
Minimizing Attack Graph Data Structures

Peter Mell

National Institute of Standards and Technology

Gaithersburg, MD United States

email:peter.mell@nist.gov

Richard Harang

U.S. Army Research Laboratory

Adelphi, MD United States

email:richard.e.harang.civ@mail.mil

Abstract— An attack graph is a data structure representing

how an attacker can chain together multiple attacks to expand

their influence within a network (often in an attempt to reach

some set of goal states). Restricting attack graph size is vital for

the execution of high degree polynomial analysis algorithms.

However, we find that the most widely-cited and recently-used

‘condition/exploit’ attack graph representation has a worst-

case quadratic node growth with respect to the number of

hosts in the network when a linear representation will suffice.

In 2002, a node linear representation in the form of a

‘condition’ approach was published but was not significantly

used in subsequent research. In analyzing the condition

approach, we find that (while node linear) it suffers from edge

explosions: the creation of unnecessary complete bipartite sub-

graphs. To address the weaknesses in both approaches, we

provide a new hybrid ‘condition/vulnerability’ representation

that regains linearity in the number of nodes and that removes

unnecessary complete bipartite sub-graphs, mitigating the edge

explosion problem. In our empirical study modeling an

operational 5968-node network, our new representation had 94

% fewer nodes and 64 % fewer edges than the currently used

condition/exploit approach.

Keywords- attack graph; complexity analysis; data

structures; minimization; representation; security.

I. INTRODUCTION

An attack graph is a representation of how an attacker
can chain together multiple attacks to expand their influence
within a network (often in an attempt to reach some set of
goal states) [1]. Among other things, an attack graph can be
used to calculate the threat exposure of critical assets,
prioritize vulnerability remediation, optimize security
investments, and as a tool to guide post-compromise forensic
activities. Restricting attack graph size is vital for both
human visualization of sub-graphs and the execution of high
degree polynomial analysis algorithms. Early attack graph
research used a ‘state enumeration’ representation [2] that
would record all possible orderings by which an attacker
could exploit a set of vulnerabilities, and hence grow at a
factorial rate (exponential with some modifications). This
rapid growth was mitigated in 2002 by a ‘condition-oriented’
approach providing a linear number of data objects with a
quadratic worst-case number of relationships (with respect to
the number of hosts in the original network) [3]. A major
tenet of this approach was the assumption of ‘monotonicity’,
which stated that an attacker would never lose a privilege
once it was gained and any increase in privilege would not
negate other gained privileges. This removed the need to

account for the order in which attacks are initiated, and so
reduced the complexity of the representation.

Subsequent research modified this model to make it
attack- focused and enable humans to visually follow the
steps within an attack more easily [2]. This hybrid
‘condition/exploit’ model [4] has been used extensively since
2003 for attack graph research. Unfortunately, we find that
this model results in redundant data encodings, under which
the worst-case graph size become quadratic in the number of
nodes. Thus, over a decade of attack graph research has used
a quadratic representation when a linear one was available in
the literature.

However, even had the node linear condition-oriented
approach been adopted, we find that it suffers from avoidable
edge explosions (the creation of unnecessary complete
bipartite sub-graphs) under certain conditions. These edge
explosions add a quadratic factor to worst-case edge growth
based on the maximum number of attacker privileges on any
one host.

These size complexity issues are not always readily
apparent from visual inspection of small example graphs.
Example attack graphs in the literature to date have often
contained a small number of dissimilar hosts with limited
per-host attack surfaces and thus do not reveal the worst-case
growth in both nodes and edges that we have observed. In
large enterprise networks, however, where hosts have both
large and diverse attack surfaces and are vulnerable to high-
level compromise (thus yielding a high number of post-
conditions), these complexity issues become much more
evident.

To address these weaknesses, we provide a new hybrid
‘condition/vulnerability’ representation that regains linearity
in the number of nodes and that does not suffer from the
edge explosion problem. In our empirical study of a network
model derived from an operational 5968-node network, our
new representation had 94 % fewer nodes and 64 % fewer
edges than the most widely cited recent approach in our
surveyed literature (the condition/exploit model).

This reduced graph size will increase the speed of
automated analysis, even making some algorithms tractable
under certain scenarios. This can be true for higher
polynomial complexity algorithms such as the cubic
algorithms in [3] and certainly for metrics derived from
attack graphs that grow either exponentially or with high
polynomial degree [5]-[8] (as often occurs when graphs
containing cycles must be rendered acyclic for the purposes
of probabilistic modeling). The reduced size can also aid in
human visualization and analysis of select sub-graphs of
interest.

376Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

The development of the work is as follows. In Section 2,
we survey past attack graph representations and describe
them in terms of four major categories (while citing minor
variations). For each category, we provide a description,
theoretical analysis of worst-case growth, and an example
graph from previously published work. Section 3 then
provides our two new representations that improve upon the
worst-case node and edge growth of the other
representations. Section 4 provides a theoretical analysis of
set of analyzed approaches. Section 5 provides empirical
results using a network model based on an operational
network where we compare the attack graph sizes using the
different approaches. Section 6 concludes the paper.

