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Abstract— An attack graph is a data structure representing 

how an attacker can chain together multiple attacks to expand 

their influence within a network (often in an attempt to reach 

some set of goal states). Restricting attack graph size is vital for 

the execution of high degree polynomial analysis algorithms. 

However, we find that the most widely-cited and recently-used 

‘condition/exploit’ attack graph representation has a worst-

case quadratic node growth with respect to the number of 

hosts in the network when a linear representation will suffice. 

In 2002, a node linear representation in the form of a 

‘condition’ approach was published but was not significantly 

used in subsequent research. In analyzing the condition 

approach, we find that (while node linear) it suffers from edge 

explosions: the creation of unnecessary complete bipartite sub-

graphs. To address the weaknesses in both approaches, we 

provide a new hybrid ‘condition/vulnerability’ representation 

that regains linearity in the number of nodes and that removes 

unnecessary complete bipartite sub-graphs, mitigating the edge 

explosion problem. In our empirical study modeling an 

operational 5968-node network, our new representation had 94 

% fewer nodes and 64 % fewer edges than the currently used 

condition/exploit approach. 

Keywords- attack graph; complexity analysis; data 

structures; minimization; representation; security. 

I.  INTRODUCTION 

An attack graph is a representation of how an attacker 
can chain together multiple attacks to expand their influence 
within a network (often in an attempt to reach some set of 
goal states) [1]. Among other things, an attack graph can be 
used to calculate the threat exposure of critical assets, 
prioritize vulnerability remediation, optimize security 
investments, and as a tool to guide post-compromise forensic 
activities. Restricting attack graph size is vital for both 
human visualization of sub-graphs and the execution of high 
degree polynomial analysis algorithms. Early attack graph 
research used a ‘state enumeration’ representation [2] that 
would record all possible orderings by which an attacker 
could exploit a set of vulnerabilities, and hence grow at a 
factorial rate (exponential with some modifications). This 
rapid growth was mitigated in 2002 by a ‘condition-oriented’ 
approach providing a linear number of data objects with a 
quadratic worst-case number of relationships (with respect to 
the number of hosts in the original network) [3]. A major 
tenet of this approach was the assumption of ‘monotonicity’, 
which stated that an attacker would never lose a privilege 
once it was gained and any increase in privilege would not 
negate other gained privileges. This removed the need to 

account for the order in which attacks are initiated, and so 
reduced the complexity of the representation. 

Subsequent research modified this model to make it 
attack- focused and enable humans to visually follow the 
steps within an attack more easily [2]. This hybrid 
‘condition/exploit’ model [4] has been used extensively since 
2003 for attack graph research. Unfortunately, we find that 
this model results in redundant data encodings, under which 
the worst-case graph size become quadratic in the number of 
nodes. Thus, over a decade of attack graph research has used 
a quadratic representation when a linear one was available in 
the literature. 

However, even had the node linear condition-oriented 
approach been adopted, we find that it suffers from avoidable 
edge explosions (the creation of unnecessary complete 
bipartite sub-graphs) under certain conditions. These edge 
explosions add a quadratic factor to worst-case edge growth 
based on the maximum number of attacker privileges on any 
one host. 

These size complexity issues are not always readily 
apparent from visual inspection of small example graphs. 
Example attack graphs in the literature to date have often 
contained a small number of dissimilar hosts with limited 
per-host attack surfaces and thus do not reveal the worst-case 
growth in both nodes and edges that we have observed. In 
large enterprise networks, however, where hosts have both 
large and diverse attack surfaces and are vulnerable to high-
level compromise (thus yielding a high number of post-
conditions), these complexity issues become much more 
evident. 

To address these weaknesses, we provide a new hybrid 
‘condition/vulnerability’ representation that regains linearity 
in the number of nodes and that does not suffer from the 
edge explosion problem. In our empirical study of a network 
model derived from an operational 5968-node network, our 
new representation had 94 % fewer nodes and 64 % fewer 
edges than the most widely cited recent approach in our 
surveyed literature (the condition/exploit model).  

This reduced graph size will increase the speed of 
automated analysis, even making some algorithms tractable 
under certain scenarios. This can be true for higher 
polynomial complexity algorithms such as the cubic 
algorithms in [3] and certainly for metrics derived from 
attack graphs that grow either exponentially or with high 
polynomial degree [5]-[8] (as often occurs when graphs 
containing cycles must be rendered acyclic for the purposes 
of probabilistic modeling). The reduced size can also aid in 
human visualization and analysis of select sub-graphs of 
interest. 
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The development of the work is as follows. In Section 2, 
we survey past attack graph representations and describe 
them in terms of four major categories (while citing minor 
variations). For each category, we provide a description, 
theoretical analysis of worst-case growth, and an example 
graph from previously published work. Section 3 then 
provides our two new representations that improve upon the 
worst-case node and edge growth of the other 
representations. Section 4 provides a theoretical analysis of 
set of analyzed approaches. Section 5 provides empirical 
results using a network model based on an operational 
network where we compare the attack graph sizes using the 
different approaches. Section 6 concludes the paper. 

