-ADL: An ADL for describing
aspect-oriented architectures”. Early Aspects: Current Challenges
and Future Directions, 2007, pp. 94-114, doi:10.1007/978-3-540-
76811-1_6

[22] A. Rashid, P. Sawyer, A. Moreira, and J. Araújo, “Early aspects: A
model for aspect-oriented requirements engineering” IEEE Joint
International Conference on Requirements Engineering, 2002, pp.
199-202, ISSN: 1090-705X, doi: 10.1109/ICRE.2002.1048526

[23] C. Sant'Anna, A. Garcia, U. Kulesza, C. Lucena, and A. V. Staa,
“Design patterns as aspects: A quantitative assessment” Journal of
the Brazilian Computer Society, 10(2), 2004, pp. 42-55, ISSN:
1678-4804, doi: 10.1007/BF03192358

[24] J. Saraiva, F. Castor, S. and Soares, “Assessing the Impact of
AOSD on Layered Software Architectures” ECSA 2010, LNCS
6285, 2010, pp. 344–351, doi: 10.1007/978-3-642-15114-9_27

[25] J. Suzuki and Y. Yamamoto, “Extending UML with aspects:
Aspect support in the design phase” Lecture Notes in Computer
Science, Springer-Verlag London, UK, 1999, pp. 299-300,
ISBN:3-540-66954-X