II. SURVEY OF ATTACK GRAPH REPRESENTATIONS

Papers discussing some abstraction of the attack graph
idea began appearing as early as 1996 [9]-[12]. The first
widely used representation was the ‘state enumeration’
approach ([2] and [13]-[16]) that had the unfortunate
characteristic that it could grow faster than exponential. In
2002, the ‘condition-oriented’ approach was published with
the express purpose of reducing the graph representation size
down to polynomial complexity [3]. In 2003, the ‘exploit-
oriented’ approach was published [17] to enhance the human
readability of the graphs compared to the condition-oriented
approach [2]. While not discussed in the literature, we will
show that the exploit-oriented approach suffers high
polynomial growth rates. This may explain why, in the same
year, our surveyed literature moved to a more efficient
hybrid ‘condition/exploit-oriented’ approach [4] (which we
find still has a growth rate higher than that of the condition-
oriented approach). Our literature survey shows that this
approach has been used extensively since 2003 and is the
predominant representation (e.g., [1], [4], [7], and [18]-[20]).
The following subsections discuss each of these approaches
in detail. It should be noted that each representation
encapsulates the same underlying knowledge but using a
different abstraction. For each type of representation, we
analyze the worst-case growth rate of a resulting attack graph
with respect to the number of nodes and edges. We define h
to be the number of hosts in the associated physical network,
v to be the maximum number of vulnerabilities on any one
host, and c to be the maximum number of attacker privileges
that can be achieved on any one host from the set of
available vulnerabilities. For the graph size complexity
analyses, we assume that there is a unique set of pre-
conditions for each attack.

A. State Enumeration

State enumeration was the first widely used attack graph
approach. Its distinguishing feature is that it explicitly
accounts for the different orderings in which an attacker may
launch attacks. There are two types. One type uses nodes to
represent attacks and edges to represent post-conditions
resulting in attacker privilege [13]-[15]. The other type uses
nodes to represent attacker privilege and edges to represent
attacks ([2] and [16]).

The graph design contains multiple layers of nodes,
regardless of the particular node and edge semantics. The

initially available set of conditions or attacks are presented at
the top layer. Each subsequent lower layer represents the
possible decisions that an attacker could make. Directed
edges connect the nodes at one layer to the available nodes at
the next lower layer. There are no edges between nodes at a
particular layer. An attack scenario begins at the top layer
and works its way down with the node chosen in each layer
representing an attacker’s next decision.

1) Complexity Analysis
Assume that v and c equal 1. At the top layer (labelled 0),

any of h hosts may be selected as the first node in the attack
path. At layer 1, there are h-1 hosts that can be attacked from
each of the h start nodes. For each node at layer 2 there are
h-2 hosts that can be attacked, and so forth. This creates a
rapidly expanding tree where the number of nodes and edges
increases as O(h!), yielding a worst-case factorial growth
rate for state enumeration graphs.

Most approaches attempt to prune this tree to focus only
on subtrees of interest (e.g., those leading to some goal
state). This can limit the growth, allow limited reuse of
nodes, and can migrate the structure from a tree to a
hierarchical directed graph with no loops (see Figure 1).
Despite such optimizations, the growth rate of this approach
is still worst-case exponential [2].

From an empirical perspective, such graphs become too
large to be practical. For example, a network with just 5
hosts and 8 available exploits produced an attack graph with
5948 nodes and 68 364 edges [15].

Figure 1. Example State Enumeration Attack Graph

Figure 1 shows an example pruned state enumeration

attack graph, from [2], derived from an example with 2 target
hosts running 2 services each, a single attacking host, and 4
unique attack types. Notice that the representation uses the
previously discussed modifications to avoid factorial growth
rate. The large red arrows highlight a remaining inefficiency
by showing an example of path duplication in the graph
(discussed in [2]).

Additional variations include [21]-[24].

B. Condition-Oriented

The condition-oriented approach was introduced in [3] as
a method to reduce the representational complexity of the
state enumeration approach by using the assumption of
attacker privilege ‘monotonicity’. This assumption implies
that an attacker never loses a privilege once it is gained, and
any increased privilege will not negate any other privileges.
In practice, it means that (unlike in the state enumeration
approach) there is no longer any need to track the order in
which attacks are initiated. This assumption has been found

377Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

to be reasonable in most cases [2] and has been adopted by
almost all subsequent attack graph representations.

The work of [2] introduced a graphical representation to
the approach. Each ‘condition node’ represents some state of
attacker privilege (e.g., execute as superuser on host x). An
edge from node a to node b with label c represents that pre-
condition a is necessary (but not necessarily sufficient) for
attack c to provide privilege b. Sufficiency to gain privilege
b is obtained if the pre-conditions of all edges into node b,
labeled with c, are satisfied. By grouping the in-edges to
each node by their edge labels, we can see that each group
represents a possible attack, and each node is thus expressed
in a variant of disjunctive normal form (DNF): in-edges
within a group provide conjunctional logic and the distinct
groups form logical disjunctions. Note that unlike general
DNF statements, negation is not represented.

One limitation of the approach in [3] is that a single
attack on a host that can be instantiated by different sets of
pre-conditions must be represented by multiple attack
instances named differently (using the edge names) to enable
disjunctional logic. Distinct attack instances, involving
different hosts, may be named similarly with no ambiguity.

1) Complexity Analysis
The condition-oriented approach achieves linearity in the

number of nodes, significantly reducing the complexity
compared to the state enumeration approach. An attacker
may have up to c distinct condition states on each of the h
hosts, and thus the number of nodes is bounded by hc.
Unfortunately, as each of the hc condition nodes can be
connected to all hc other nodes, and each connection
between two nodes may have up to v edges to represent
exploiting each available vulnerability, we obtain up to
hc×hc×v=h2c2v edges in the graph. Normally, h is much
larger than c or v for a large network (as c and v are the
maximums per node, not totals) and thus we can treat c and v
as constants for the complexity analysis. Thus, the condition
approach is O(h) in nodes and O(h2) in edges, representing
an enormous improvement over the exponential state
enumeration approach. However, note the multiplicative c2
term in the number of edges. This is the result of unnecessary
complete bipartite sub-graphs forming under certain
conditions. We analyze these edge explosion situations in
more detail in Section 4.

Figure 2. Example Condition-Oriented Attack Graph

Figure 2 shows an example condition-oriented attack
graph, from [2], derived from a network with 2 target hosts, a
single attacking host, and 3 unique attack types. Note the
reduced complexity compared to Figure 1 although, as stated
previously, these small example graphs are primarily
intended to illustrate the methods, and do not demonstrate
the differences in worst-case size complexities.