II. SURVEY OF ATTACK GRAPH REPRESENTATIONS 

Papers discussing some abstraction of the attack graph 
idea began appearing as early as 1996 [9]-[12]. The first 
widely used representation was the ‘state enumeration’ 
approach ([2] and [13]-[16]) that had the unfortunate 
characteristic that it could grow faster than exponential. In 
2002, the ‘condition-oriented’ approach was published with 
the express purpose of reducing the graph representation size 
down to polynomial complexity [3]. In 2003, the ‘exploit-
oriented’ approach was published [17] to enhance the human 
readability of the graphs compared to the condition-oriented 
approach [2]. While not discussed in the literature, we will 
show that the exploit-oriented approach suffers high 
polynomial growth rates. This may explain why, in the same 
year, our surveyed literature moved to a more efficient 
hybrid ‘condition/exploit-oriented’ approach [4] (which we 
find still has a growth rate higher than that of the condition-
oriented approach). Our literature survey shows that this 
approach has been used extensively since 2003 and is the 
predominant representation (e.g., [1], [4], [7], and [18]-[20]). 
The following subsections discuss each of these approaches 
in detail. It should be noted that each representation 
encapsulates the same underlying knowledge but using a 
different abstraction. For each type of representation, we 
analyze the worst-case growth rate of a resulting attack graph 
with respect to the number of nodes and edges. We define h 
to be the number of hosts in the associated physical network, 
v to be the maximum number of vulnerabilities on any one 
host, and c to be the maximum number of attacker privileges 
that can be achieved on any one host from the set of 
available vulnerabilities. For the graph size complexity 
analyses, we assume that there is a unique set of pre-
conditions for each attack.  

A. State Enumeration 

State enumeration was the first widely used attack graph 
approach. Its distinguishing feature is that it explicitly 
accounts for the different orderings in which an attacker may 
launch attacks. There are two types. One type uses nodes to 
represent attacks and edges to represent post-conditions 
resulting in attacker privilege [13]-[15]. The other type uses 
nodes to represent attacker privilege and edges to represent 
attacks ([2] and [16]).  

The graph design contains multiple layers of nodes, 
regardless of the particular node and edge semantics. The 

initially available set of conditions or attacks are presented at 
the top layer. Each subsequent lower layer represents the 
possible decisions that an attacker could make. Directed 
edges connect the nodes at one layer to the available nodes at 
the next lower layer. There are no edges between nodes at a 
particular layer. An attack scenario begins at the top layer 
and works its way down with the node chosen in each layer 
representing an attacker’s next decision. 

1) Complexity Analysis 
Assume that v and c equal 1. At the top layer (labelled 0), 

any of h hosts may be selected as the first node in the attack 
path. At layer 1, there are h-1 hosts that can be attacked from 
each of the h start nodes. For each node at layer 2 there are 
h-2 hosts that can be attacked, and so forth. This creates a 
rapidly expanding tree where the number of nodes and edges 
increases as O(h!), yielding a worst-case factorial growth 
rate for state enumeration graphs.   

Most approaches attempt to prune this tree to focus only 
on subtrees of interest (e.g., those leading to some goal 
state). This can limit the growth, allow limited reuse of 
nodes, and can migrate the structure from a tree to a 
hierarchical directed graph with no loops (see Figure 1). 
Despite such optimizations, the growth rate of this approach 
is still worst-case exponential [2]. 

From an empirical perspective, such graphs become too 
large to be practical. For example, a network with just 5 
hosts and 8 available exploits produced an attack graph with 
5948 nodes and 68 364 edges [15]. 

Figure 1. Example State Enumeration Attack Graph 

 
Figure 1 shows an example pruned state enumeration 

attack graph, from [2], derived from an example with 2 target 
hosts running 2 services each, a single attacking host, and 4 
unique attack types. Notice that the representation uses the 
previously discussed modifications to avoid factorial growth 
rate. The large red arrows highlight a remaining inefficiency 
by showing an example of path duplication in the graph 
(discussed in [2]). 

Additional variations include [21]-[24]. 

B. Condition-Oriented 

The condition-oriented approach was introduced in [3] as 
a method to reduce the representational complexity of the 
state enumeration approach by using the assumption of 
attacker privilege ‘monotonicity’. This assumption implies 
that an attacker never loses a privilege once it is gained, and 
any increased privilege will not negate any other privileges. 
In practice, it means that (unlike in the state enumeration 
approach) there is no longer any need to track the order in 
which attacks are initiated. This assumption has been found 
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to be reasonable in most cases [2] and has been adopted by 
almost all subsequent attack graph representations. 

The work of [2] introduced a graphical representation to 
the approach. Each ‘condition node’ represents some state of 
attacker privilege (e.g., execute as superuser on host x). An 
edge from node a to node b with label c represents that pre-
condition a is necessary (but not necessarily sufficient) for 
attack c to provide privilege b. Sufficiency to gain privilege 
b is obtained if the pre-conditions of all edges into node b, 
labeled with c, are satisfied. By grouping the in-edges to 
each node by their edge labels, we can see that each group 
represents a possible attack, and each node is thus expressed 
in a variant of disjunctive normal form (DNF): in-edges 
within a group provide conjunctional logic and the distinct 
groups form logical disjunctions. Note that unlike general 
DNF statements, negation is not represented.   

One limitation of the approach in [3] is that a single 
attack on a host that can be instantiated by different sets of 
pre-conditions must be represented by multiple attack 
instances named differently (using the edge names) to enable 
disjunctional logic. Distinct attack instances, involving 
different hosts, may be named similarly with no ambiguity. 