Additional variations include [21] and [25].

C. Exploit-Oriented

The exploit-oriented approach represents attacks as nodes
and states of attacker privilege as edges ([2] and [17]) to ease
visual analysis compared to the condition-oriented approach.
Note that each ‘attack node’ is labeled with the host
launching the attack and the host receiving the attack (which
can be the same host for local attacks). This dual labeling on
attack nodes will cause significant representational
inefficiencies. The in-edges to a node represent the pre-
conditions for launching an attack and the out-edges
represent the post-conditions of the exploit. All out-edge
post-conditions of a node are satisfied if and only if all the
in-edge pre-conditions are satisfied.

Explicit representation of disjunction is not available and
so in the presentation in the literature, attacks that can be
instantiated by distinct sets of pre-conditions must be
represented by multiple nodes. However, by applying a
similar edge grouping approach as in the condition-oriented
approach, this duplication of nodes can be avoided. Since the
edges in this approach are already labeled with the post-
condition names they must be additionally labeled with a
grouping name (a name for the group of pre-conditions that
will enable exercising the related exploit). While this
modification is not discussed in the literature, we assume this
optimization to represent the approach as efficiently as
possible. Without this optimization, the number of nodes
would increase by a factor of c.

1) Complexity Analysis
We now examine the worst-case growth rate of some

arbitrary attack graph. With respect to nodes, the graph can
grow as large as h2v. Each of the h hosts can attack all h
hosts with v different attacks (assuming just one attack per
vulnerability) resulting in h2v nodes. With respect to edges,
the graph can grow as large as h3v2. Consider a single node
where b represents the attack target. This node can have a
connection to each node where the attack source is b. There
will be hv nodes with attack source b. Each connection
though can be made up of c edges. Thus, each node can
create hvc out-edges. Since the number of nodes is h2v, this
leads us to h2v×hvc=h3v2c edges. Treating c and v as
constants compared to h, the exploit approach is O(h2) in
nodes and O(h3) in edges. This is an enormous increase in
graph size from the condition approach, however it still
outperforms the exponential state enumeration approach.

Figure 3 shows an example exploit-oriented attack graph,
from [2], derived from the same network as Figure 2. The
example condition-oriented graph has 11 nodes and 12 edges
while the example exploit-oriented graph as 6 nodes and 13
edges. Despite the reduction in graph size demonstrated in
this example, we will empirically show that the exploit-

378Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

oriented graphs can grow much larger than the condition-
oriented graphs in enterprise networks.

Figure 3. Example Exploit-Oriented Attach Graph

D. Hybrid Condition/Exploit-Oriented

The hybrid condition/exploit-oriented approach uses two
distinct types of nodes ([1], [4], [7], and [18]-[20])
representing both attacks and the states of attacker privilege,
while the edges are unlabeled. The ‘attack nodes’ and
‘condition nodes’ have the same semantics as those in the
exploit-oriented graphs and the condition-oriented graphs,
respectively.

This structure produces a directed bipartite graph, with
attack nodes having edges to condition nodes and vice versa.
However, the interpretation of the in-edges varies per type of
node. Attack nodes and their post-condition out-edges are all
satisfied if and only if all in-edges are satisfied (conjunction
as with the exploit-oriented graphs). Condition nodes and
their out-edges are satisfied if at least one in-edge is satisfied
(disjunction as with multiple groups of in-edges in the
condition-oriented graphs).

As in the exploit-oriented representation, the problem of
a single exploit that can be instantiated with multiple sets of
pre-conditions is not well addressed in the literature. In a
naïve implementation, a single exploit must be divided into
multiple attack node instances, one for each distinct set of
pre-conditions. However, by applying the same optimization
as before (again, not previously presented in the literature)
where we allow condition node to attack node edges to be
labeled with a group name, we can avoid this multiplication,
and we assume this optimization throughout. As in the
condition approach, the interpretation is disjunction among
the groups and conjunction within a group. Without this
optimization, the worst-case number of attack nodes would
increase by a factor of c (as with the exploit approach).

1) Complexity Analysis
We now examine the worst-case growth rate of some

arbitrary attack graph. With respect to nodes, the graph can
grow as large as hc+h2v. There will be hc condition nodes as
derived in Section 2.2.1 and there will be h2v attack nodes as
derived in Section 2.3.1. With respect to edges, the condition
and attack nodes form a directed bipartite graph. We first
explore the set of attack to condition node edges. Each attack
node has a single target host as discussed in Section 2.3.

Each attack node then can at most activate c condition nodes
on the target host where each activation creates an attack to
condition node edge. Since there are up to h2v attack nodes,
we can then have up to h2v×c=h2vc attack node to condition
node edges. Similarly, each condition node is mapped to a
host, say a, and thus may have an edge to any of the hv
exploit nodes where the attack source is a. Since there are hc
condition nodes and up to hv edges per node, we get a total
of hc×hv=h2vc condition to exploit node edges. Summing the
two types of edges, we get h2vc+h2vc=2h2vc.

Figure 4. Example Condition/Exploit-Oriented Attack Graph

Figure 4 shows a condition/exploit-oriented attack graph

from an example provided in [4]. This was derived from the
same network as in Figure 1. The circled nodes are the attack
nodes and the un-circled nodes are the condition nodes.
Notice the relative simplicity in comparison with the state
enumeration approach in Figure 1. Again though, the size of
these small examples doesn’t demonstrate complexity
growth on large enterprise networks.

Additional variants include [26]-[28].

III. VULNERABILITY-BASED REPRESENTATIONS

Our contribution is the idea of representing the
vulnerabilities on specific hosts explicitly within attack
graphs. From a visualization point of view, this makes it easy
to see how a chain of vulnerabilities (and hosts) can be
compromised. From a graph complexity point of view, the
vulnerability nodes replace the use of the attack nodes
thereby lowering node complexity to linear (from quadratic).
Intuitively, where exploit nodes must contain references to
both the source and target hosts in an attack step, and thus
grow potentially quadratically in highly connected networks,
the vulnerability nodes only reference the exploitable host,
and so grow only linearly. We represent attacks within the
edges where they can take advantage of the fact that edges
inherently have sources and targets (similar to the condition
approach).