1) Complexity Analysis 
The condition-oriented approach achieves linearity in the 

number of nodes, significantly reducing the complexity 
compared to the state enumeration approach. An attacker 
may have up to c distinct condition states on each of the h 
hosts, and thus the number of nodes is bounded by hc. 
Unfortunately, as each of the hc condition nodes can be 
connected to all hc other nodes, and each connection 
between two nodes may have up to v edges to represent 
exploiting each available vulnerability, we obtain up to 
hc×hc×v=h2c2v edges in the graph. Normally, h is much 
larger than c or v for a large network (as c and v are the 
maximums per node, not totals) and thus we can treat c and v 
as constants for the complexity analysis. Thus, the condition 
approach is O(h) in nodes and O(h2) in edges, representing 
an enormous improvement over the exponential state 
enumeration approach. However, note the multiplicative c2 
term in the number of edges. This is the result of unnecessary 
complete bipartite sub-graphs forming under certain 
conditions. We analyze these edge explosion situations in 
more detail in Section 4. 

 

 
Figure 2. Example Condition-Oriented Attack Graph 

Figure 2 shows an example condition-oriented attack 
graph, from [2], derived from a network with 2 target hosts, a 
single attacking host, and 3 unique attack types. Note the 
reduced complexity compared to Figure 1 although, as stated 
previously, these small example graphs are primarily 
intended to illustrate the methods, and do not demonstrate 
the differences in worst-case size complexities.  

Additional variations include [21] and [25]. 

C. Exploit-Oriented 

The exploit-oriented approach represents attacks as nodes 
and states of attacker privilege as edges ([2] and [17]) to ease 
visual analysis compared to the condition-oriented approach. 
Note that each ‘attack node’ is labeled with the host 
launching the attack and the host receiving the attack (which 
can be the same host for local attacks). This dual labeling on 
attack nodes will cause significant representational 
inefficiencies. The in-edges to a node represent the pre-
conditions for launching an attack and the out-edges 
represent the post-conditions of the exploit. All out-edge 
post-conditions of a node are satisfied if and only if all the 
in-edge pre-conditions are satisfied.  

Explicit representation of disjunction is not available and 
so in the presentation in the literature, attacks that can be 
instantiated by distinct sets of pre-conditions must be 
represented by multiple nodes. However, by applying a 
similar edge grouping approach as in the condition-oriented 
approach, this duplication of nodes can be avoided. Since the 
edges in this approach are already labeled with the post-
condition names they must be additionally labeled with a 
grouping name (a name for the group of pre-conditions that 
will enable exercising the related exploit). While this 
modification is not discussed in the literature, we assume this 
optimization to represent the approach as efficiently as 
possible. Without this optimization, the number of nodes 
would increase by a factor of c. 

1) Complexity Analysis 
We now examine the worst-case growth rate of some 

arbitrary attack graph. With respect to nodes, the graph can 
grow as large as h2v. Each of the h hosts can attack all h 
hosts with v different attacks (assuming just one attack per 
vulnerability) resulting in h2v nodes.  With respect to edges, 
the graph can grow as large as h3v2. Consider a single node 
where b represents the attack target. This node can have a 
connection to each node where the attack source is b. There 
will be hv nodes with attack source b. Each connection 
though can be made up of c edges. Thus, each node can 
create hvc out-edges. Since the number of nodes is h2v, this 
leads us to h2v×hvc=h3v2c edges. Treating c and v as 
constants compared to h, the exploit approach is O(h2) in 
nodes and O(h3) in edges. This is an enormous increase in 
graph size from the condition approach, however it still 
outperforms the exponential state enumeration approach. 

Figure 3 shows an example exploit-oriented attack graph, 
from [2], derived from the same network as Figure 2. The 
example condition-oriented graph has 11 nodes and 12 edges 
while the example exploit-oriented graph as 6 nodes and 13 
edges. Despite the reduction in graph size demonstrated in 
this example, we will empirically show that the exploit-
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oriented graphs can grow much larger than the condition-
oriented graphs in enterprise networks. 

 

 
Figure 3. Example Exploit-Oriented Attach Graph 

D. Hybrid Condition/Exploit-Oriented 

The hybrid condition/exploit-oriented approach uses two 
distinct types of nodes ([1], [4], [7], and [18]-[20]) 
representing both attacks and the states of attacker privilege, 
while the edges are unlabeled. The ‘attack nodes’ and 
‘condition nodes’ have the same semantics as those in the 
exploit-oriented graphs and the condition-oriented graphs, 
respectively. 

This structure produces a directed bipartite graph, with 
attack nodes having edges to condition nodes and vice versa. 
However, the interpretation of the in-edges varies per type of 
node.  Attack nodes and their post-condition out-edges are all 
satisfied if and only if all in-edges are satisfied (conjunction 
as with the exploit-oriented graphs). Condition nodes and 
their out-edges are satisfied if at least one in-edge is satisfied 
(disjunction as with multiple groups of in-edges in the 
condition-oriented graphs). 

As in the exploit-oriented representation, the problem of 
a single exploit that can be instantiated with multiple sets of 
pre-conditions is not well addressed in the literature. In a 
naïve implementation, a single exploit must be divided into 
multiple attack node instances, one for each distinct set of 
pre-conditions. However, by applying the same optimization 
as before (again, not previously presented in the literature) 
where we allow condition node to attack node edges to be 
labeled with a group name, we can avoid this multiplication, 
and we assume this optimization throughout. As in the 
condition approach, the interpretation is disjunction among 
the groups and conjunction within a group. Without this 
optimization, the worst-case number of attack nodes would 
increase by a factor of c (as with the exploit approach). 