This approach leads to two new representations that build
upon one another. We first describe a vulnerability-oriented
approach where we replace the attack nodes from the
exploit-oriented approach with vulnerability nodes. This
reduces node complexity from quadratic to linear and edge

379Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

complexity from cubic to quadratic. We then point out how
the vulnerability-oriented approach suffers from similar
quadratic edge explosion scenarios as the condition approach
(but this time relative to v, not c).

We then build upon the vulnerability approach to provide
a hybrid condition/vulnerability representation that has a
linear number of nodes, quadratic number of edges, and that
does not suffer from quadratic edge explosion (in either v or
c). It also, like the hybrid condition/exploit approach,
improves on the human readability of the condition-oriented
approach.

A. Vulnerability-Oriented

Our first approach is analogous to the exploit-oriented
approach except that we replace the attack nodes with
vulnerability nodes. A vulnerability node is labeled with a
vulnerability name and the relevant location in the network
(usually but not necessarily a hostname). Edges represent
attacker privilege, just like in the exploit-oriented approach.
In cases where multiple sets of pre-conditions can activate a
particular vulnerability, we handle it with the edge grouping
optimization we’ve presented previously. A set of pre-
conditions that will activate a vulnerability are represented
by a set of in-edges to a node that all have a common group
name. Thus we represent attacks using groups of commonly
named edges just like in the condition approach. Each node
is thus expressed in DNF: in-edges within a group provide
conjunctional logic and the distinct groups form logical
disjunctions.

1) Complexity Analysis
We now examine the worst-case growth rate of some

arbitrary attack graph. With respect to nodes, the graph can
grow as large as hv because each of the h hosts can have v
vulnerabilities. With respect to edges, each node can have hv
outgoing connections to other nodes. Each connection can be
made up of at most c edges. Thus, the total number of edges
is at most hv×hv×c=h2v2c.

A disadvantage of this approach is the v2 term in the
number of edges. This is the result of unnecessary complete
bi-partite sub-graphs forming under certain conditions. We
analyze this edge explosion in more detail in Section 4.

Figure 5. Example Vulnerability-Oriented Attack Graph

Figure 5 shows an example of a vulnerability-oriented

graph, derived from the representation in Figure 4. For the
sake of readability, edge grouping labels are omitted. Note

that the number of nodes is reduced with respect to Figure 4,
and all vulnerabilities are in exactly one node instead of
replicated over multiple nodes with different attack sources
(e.g., the attacks targeting the ftp rhosts vulnerability on node
1 in Figure 4).

B. Hybrid Condition/Vulnerability-Oriented

Our second novel approach is a hybrid approach
combining condition nodes with our new vulnerability
nodes. The condition nodes are analogous to those in the
condition-oriented approach. The vulnerability nodes are
identical to those in our vulnerability-oriented representation.
We represent attacks by labeling the condition node to
vulnerability node edges with the attack instances being used
(including source and destination hostnames/IPs where
applicable); this edge labeling is similar to that in the
condition-oriented graphs. We then connect the vulnerability
nodes to the condition nodes with unlabeled edges showing
which post-conditions emerge as a result of exploiting the
relevant vulnerability instance.

As with the hybrid condition/exploit graph, this structure
produces a directed bipartite graph. For condition nodes, they
and all of their attack labeled out-edges are satisfied if at
least one in-edge is satisfied (disjunction). For vulnerability
nodes, they and all of their unlabeled out-edges are satisfied
if and only if a group of identically labeled in-edges are
satisfied (conjunction within a group and disjunction
between the groups). This distributed implementation of
disjunctions and conjunctions enables the same DNF logic of
the condition-oriented approach.

A single attack that can be instantiated with multiple sets
of pre-conditions can be represented by using a different
group name for each set of instantiating pre-conditions.

1) Complexity Analysis
We now examine the worst-case growth rate of an

arbitrary attack graph. With respect to nodes, the graph can
grow as large as h(c+v). There will be hc condition nodes as
derived in Section 2.2.1 and hv vulnerability nodes as
derived Section 3.1.1. Thus, there are at most hc+hv nodes
total. With respect to edges, there can be as many as
h2cv+hvc. First, for the set of edges that point from
vulnerability nodes to condition nodes, each of the hv
vulnerability nodes can activate up to c condition nodes
(since each vulnerability pertains to a host with up to c
conditions), creating hvc edges. In the other direction, each
of the hc condition nodes could allow an attack to all hv
vulnerability nodes, producing hc*hv edges. Thus, the total
number of edges is hvc+hc*hv=h2cv+hvc.

Treating c and v as constants compared to h, the
condition/vulnerability approach is O(h) in nodes and O(h2)
in edges. This is a major improvement over the quadratic
growth in the number of nodes caused by attack nodes in the
exploit and condition/exploit approaches. While the
complexity of the number of nodes is of the same order
between the condition, vulnerability, and
condition/vulnerability graphs, we note that there is no v2 or
c2 term in the edge growth equation for the
condition/vulnerability graph. This is indicative of the fact
that this approach does not suffer from the quadratic edge

380Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

explosion problem of the condition and the vulnerability-
oriented approaches in either v or c. This is discussed in
detail in Section 4.

Figure 6. Example Condition/Vulnerability-Oriented Attack Graph

Figure 6 shows an example of the condition/vulnerability

graph displaying the same attack graph data as in Figure 4
and Figure 5. In this example with just 3 nodes and relatively
diverse attack surfaces, this data actually has a more compact
representation in the vulnerability graph format. We
demonstrate in Section 5 on larger scale real-world data that
this advantage is not general, and in fact the
condition/vulnerability graph provides significant size
advantages in such cases.