1) Complexity Analysis 
We now examine the worst-case growth rate of some 

arbitrary attack graph. With respect to nodes, the graph can 
grow as large as hc+h2v. There will be hc condition nodes as 
derived in Section 2.2.1 and there will be h2v attack nodes as 
derived in Section 2.3.1. With respect to edges, the condition 
and attack nodes form a directed bipartite graph. We first 
explore the set of attack to condition node edges. Each attack 
node has a single target host as discussed in Section 2.3. 

Each attack node then can at most activate c condition nodes 
on the target host where each activation creates an attack to 
condition node edge. Since there are up to h2v attack nodes, 
we can then have up to h2v×c=h2vc attack node to condition 
node edges. Similarly, each condition node is mapped to a 
host, say a, and thus may have an edge to any of the hv 
exploit nodes where the attack source is a. Since there are hc 
condition nodes and up to hv edges per node, we get a total 
of hc×hv=h2vc condition to exploit node edges. Summing the 
two types of edges, we get h2vc+h2vc=2h2vc. 

 
Figure 4. Example Condition/Exploit-Oriented Attack Graph 

 
Figure 4 shows a condition/exploit-oriented attack graph 

from an example provided in [4]. This was derived from the 
same network as in Figure 1. The circled nodes are the attack 
nodes and the un-circled nodes are the condition nodes. 
Notice the relative simplicity in comparison with the state 
enumeration approach in Figure 1. Again though, the size of 
these small examples doesn’t demonstrate complexity 
growth on large enterprise networks. 

Additional variants include [26]-[28]. 

III. VULNERABILITY-BASED REPRESENTATIONS 

Our contribution is the idea of representing the 
vulnerabilities on specific hosts explicitly within attack 
graphs. From a visualization point of view, this makes it easy 
to see how a chain of vulnerabilities (and hosts) can be 
compromised. From a graph complexity point of view, the 
vulnerability nodes replace the use of the attack nodes 
thereby lowering node complexity to linear (from quadratic). 
Intuitively, where exploit nodes must contain references to 
both the source and target hosts in an attack step, and thus 
grow potentially quadratically in highly connected networks, 
the vulnerability nodes only reference the exploitable host, 
and so grow only linearly. We represent attacks within the 
edges where they can take advantage of the fact that edges 
inherently have sources and targets (similar to the condition 
approach). 

This approach leads to two new representations that build 
upon one another. We first describe a vulnerability-oriented 
approach where we replace the attack nodes from the 
exploit-oriented approach with vulnerability nodes. This 
reduces node complexity from quadratic to linear and edge 
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complexity from cubic to quadratic. We then point out how 
the vulnerability-oriented approach suffers from similar 
quadratic edge explosion scenarios as the condition approach 
(but this time relative to v, not c).  

We then build upon the vulnerability approach to provide 
a hybrid condition/vulnerability representation that has a 
linear number of nodes, quadratic number of edges, and that 
does not suffer from quadratic edge explosion (in either v or 
c). It also, like the hybrid condition/exploit approach, 
improves on the human readability of the condition-oriented 
approach. 

A. Vulnerability-Oriented 

Our first approach is analogous to the exploit-oriented 
approach except that we replace the attack nodes with 
vulnerability nodes. A vulnerability node is labeled with a 
vulnerability name and the relevant location in the network 
(usually but not necessarily a hostname). Edges represent 
attacker privilege, just like in the exploit-oriented approach. 
In cases where multiple sets of pre-conditions can activate a 
particular vulnerability, we handle it with the edge grouping 
optimization we’ve presented previously. A set of pre-
conditions that will activate a vulnerability are represented 
by a set of in-edges to a node that all have a common group 
name. Thus we represent attacks using groups of commonly 
named edges just like in the condition approach. Each node 
is thus expressed in DNF: in-edges within a group provide 
conjunctional logic and the distinct groups form logical 
disjunctions. 

1) Complexity Analysis 
We now examine the worst-case growth rate of some 

arbitrary attack graph. With respect to nodes, the graph can 
grow as large as hv because each of the h hosts can have v 
vulnerabilities. With respect to edges, each node can have hv 
outgoing connections to other nodes. Each connection can be 
made up of at most c edges. Thus, the total number of edges 
is at most hv×hv×c=h2v2c. 

A disadvantage of this approach is the v2 term in the 
number of edges. This is the result of unnecessary complete 
bi-partite sub-graphs forming under certain conditions. We 
analyze this edge explosion in more detail in Section 4. 

 

 
Figure 5. Example Vulnerability-Oriented Attack Graph 

 
Figure 5 shows an example of a vulnerability-oriented 

graph, derived from the representation in Figure 4. For the 
sake of readability, edge grouping labels are omitted.  Note 

that the number of nodes is reduced with respect to Figure 4, 
and all vulnerabilities are in exactly one node instead of 
replicated over multiple nodes with different attack sources 
(e.g., the attacks targeting the ftp rhosts vulnerability on node 
1 in Figure 4).    