IV. THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the
worst-case behavior of the representations. Note that we do
not analyze the state enumeration approach given its known
exponential growth rate (previously discussed). We begin
with a review of the big-O complexity of each graph type
and show the advantages of the condition, vulnerability, and
condition/vulnerability approaches. We then follow with an
analysis of the terms within the actual worst-case growth
equations. These equations reveal quadratic terms in both v
and c that cause the edge explosion scenarios in the condition
and vulnerability approaches, respectively. We then explore
in more detail when and why these avoidable edge explosion
scenarios occur. We end the section with a discussion of
edge explosion scenarios that are unavoidable in all of our
analyzed representations (and that may reflect an inherent
limit in reducing graph sizes).

A. Big-O Complexity Graph Growth Comparisons

In an attack graph, h is expected to grow much larger
than v or c for a typical enterprise network. Note that v and c
are the maximums per host (not the total number of
vulnerability and conditions) and thus are usually miniscule
compared to h. For this reason, we treat v and c as constants
to derive overall complexity of each representation. These
big-O measurements were derived in Sections 2 and 3 and
are summarized in Table 1. The calculations showing the
largest growth rates are bolded. Note, if h is not large relative

to v or c, use the below Table 2 instead of Table 1 to
determine the most efficient representation.

TABLE 1. COMPLEXITY MEASUREMENT OF ATTACK GRAPH

REPRESENTATION

Representation Nodes Edges

Condition O(h) O(h2)

Exploit O(h2) O(h3)

Vulnerability O(h) O(h2)

Condition/Exploit O(h2) O(h2)

Condition/Vulnerability O(h) O(h2)

The quadratic node growth of the exploit and

condition/exploit approaches is much larger than the linear
node growth of the condition and condition/vulnerability
approaches. With respect to edges, the cubic edge growth of
the exploit approach is larger than the quadratic growth of
the other approaches. Thus, the condition, vulnerability, and
condition/vulnerability approaches are the best approaches in
limiting worst-case graph growth with respect to h.

To intuitively understand why the exploit and
condition/exploit node growth is quadratic, consider that an
exploit node must necessarily contain two host name labels:
the attack source and the attack target. If a set of hosts A can
attack a set of hosts B using a single attack, then the number
of exploit nodes representing this will be |A|*|B| (i.e.,
quadratic growth). Contrast this to the
condition/vulnerability approach where there will be only a
single vulnerability node per host in B resulting in |B|
vulnerability nodes (i.e., linear growth).

One optimization is to reduce graph size by consolidating
groups of identical hosts (those with identical security value,
vulnerabilities, and permitted connectivity) into single hosts
when building the attack graph. This essentially reduces h
and thus minimizes the graph size, but we note that it does
not change the big-O complexity results nor the outcome of
our comparative analyses.

B. Worst-Case Equations Graph Growth Comparisons

We now look at the actual worst-case equations that we
derived in Sections 2 and 3 in order to further refine our
comparison between the approaches. These equations are
summarized in Table 2. The terms specifically discussed in
our analysis are bolded.

TABLE 2. WORST-CASE GROWTH OF ATTACK GRAPH REPRESENTATIONS

Representation Nodes Edges

Condition hc h2vc2

Exploit h2v h3v2c

Vulnerability hv h2v2c

Condition/Exploit hc+h2v 2h2vc

Condition/Vulnerability hc+hv h2vc+hvc

We focus our analysis on the condition, vulnerability,

and condition/vulnerability approaches since the other two
approaches were shown to have larger big-O node
complexities in Table 1.

With respect to node growth, the condition and
vulnerability approaches will always have fewer nodes than
the condition/vulnerability approach due it having the sum of

381Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the former two. However, it should be noted that this
increase is a small linear factor.

With respect to edge growth, however, both the condition
and vulnerability graphs grow quadratically in c and v,
respectively. It is these quadratic terms (not present in the
condition/vulnerability edge equation) that reflect edge
explosion scenarios where unnecessary complete bipartite
sub-graphs are formed. We claim that they are unnecessary
because the condition/vulnerability approach provides a
linear representation of the same data. Visually, the condition
and vulnerability approaches use complete bi-partite sub-
graphs where, for the same data, the condition/vulnerability
approach uses star topologies (explained in detail in the next
section).

Thus overall, our theoretical analysis indicates that our
condition/vulnerability approach will result in achieving the
most compact attack graphs. The exploit approach was the
worst (excluding the naïve state enumeration approach),
suffering from cubic edge growth. The condition/exploit
approach (the most commonly used in recent research in our
surveyed literature) suffered from quadratic node growth in
our largest term, h. Finally, the condition and vulnerability
approaches suffered from quadratic edge explosions (in c
and v, respectively) as a result of the creation of complete bi-
partite sub-graphs that our condition/vulnerability approach
converts to linear growth star topologies. We now explore in
detail the edge explosion scenarios.

C. Avoidable Edge Explosion Scenarios

We define an edge explosion as the creation of a
complete bipartite sub-graph within an attack graph due to
some specific scenario. Some scenarios cause edge
explosions regardless of which of our analyzed attack graph
representations is used. We call these scenarios
‘unavoidable’ (with respect to our set of representations) and
thus they are not useful for a comparative analysis. We
discuss such unavoidable scenarios in the next section.

This section focuses on avoidable scenarios that create
quadratic edge explosions in the condition and vulnerability
representations, which are converted to linear star
representations in the condition/vulnerability approach. The
condition/exploit approach has similar representational
advantages with respect to edge explosion scenarios.
However, we do not specifically analyze this for the
condition/exploit approach due to its worse quadratic node
complexity but we do note that it is the dual node type
representations that enable the reduction (i.e., the ‘hybrid’
node design).