B. Hybrid Condition/Vulnerability-Oriented 

Our second novel approach is a hybrid approach 
combining condition nodes with our new vulnerability 
nodes. The condition nodes are analogous to those in the 
condition-oriented approach. The vulnerability nodes are 
identical to those in our vulnerability-oriented representation. 
We represent attacks by labeling the condition node to 
vulnerability node edges with the attack instances being used 
(including source and destination hostnames/IPs where 
applicable); this edge labeling is similar to that in the 
condition-oriented graphs. We then connect the vulnerability 
nodes to the condition nodes with unlabeled edges showing 
which post-conditions emerge as a result of exploiting the 
relevant vulnerability instance.  

As with the hybrid condition/exploit graph, this structure 
produces a directed bipartite graph. For condition nodes, they 
and all of their attack labeled out-edges are satisfied if at 
least one in-edge is satisfied (disjunction). For vulnerability 
nodes, they and all of their unlabeled out-edges are satisfied 
if and only if a group of identically labeled in-edges are 
satisfied (conjunction within a group and disjunction 
between the groups). This distributed implementation of 
disjunctions and conjunctions enables the same DNF logic of 
the condition-oriented approach. 

A single attack that can be instantiated with multiple sets 
of pre-conditions can be represented by using a different 
group name for each set of instantiating pre-conditions. 

1) Complexity Analysis 
We now examine the worst-case growth rate of an 

arbitrary attack graph. With respect to nodes, the graph can 
grow as large as h(c+v). There will be hc condition nodes as 
derived in Section 2.2.1 and hv vulnerability nodes as 
derived Section 3.1.1. Thus, there are at most hc+hv nodes 
total. With respect to edges, there can be as many as 
h2cv+hvc. First, for the set of edges that point from 
vulnerability nodes to condition nodes, each of the hv 
vulnerability nodes can activate up to c condition nodes 
(since each vulnerability pertains to a host with up to c 
conditions), creating hvc edges. In the other direction, each 
of the hc condition nodes could allow an attack to all hv 
vulnerability nodes, producing hc*hv edges. Thus, the total 
number of edges is hvc+hc*hv=h2cv+hvc.  

Treating c and v as constants compared to h, the 
condition/vulnerability approach is O(h) in nodes and O(h2) 
in edges. This is a major improvement over the quadratic 
growth in the number of nodes caused by attack nodes in the 
exploit and condition/exploit approaches. While the 
complexity of the number of nodes is of the same order 
between the condition, vulnerability, and 
condition/vulnerability graphs, we note that there is no v2 or 
c2 term in the edge growth equation for the 
condition/vulnerability graph. This is indicative of the fact 
that this approach does not suffer from the quadratic edge 
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explosion problem of the condition and the vulnerability-
oriented approaches in either v or c. This is discussed in 
detail in Section 4. 

 

Figure 6. Example Condition/Vulnerability-Oriented Attack Graph 

 
Figure 6 shows an example of the condition/vulnerability 

graph displaying the same attack graph data as in Figure 4 
and Figure 5. In this example with just 3 nodes and relatively 
diverse attack surfaces, this data actually has a more compact 
representation in the vulnerability graph format. We 
demonstrate in Section 5 on larger scale real-world data that 
this advantage is not general, and in fact the 
condition/vulnerability graph provides significant size 
advantages in such cases. 

IV. THEORETICAL ANALYSIS 

In this section, we provide a theoretical analysis of the 
worst-case behavior of the representations. Note that we do 
not analyze the state enumeration approach given its known 
exponential growth rate (previously discussed). We begin 
with a review of the big-O complexity of each graph type 
and show the advantages of the condition, vulnerability, and 
condition/vulnerability approaches. We then follow with an 
analysis of the terms within the actual worst-case growth 
equations. These equations reveal quadratic terms in both v 
and c that cause the edge explosion scenarios in the condition 
and vulnerability approaches, respectively. We then explore 
in more detail when and why these avoidable edge explosion 
scenarios occur. We end the section with a discussion of 
edge explosion scenarios that are unavoidable in all of our 
analyzed representations (and that may reflect an inherent 
limit in reducing graph sizes). 

A. Big-O Complexity Graph Growth Comparisons 

In an attack graph, h is expected to grow much larger 
than v or c for a typical enterprise network. Note that v and c 
are the maximums per host (not the total number of 
vulnerability and conditions) and thus are usually miniscule 
compared to h. For this reason, we treat v and c as constants 
to derive overall complexity of each representation. These 
big-O measurements were derived in Sections 2 and 3 and 
are summarized in Table 1. The calculations showing the 
largest growth rates are bolded. Note, if h is not large relative 

to v or c, use the below Table 2 instead of Table 1 to 
determine the most efficient representation. 

TABLE 1. COMPLEXITY MEASUREMENT OF ATTACK GRAPH 

REPRESENTATION 

Representation Nodes Edges 

Condition O(h) O(h2) 

Exploit O(h2) O(h3) 

Vulnerability O(h) O(h2) 

Condition/Exploit O(h2) O(h2) 

Condition/Vulnerability O(h) O(h2) 

 
The quadratic node growth of the exploit and 

condition/exploit approaches is much larger than the linear 
node growth of the condition and condition/vulnerability 
approaches. With respect to edges, the cubic edge growth of 
the exploit approach is larger than the quadratic growth of 
the other approaches. Thus, the condition, vulnerability, and 
condition/vulnerability approaches are the best approaches in 
limiting worst-case graph growth with respect to h. 