Avoidable edge explosion can occur in both the condition
and vulnerability graphs as shown by their worst-case
quadratic growth in c and v, respectively. These upper
bounds are approached in condition graphs whenever a
single attack has multiple pre-conditions and multiple post-
conditions. This also happens in vulnerability graphs when
some set of vulnerabilities on a host allows subsequent
exploitation of some other set of vulnerabilities (on the same
or other hosts).

Both cases can be viewed in terms of directed
hyperedges, representing the multi-way relationships. For

example, an attack with multiple pre-conditions and post-
conditions can be represented by a single directed hyperedge
with the pre-conditions at the tail of the edge and the post-
conditions at the head. In standard directed graphs,
representing this requires the creation of a complete directed
bipartite sub-graph with the pre-conditions in the edge ‘tail’
set and the post-conditions in the ‘head’ set. The
representation of these hyperedges by the corresponding
complete bipartite graphs is then responsible for the
quadratic explosion in the number of edges. Similarly, given
a set of vulnerabilities on a host where each one enables an
attacker to exploit some other common set of vulnerabilities
can be represented by a single directed hyperedge. In a
vulnerability graph, this hyperedge would require a directed
complete bipartite graph with the enabling vulnerabilities in
the edge ‘tail’ set and the newly available vulnerability nodes
in the edge ‘head’ set.

Hybrid node graphs, such as the condition/vulnerability
and the condition/exploit graphs, represent these directed
hyperedges more efficiently (i.e., linearly). To see this,
consider that in the condition/vulnerability graph, each
vulnerability node may represent a directed hyperedge that
links multiple pre-conditions to multiple post-conditions.
Each condition node may also represent a directed hyperedge
that links multiple vulnerabilities on a single host to a set of
common target vulnerabilities. This representational
approach of a directed hyperedge forms a star graph for each
hyperedge. It is then easy to see that star graphs grow
linearly in the number of edges while the complete bipartite
sub-graphs grow quadratically, thus enabling the size
complexity advantage of the hybrid node approaches.

For the purposes of illustration, consider Figure 7 below.
Conditions C1 to C4 form the tail of a hyperedge
corresponding to a vulnerability Va, while conditions C5 to
C8 for the head. The resulting condition graph is complete
bipartite, as each of C1 to C4 must be linked to each of C5 to
C6 (Figure 7, left); by contrast, using a separate class of node
to represent the vulnerability-related hyperedge in the
condition/vulnerability approach allows for a much more
compact representation in the form of a star graph (Figure 7,
right).

Figure 7. Unnecessary complete bipartite structures in the condition-

oriented graph

Vulnerability graphs have a directly analogous

representation, where a condition node may represent a
hyperedge, as shown in Figure 8.

382Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 8. Unnecessary complete bipartite structures in the vulnerability-

oriented approach

In the vulnerability graph, each vulnerability (V1 to V4)

on a single host must have an edge to each vulnerability that
is now accessible for attack (V5 to V8). In the
condition/vulnerability graph, a single condition node Ca
represents the attacker privileges gained by exploiting V1 to
V4. Condition node Ca then allows exploitation of V5 to V8.
The addition of Ca creates a linear growth star graph in place
of the quadratic complete bipartite graph in the vulnerability
representation.

D. Unavoidable Edge Explosion Scenarios

There are cases where the condition/vulnerability graph
will still contain complete bipartite components and it is
direct to see that the related condition or vulnerability graph
will also exhibit such a component. Thus, such scenarios are
unavoidable (with our set of analyzed representations).
While we can’t prove nonexistence of a linear representation
here, we believe it unlikely and that we are pushing against
inviolable data representational boundaries in trying to
further reduce the size of the attack graph.

Consider a scenario where multiple distinct hyperedges
have identical head or tail sets in either the condition- or
vulnerability- oriented approach. This will naturally result in
complete bipartite components in the condition/vulnerability
representation; however, it is straightforward to see that such
cases also produce complete bipartite graphs in the condition
and vulnerability representations as well.

See, for example, the condition/vulnerability graphs in
Figure 9. The leftmost panel depicts a situation in which two
distinct vulnerabilities have identical head and tail sets (such
as two identical vulnerabilities on two different hosts that
each enable a common set of vulnerabilities on a third); the
center depicts a situation in which the head sets are distinct
but the tail sets are identical (perhaps granting host-specific
post-conditions), and the rightmost pane depicts identical
head sets with distinct tail sets (such as would be expected
from host-specific pre-conditions with global post-
conditions). In each case, it is straightforward to see that a
path exists from each pre-condition to each post-condition,
and so the resulting condition-oriented graph will be a
complete bi-partite graph.

Figure 9. Condition/Vulnerability Graph Scenarios

The situation is functionally identical for vulnerability-

oriented graphs. Similar complete bipartite sub-graphs within
a condition/vulnerability graph will result in a completely
connected bipartite sub-graphs in the related vulnerability
graph.

Looking at the underlying equations, note that in the
condition/vulnerability graph the number of edges is
bounded as the product of c and hv, rather than being
quadratic in c, thus requiring both v and c to grow
simultaneously for a comparable edge explosion. Note that
this doesn’t reflect a unique weakness for the
condition/vulnerability approach as both the condition and
vulnerability approaches also contain h, c, and v in their edge
equations (but there with a quadratic c or v). This worst-case
scenario is only realized in the leftmost panel of Figure 9,
while all three panels result in complete bipartite sub-graphs
in the case of the condition-oriented graph.

V. EMPIRICAL RESULTS

We now provide an example to illustrate the performance
between the different approaches using a network model.
Our network model (derived in part from data from an
operational network) has 5968 hosts and 7825
vulnerabilities. The vulnerabilities consist of 41 distinct
types mapped to two different severity levels. We mapped
7791 vulnerability instances to confidentiality breaches and
34 instances to providing user level access.