To intuitively understand why the exploit and 
condition/exploit node growth is quadratic, consider that an 
exploit node must necessarily contain two host name labels: 
the attack source and the attack target. If a set of hosts A can 
attack a set of hosts B using a single attack, then the number 
of exploit nodes representing this will be |A|*|B| (i.e., 
quadratic growth). Contrast this to the 
condition/vulnerability approach where there will be only a 
single vulnerability node per host in B resulting in |B| 
vulnerability nodes (i.e., linear growth). 

One optimization is to reduce graph size by consolidating 
groups of identical hosts (those with identical security value, 
vulnerabilities, and permitted connectivity) into single hosts 
when building the attack graph. This essentially reduces h 
and thus minimizes the graph size, but we note that it does 
not change the big-O complexity results nor the outcome of 
our comparative analyses. 

B. Worst-Case Equations Graph Growth Comparisons 

We now look at the actual worst-case equations that we 
derived in Sections 2 and 3 in order to further refine our 
comparison between the approaches. These equations are 
summarized in Table 2. The terms specifically discussed in 
our analysis are bolded. 

TABLE 2. WORST-CASE GROWTH OF ATTACK GRAPH REPRESENTATIONS 

Representation Nodes Edges 

Condition hc h2vc2 

Exploit h2v h3v2c 

Vulnerability hv h2v2c 

Condition/Exploit hc+h2v 2h2vc 

Condition/Vulnerability hc+hv h2vc+hvc 

 
We focus our analysis on the condition, vulnerability, 

and condition/vulnerability approaches since the other two 
approaches were shown to have larger big-O node 
complexities in Table 1. 

With respect to node growth, the condition and 
vulnerability approaches will always have fewer nodes than 
the condition/vulnerability approach due it having the sum of 
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the former two. However, it should be noted that this 
increase is a small linear factor. 

With respect to edge growth, however, both the condition 
and vulnerability graphs grow quadratically in c and v, 
respectively. It is these quadratic terms (not present in the 
condition/vulnerability edge equation) that reflect edge 
explosion scenarios where unnecessary complete bipartite 
sub-graphs are formed. We claim that they are unnecessary 
because the condition/vulnerability approach provides a 
linear representation of the same data. Visually, the condition 
and vulnerability approaches use complete bi-partite sub-
graphs where, for the same data, the condition/vulnerability 
approach uses star topologies (explained in detail in the next 
section). 

Thus overall, our theoretical analysis indicates that our 
condition/vulnerability approach will result in achieving the 
most compact attack graphs. The exploit approach was the 
worst (excluding the naïve state enumeration approach), 
suffering from cubic edge growth. The condition/exploit 
approach (the most commonly used in recent research in our 
surveyed literature) suffered from quadratic node growth in 
our largest term, h. Finally, the condition and vulnerability 
approaches suffered from quadratic edge explosions (in c 
and v, respectively) as a result of the creation of complete bi-
partite sub-graphs that our condition/vulnerability approach 
converts to linear growth star topologies. We now explore in 
detail the edge explosion scenarios. 

C. Avoidable Edge Explosion Scenarios 

We define an edge explosion as the creation of a 
complete bipartite sub-graph within an attack graph due to 
some specific scenario. Some scenarios cause edge 
explosions regardless of which of our analyzed attack graph 
representations is used. We call these scenarios 
‘unavoidable’ (with respect to our set of representations) and 
thus they are not useful for a comparative analysis. We 
discuss such unavoidable scenarios in the next section.  

This section focuses on avoidable scenarios that create 
quadratic edge explosions in the condition and vulnerability 
representations, which are converted to linear star 
representations in the condition/vulnerability approach. The 
condition/exploit approach has similar representational 
advantages with respect to edge explosion scenarios. 
However, we do not specifically analyze this for the 
condition/exploit approach due to its worse quadratic node 
complexity but we do note that it is the dual node type 
representations that enable the reduction (i.e., the ‘hybrid’ 
node design). 

Avoidable edge explosion can occur in both the condition 
and vulnerability graphs as shown by their worst-case 
quadratic growth in c and v, respectively. These upper 
bounds are approached in condition graphs whenever a 
single attack has multiple pre-conditions and multiple post-
conditions. This also happens in vulnerability graphs when 
some set of vulnerabilities on a host allows subsequent 
exploitation of some other set of vulnerabilities (on the same 
or other hosts). 

Both cases can be viewed in terms of directed 
hyperedges, representing the multi-way relationships. For 

example, an attack with multiple pre-conditions and post-
conditions can be represented by a single directed hyperedge 
with the pre-conditions at the tail of the edge and the post-
conditions at the head. In standard directed graphs, 
representing this requires the creation of a complete directed 
bipartite sub-graph with the pre-conditions in the edge ‘tail’ 
set and the post-conditions in the ‘head’ set. The 
representation of these hyperedges by the corresponding 
complete bipartite graphs is then responsible for the 
quadratic explosion in the number of edges. Similarly, given 
a set of vulnerabilities on a host where each one enables an 
attacker to exploit some other common set of vulnerabilities 
can be represented by a single directed hyperedge. In a 
vulnerability graph, this hyperedge would require a directed 
complete bipartite graph with the enabling vulnerabilities in 
the edge ‘tail’ set and the newly available vulnerability nodes 
in the edge ‘head’ set. 

Hybrid node graphs, such as the condition/vulnerability 
and the condition/exploit graphs, represent these directed 
hyperedges more efficiently (i.e., linearly). To see this, 
consider that in the condition/vulnerability graph, each 
vulnerability node may represent a directed hyperedge that 
links multiple pre-conditions to multiple post-conditions. 
Each condition node may also represent a directed hyperedge 
that links multiple vulnerabilities on a single host to a set of 
common target vulnerabilities. This representational 
approach of a directed hyperedge forms a star graph for each 
hyperedge. It is then easy to see that star graphs grow 
linearly in the number of edges while the complete bipartite 
sub-graphs grow quadratically, thus enabling the size 
complexity advantage of the hybrid node approaches. 

For the purposes of illustration, consider Figure 7 below.  
Conditions C1 to C4 form the tail of a hyperedge 
corresponding to a vulnerability Va, while conditions C5 to 
C8 for the head.  The resulting condition graph is complete 
bipartite, as each of C1 to C4 must be linked to each of C5 to 
C6 (Figure 7, left); by contrast, using a separate class of node 
to represent the vulnerability-related hyperedge in the 
condition/vulnerability approach allows for a much more 
compact representation in the form of a star graph (Figure 7, 
right). 

 
Figure 7. Unnecessary complete bipartite structures in the condition-

oriented graph 

 
Vulnerability graphs have a directly analogous 

representation, where a condition node may represent a 
hyperedge, as shown in Figure 8. 
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Figure 8. Unnecessary complete bipartite structures in the vulnerability-

oriented approach 

 
In the vulnerability graph, each vulnerability (V1 to V4) 

on a single host must have an edge to each vulnerability that 
is now accessible for attack (V5 to V8). In the 
condition/vulnerability graph, a single condition node Ca 
represents the attacker privileges gained by exploiting V1 to 
V4. Condition node Ca then allows exploitation of V5 to V8. 
The addition of Ca creates a linear growth star graph in place 
of the quadratic complete bipartite graph in the vulnerability 
representation. 

D. Unavoidable Edge Explosion Scenarios 

There are cases where the condition/vulnerability graph 
will still contain complete bipartite components and it is 
direct to see that the related condition or vulnerability graph 
will also exhibit such a component. Thus, such scenarios are 
unavoidable (with our set of analyzed representations). 
While we can’t prove nonexistence of a linear representation 
here, we believe it unlikely and that we are pushing against 
inviolable data representational boundaries in trying to 
further reduce the size of the attack graph. 

Consider a scenario where multiple distinct hyperedges 
have identical head or tail sets in either the condition- or 
vulnerability- oriented approach. This will naturally result in 
complete bipartite components in the condition/vulnerability 
representation; however, it is straightforward to see that such 
cases also produce complete bipartite graphs in the condition 
and vulnerability representations as well. 

See, for example, the condition/vulnerability graphs in 
Figure 9. The leftmost panel depicts a situation in which two 
distinct vulnerabilities have identical head and tail sets (such 
as two identical vulnerabilities on two different hosts that 
each enable a common set of vulnerabilities on a third); the 
center depicts a situation in which the head sets are distinct 
but the tail sets are identical (perhaps granting host-specific 
post-conditions), and the rightmost pane depicts identical 
head sets with distinct tail sets (such as would be expected 
from host-specific pre-conditions with global post-
conditions).  In each case, it is straightforward to see that a 
path exists from each pre-condition to each post-condition, 
and so the resulting condition-oriented graph will be a 
complete bi-partite graph. 

 
Figure 9. Condition/Vulnerability Graph Scenarios 

 
The situation is functionally identical for vulnerability-

oriented graphs. Similar complete bipartite sub-graphs within 
a condition/vulnerability graph will result in a completely 
connected bipartite sub-graphs in the related vulnerability 
graph. 

Looking at the underlying equations, note that in the 
condition/vulnerability graph the number of edges is 
bounded as the product of c and hv, rather than being 
quadratic in c, thus requiring both v and c to grow 
simultaneously for a comparable edge explosion. Note that 
this doesn’t reflect a unique weakness for the 
condition/vulnerability approach as both the condition and 
vulnerability approaches also contain h, c, and v in their edge 
equations (but there with a quadratic c or v). This worst-case 
scenario is only realized in the leftmost panel of Figure 9, 
while all three panels result in complete bipartite sub-graphs 
in the case of the condition-oriented graph. 

V. EMPIRICAL RESULTS 

We now provide an example to illustrate the performance 
between the different approaches using a network model. 
Our network model (derived in part from data from an 
operational network) has 5968 hosts and 7825 
vulnerabilities. The vulnerabilities consist of 41 distinct 
types mapped to two different severity levels. We mapped 
7791 vulnerability instances to confidentiality breaches and 
34 instances to providing user level access.  

With respect to attack post-conditions, a vulnerability 
was modeled as producing two post-conditions: the severity 
level mapped to the host name and a designator indicating 
that the host had some specific vulnerability exploited. This 
models the situation where a single attack can produce 
multiple post-conditions.  

With respect to connectivity, we modeled all nodes as 
being logically connected to each other. For a start node in 
the attack graph, we designated one of the hosts as hostile 
(using one with no vulnerabilities) to represent an insider 
threat situation. 