With respect to attack post-conditions, a vulnerability
was modeled as producing two post-conditions: the severity
level mapped to the host name and a designator indicating
that the host had some specific vulnerability exploited. This
models the situation where a single attack can produce
multiple post-conditions.

With respect to connectivity, we modeled all nodes as
being logically connected to each other. For a start node in
the attack graph, we designated one of the hosts as hostile
(using one with no vulnerabilities) to represent an insider
threat situation.

Table 3 provides the empirical results given the above
stated scenario. To derive these results, we created an attack
graph simulator using Python 2.7.6 that calculates the graph
sizes using all of our analyzed representations. Note that
these results are not based on the equations from Table 2 as
those equations represent worst-case attack graph sizes. Here
we analyze the actual sizes given the network model
described above.

383Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE 3. EMPIRICAL RESULTS

Graph Type Nodes Edges

Condition 5140 436 290

Exploit 218 146 7 189 929

Vulnerability 7825 272 920

Condition/Exploit 223 285 654 435

Condition/Vuln. 12 964 233 795

As expected from the theoretical analysis, the number of

nodes for the exploit and condition/exploit representations
was much larger than the other approaches due to the O(h2)
growth rate. The number of edges in the condition graph is
almost twice that of the condition/vulnerability graph,
attributable to the O(c2) growth rate of the edges. Thus based
on these empirical results, the vulnerability and
condition/vulnerability approaches appear the best for our
scenario and are comparable (with the vulnerability approach
having fewer nodes and the condition/vulnerability approach
having fewer edges).

Note how in this example our condition/vulnerability
approach had 94 % fewer nodes and 64 % fewer edges than
the widely cited and commonly used condition/exploit
approach. This illustrates how an adjustment in
representation can have dramatic results in graph size.

However, if we model each attack as producing exactly
one post condition, then the advantages of the
condition/vulnerability approach disappear relative to the
condition graph (see Table 4).

TABLE 4. SINGLE POST CONDITION EMPIRICAL RESULTS

Graph Type Nodes Edges

Condition 2584 218 145

Exploit 218 146 7 189 929

Vulnerability 7825 272 920

Condition/Exploit 220 728 436 290

Condition/Vuln. 10 408 225 970

Here the condition graph has an advantage on the number

of nodes while roughly matching the number of edges of the
conditional/vulnerability approach. Thus, use of the
vulnerability/condition approach does not guarantee a
smaller graph than the condition representation. However, it
guarantees a linear growth rate with respect to c, allowing for
tighter representations given arbitrary scenarios.

Note that the vulnerability approach statistics stay the
same in both Table 3 and Table 4. This is because the
removed post conditions were not ones that enabled an attack
to be launched (we just removed the flag that a host had a
specific vulnerability exploited).

The widely-cited and used condition/exploit model was
much larger in all of our scenarios because it suffers from
both the O(h2) growth rate in the nodes (this is true also of
the exploit approach). Had we modeled a network where the
logical connectivity of the hosts was much more restricted,
the node disadvantage of the condition/exploit approach
would have been minimized. However, many operational
networks (including this one) have large numbers of hosts

with significant logical connectivity (e.g., approaching
complete sub-graphs).

VI. CONCLUSIONS

For the last decade, the condition/exploit-oriented
approach was the most commonly used representation in our
literature survey. However, we found it to have node growth
quadratic in the number of hosts on the network. This will
slow down analysis algorithms that have a high polynomial
degree while making visualization for humans more difficult
(simply from the increased size). Interestingly, we found the
previously published condition approach provided a much
more compact linear node representation, but it wasn’t
widely adopted. This may have been because it was
confusing to visually analyze since attacks are represented by
collections of edges. We also discovered that it suffers from
quadratic edge explosions based on the number of possible
attacker privileges on a host.

To address these problems, we proposed using a
vulnerability-based approach for nodes in attack graphs. This
eliminates the inefficiency of the attack nodes (taking us
from a quadratic to a linear node representation) while it
makes the graph more intuitive to read compared to the
condition approach (since any attack results in compromising
a single vulnerability node as opposed to activating multiple
condition nodes). Surprisingly, we found this approach to
also contain an edge explosion problem but this time relative
to the number of vulnerabilities on a host.

We thus developed the hybrid condition/vulnerability
approach with the following advantages: linear node growth,
elimination of avoidable edge explosion issues, and an easy
to understand representation (due to the use of the
vulnerability nodes). For arbitrary graphs, our
condition/vulnerability approach provides better size
guarantees with respect to edge growth while only having a
small linear penalty on node growth.

Despite this, the condition and vulnerability approaches
are still viable representation options (linear in node growth
and quadratic in edge growth). Even with the quadratic edge
explosion possibilities, they can be used when it is known
that a particular scenario will not suffer significantly from
this problem. Perhaps the best argument for using these two
approaches is simply that they have a single interpretation
for the nodes. This should facilitate the application of
standard graph algorithms for analysis, something not
available with the currently used hybrid condition/exploit
approach or our hybrid condition/vulnerability approach.
Given the simple interpretation of our vulnerability
approach, it is a candidate for exploration in this area, which
may be addressed in future work.

Lastly and most importantly, we emphasize that the
research community should move away from using attack
nodes (as found in both the exploit representation and the
hybrid condition/exploit representation) since the attack
nodes add a quadratic factor to the worst-case node growth
equations. Moving to a much more compact node linear
representation (regardless of the specific choice) may
catalyze the research community by opening the door to

384Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

previously intractable algorithmic analyses and facilitating
human analysis of specific features.

REFERENCES

[1] A. Singhal and X. Ou, "Security Risk Analysis of Enterprise

Networks Using Probabilistic Attack Graphs," National

Institute of Standards and Technology Interagency Report

7788, 2011.

[2] S. Noel and S. Jajodia, "Managing Attack Graph Complexity

Through Visual Hierarchical Aggregation," in Workshop on

Visualization and Data Mining for Computer Security,

Fairfax, 2004, pp. 109-118.