Table 3 provides the empirical results given the above 
stated scenario. To derive these results, we created an attack 
graph simulator using Python 2.7.6 that calculates the graph 
sizes using all of our analyzed representations. Note that 
these results are not based on the equations from Table 2 as 
those equations represent worst-case attack graph sizes. Here 
we analyze the actual sizes given the network model 
described above. 
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TABLE 3. EMPIRICAL RESULTS 

Graph Type Nodes Edges 

Condition 5140 436 290 

Exploit 218 146 7 189 929 

Vulnerability 7825 272 920 

Condition/Exploit 223 285 654 435 

Condition/Vuln. 12 964 233 795 

 
As expected from the theoretical analysis, the number of 

nodes for the exploit and condition/exploit representations 
was much larger than the other approaches due to the O(h2) 
growth rate. The number of edges in the condition graph is 
almost twice that of the condition/vulnerability graph, 
attributable to the O(c2) growth rate of the edges. Thus based 
on these empirical results, the vulnerability and 
condition/vulnerability approaches appear the best for our 
scenario and are comparable (with the vulnerability approach 
having fewer nodes and the condition/vulnerability approach 
having fewer edges). 

Note how in this example our condition/vulnerability 
approach had 94 % fewer nodes and 64 % fewer edges than 
the widely cited and commonly used condition/exploit 
approach. This illustrates how an adjustment in 
representation can have dramatic results in graph size. 

However, if we model each attack as producing exactly 
one post condition, then the advantages of the 
condition/vulnerability approach disappear relative to the 
condition graph (see Table 4). 

TABLE 4. SINGLE POST CONDITION EMPIRICAL RESULTS 

Graph Type Nodes Edges 

Condition 2584           218 145 

Exploit 218 146           7 189 929 

Vulnerability 7825 272 920 

Condition/Exploit 220 728 436 290 

Condition/Vuln. 10 408 225 970 

 
Here the condition graph has an advantage on the number 

of nodes while roughly matching the number of edges of the 
conditional/vulnerability approach. Thus, use of the 
vulnerability/condition approach does not guarantee a 
smaller graph than the condition representation. However, it 
guarantees a linear growth rate with respect to c, allowing for 
tighter representations given arbitrary scenarios. 

Note that the vulnerability approach statistics stay the 
same in both Table 3 and Table 4. This is because the 
removed post conditions were not ones that enabled an attack 
to be launched (we just removed the flag that a host had a 
specific vulnerability exploited). 

The widely-cited and used condition/exploit model was 
much larger in all of our scenarios because it suffers from 
both the O(h2) growth rate in the nodes (this is true also of 
the exploit approach). Had we modeled a network where the 
logical connectivity of the hosts was much more restricted, 
the node disadvantage of the condition/exploit approach 
would have been minimized. However, many operational 
networks (including this one) have large numbers of hosts 

with significant logical connectivity (e.g., approaching 
complete sub-graphs). 

VI. CONCLUSIONS 

For the last decade, the condition/exploit-oriented 
approach was the most commonly used representation in our 
literature survey. However, we found it to have node growth 
quadratic in the number of hosts on the network. This will 
slow down analysis algorithms that have a high polynomial 
degree while making visualization for humans more difficult 
(simply from the increased size). Interestingly, we found the 
previously published condition approach provided a much 
more compact linear node representation, but it wasn’t 
widely adopted. This may have been because it was 
confusing to visually analyze since attacks are represented by 
collections of edges. We also discovered that it suffers from 
quadratic edge explosions based on the number of possible 
attacker privileges on a host. 

To address these problems, we proposed using a 
vulnerability-based approach for nodes in attack graphs. This 
eliminates the inefficiency of the attack nodes (taking us 
from a quadratic to a linear node representation) while it 
makes the graph more intuitive to read compared to the 
condition approach (since any attack results in compromising 
a single vulnerability node as opposed to activating multiple 
condition nodes). Surprisingly, we found this approach to 
also contain an edge explosion problem but this time relative 
to the number of vulnerabilities on a host. 

We thus developed the hybrid condition/vulnerability 
approach with the following advantages: linear node growth, 
elimination of avoidable edge explosion issues, and an easy 
to understand representation (due to the use of the 
vulnerability nodes). For arbitrary graphs, our 
condition/vulnerability approach provides better size 
guarantees with respect to edge growth while only having a 
small linear penalty on node growth. 

Despite this, the condition and vulnerability approaches 
are still viable representation options (linear in node growth 
and quadratic in edge growth). Even with the quadratic edge 
explosion possibilities, they can be used when it is known 
that a particular scenario will not suffer significantly from 
this problem. Perhaps the best argument for using these two 
approaches is simply that they have a single interpretation 
for the nodes. This should facilitate the application of 
standard graph algorithms for analysis, something not 
available with the currently used hybrid condition/exploit 
approach or our hybrid condition/vulnerability approach. 
Given the simple interpretation of our vulnerability 
approach, it is a candidate for exploration in this area, which 
may be addressed in future work. 

Lastly and most importantly, we emphasize that the 
research community should move away from using attack 
nodes (as found in both the exploit representation and the 
hybrid condition/exploit representation) since the attack 
nodes add a quadratic factor to the worst-case node growth 
equations. Moving to a much more compact node linear 
representation (regardless of the specific choice) may 
catalyze the research community by opening the door to 
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previously intractable algorithmic analyses and facilitating 
human analysis of specific features. 
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