[3] P. Ammann, D. Wijesekera and S. Kaushik, "Scalable, Graph-

Based Network Vulnerability Analysis," in ACM Conference

on Computer and Communications Security, Washington,

D.C., 2002, pp. 217-224.

[4] S. Noel, S. Jajodia, B. O'Berry and M. Jacobs, "Efficient

Minimum-Cost Network Hardening Via Exploit Dependency

Graphs," in Computer Security Applications Conference, Las

Vegas, 2003, pp. 86-95.

[5] M. Frigault, L. Wang, A. Singhal and S. Jajodia, "Measuring

Network Security Using Dynamic Bayesian Network," in

Proceedings of the 4th ACM Workshop on Quality of

Protection, 2008, pp. 23-30.

[6] L. Wang, T. Islam, T. Long, A. Singhal and S. Jajodia., "An

Attack Graph-Based Probabalistic Security Metric," in Data

and Applications Security XXII, Springer, 2008, pp. 283-296.

[7] N. Idika and B. Bhargava, "Extending Attack Graph-Based

Security Metrics and Aggregating Their Application," IEEE

Transactions on Dependable and Secure Computing, vol. 9,

no. 1, 2012, pp. 75-85.

[8] J. Homer, X. Ou and D. Schmidt, "A Sound and Practical

Approach to Quantifying Security Risk in Enterprise

Networks," Kansas State University Technical Report, 2009.

[9] M. Dacier, Y. Deswarte and M. Kaaniche, "Quantitative

Assessment of Operational Security: Models and Tools,"

LAAS Research Report 96493, 1996.

[10] I. Moskowitz and M. Kang, "An Insecurity Flow Model," in

New Security Paradigms Workshop, 1997, pp. 61-74.

[11] C. Meadows, "A Respresentation of Protocol Attacks for Risk

Assessment," Network Threats, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, vol. 38,

1998, pp. 1-10.

[12] C. Phillips and L. Swiler, "A Graph-Based System for

Network-Vulnerability Analysis," in Proceedings of the 1998

Workshop on New Security Paradigms, Charlottesville, 1998,

pp. 71-79.

[13] R. Ortalo, Y. Deswarte and M. Kaaniche, "Experimenting

with Quantitative Evaluation Tools for Monitoring

Operational Security," IEEE Transactions on Software

Engineering, vol. 25, no. 5, 1999, pp. 633-650.

[14] L. Swiler, C. Phillips, D. Ellis and S. Chakerian, "Computer-

Attack Graph Generation Tool," in DARPA Information

Survivability Conference, Anaheim, 2001, pp. 307-321.

[15] O. Sheyner, J. Haines, S. Jha, R. Lippman and J. Wing,

"Automated Generation and Analysis of Attack Graphs," in

IEEE Symposium on Security and Privacy, Washington D.C.,

2002, pp. 273-284.

[16] S. Jha, O. Sheyner and J. Wing, "Two Formal Analyses of

Attack Graphs," in IEEE Computer Security Foundations

Workshop, Cape Breton, 2002, pp. 49-63.

[17] S. Jajodia, S. Noel and B. O'Berry, "Topological Analysis of

Network Attack Vulnerability," in Managing Cyber Threats:

Issues, Approaches and Challenges, Kluwer Academic

Publisher, 2003, pp. 247-266.

[18] S. Noel and S. Jajodia, "Measuring Security Risk of Networks

Using Attack Graphs," International Journal of Next-

Generation Computing, vol. 1, no. 1, 2010, pp. 135-147.

[19] J. Pamula, P. Ammann, S. Jajodia and V. Swarup, "A

Weakest-Adversary Security Metric for Network

Configuration Security Analysis," in Workshop on Quality of

Protection, Alexandria, 2006, pp. 31-38.

[20] L. Wang, S. Noel and S. Jajodia, "Minimum-Cost Network

Hardening Using Attack Graphs," Computer

Communications, 2006, pp. 3812-3824.

[21] B. Schneier, "Attack trees," Dr. Dobb’s journal, 1999, pp. 21-

29.

[22] B. Kordy, S. Mauw, S. Radomirović and P. Schweitzer,

"Foundations of attack–defense trees," in Formal Aspects of

Security and Trust, Springer , 2011, pp. 80-95.

[23] V. Gorodetski and I. Kotenko, "Attacks against computer

network: Formal grammar-based framework and simulation

tool," in Recent Advances in Intrusion Detection, 2002, pp.

219-238.

[24] R. W. Ritchey and P. Ammann, "Using model checking to

analyze network vulnerabilities," in 2000 IEEE Symposium

on Security and Privacy, 2000, pp. 156-165.

[25] J. Dawkins and J. Hale, "A systematic approach to multi-stage

network attack analysis," in Proceedings, Second IEEE

International Information Assurance Workshop, 2004, pp. 48-

56.

[26] N. Poolsappasit, R. Dewri and I. Ray, "Dynamic security risk

management using bayesian attack graphs," IEEE

Transactions on Dependable and Secure Computing, 2012,

pp. 61-74.

[27] D. Koller and N. Friedman, Probabilistic graphical models:

principles and techniques, MIT Press, 2009.

[28] S. J. Templeton and K. Levitt, "A requires/provides model for

computer attacks," in Proceedings of the 2000 Workshop on

New Security Paradigms, 2001, pp. 31-38.

[29] R. Lippmann, K. Ingols, C. Scott and K. Piwowarski,

"Validating and Restoring Defense in Depth Using Attack

Graphs," in Military Communications Conference,

Washington, D.C., 2006, pp. 1-10.

[30] S. Nanda and N. Deo, "A Highly Scalable Model for Network

Attack Identification and Path Prediction," in SoutheastCon,

Richmond, 2007, pp. 663-668.

385Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

