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Abstract—Open-source projects continue to evolve that result in
so many versions. Analyzing the unstructured information in the
source code is based on the idea that the unstructured information
reveals, to some extent, the concepts of the problem domain of
the software. This information adds a new layer of source code
semantic information and captures the domain semantics of the
software. Developers shift their focus on which topic they work
more in each version. Topic models reveal topics from the corpus,
which embody real world concepts by analyzing words that
frequently co-occur. These topics have been found to be effective
mechanisms for describing the major themes spanning a corpus.
Previous Latent Dirichlet Allocation (LDA) based topic analysis
tools can capture strengths evolution of various development
topics over time or the content evolution of existing topics over
time. Regrettably, none of the existing techniques can capture
both strength and content evolution. In this work, we apply
Dynamic Topic Models (DTM) to analyze the source code over
a period of 10 different versions to capture both strength and
content evolution simultaneously. We evaluate our approach by
conducting a case study on a well-known open source software
system, jEdit. The results show that our approach could capture
not only how the strengths of various development topics change
over time, but also how the content of each topic (i.e., words
that form the topic) changes over time which shows that our
approach can provide a more complete and valuable view of
software evolution.

Keywords–Open source; Source code; LDA; Topic extraction;
Software evolution.

I. INTRODUCTION

Program comprehension is an essential activity in the
course of software maintenance and evolution [1]. Typically,
developers spend around 60% of their working hours compre-
hending the system while doing software maintenance tasks
[1], especially the source code. Monitoring, visualizing and
understanding the evolution of a large system are essentially
challenging tasks.

Comprehending how source code topics evolve over time
can be a great help for project stakeholders and managers to
observe and understand activities and efforts performed on a
software repositories over time. For instance, project managers
can observe what feature the development team is working on
by consulting the source code repository and developers can
observe a specific feature evolution by consulting the same
source code repository as well [2]–[4].

Several LDA-based techniques were proposed with the aim
of supporting software projects stakeholders, managers, and
developers to comprehend software evolution. Thomas et al.
[4] used the Hall model [5] to study the history of source

code to find out the strengths (i.e., popularity) of the change
of several topics over time. They applied LDA one time on all
versions of a specific software project to extract the topics and
computed different metrics to show the strength of each topic
for each version. Their approach can capture the development
evolution strength. However, the content of a topic (i.e., the set
of words that form a topic), never changes across the versions.
Differently, Hindle et al. [6] used the Link model [7] that runs
a separate LDA for each time window and used a different step
to link similar topics. Their approach can capture changes in
the content of each topic over time (i.e., content evolution).
Unfortunately, their approach was not able to recover the
strength of a topic across all time windows because of the
lack of available information (time windows). Consequently,
none of the current approaches can capture both strength and
content evolution.

As we have seen, current approaches on understanding
source code topics evolution emphasized on the strength of the
evolution or the content evolution. However, both strength and
content of the evolution are essential for developers to entirely
comprehend how software evolves. For instance, project man-
agers want to figure out how much effort is dedicated to feature
X at a specific time, which can be attained by calculating
topic strength. They may also want to figure out what kind
of effort was done on feature X at a specific time point. By
itself, topic strength will not assist project managers with this
kind of information. Instead, the content of a specific topic
can give some insights and shed some light on activities which
performed on feature X at a specific point of time.

In this work, we propose a new approach to capture
source code evolution from two different dimensions: strength
and content. We apply Dynamic Topic Models (DTM) [8]
on the source code of a software repository. After that, we
capture topic strength evolution by calculating the Normalized-
Assignment metric at each software release to represent the
strength of a topic for that time. We capture topic content
evolution by extracting the top 10 words that characterize a
topic for each software release.

We conduct an empirical study on the source code of a
well-known open source software system, jEdit. The results
show that the new approach can capture both strength and
contents of different source code topics over time, which cor-
responds to meaningful description of the whole development
iteration, hence, a more complete view of software evolution.

An essential step towards comprehending and understand-
ing the functional behavior of any system is to find and
recognize business topics that exist in the source code of
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Figure 1. The Proposed Approach

the system. These business domain objects are modeled as
high level components and then realized in the implementation
and transformed into code. For example consider an UML
modeling application that models UML diagrams and deals
with objects, figures, relationships, and cardinality. When a
maintainer with no application knowledge wants to add a new
feature or modify one of the features, he/she will find it very
difficult before comprehending and understanding the main
functionality of the application. Extracting business topics
from the source code and establishing the relationship between
them would be a huge support in finding related data structures,
methods, classes. This will eventually help the developer or the
maintainer productivity, especially when dealing with a large
system with little documentation.

The rest of the paper is organized as follows: Section II
discusses topic evolution models in more depth. Section III dis-
cusses the approach used in this work. Section IV presents the
experimental evaluation and discussions. Section V discusses
threats to the validity of the study. Section VI discusses some
related work to this work. Section VII concludes the paper.

II. TOPIC EVOLUTION MODELS

Topic evolution model is taking into consideration the time
while modeling the topics. It models how certain topics evolve
and change over time. For a specific topic, the strength of that
topic can change several times over time (spikes and drops)
during the lifetime of a corpus. Furthermore, a specific topic
content may likewise change over time, designating different
aspects of the evolution within a specific topic. As we have
seen in the introduction section, numerous topic evolution
models were proposed in the literature.

1) The Link Model, which was proposed by Mei et
al. [7]: Hindle et al. [6] were the first ones who
applied this approach to analyze the topic evolution
of commit messages. They utilized topic modeling
(LDA) separately for each time. Then they used a
post-processing phase to link similar topics across
successive time interval.

2) The Hall model, which was proposed by Hall et al.
[5]: Linstead et al. [9] were the first ones who applied

this approach to analyze source code evolution. The
same approach was used and validated by Thomas
et al. [10] to model source code changes. The Hall
model applies LDA to the whole versions of the
software corpus (all releases included in the study).
Then a post-processing phase is used to separate
corpus at different versions and different metrics are
calculated to represent how much the contribution of
this topic in a specific version.

3) Dynamic Topic Models (DTM), which was proposed
by Blei et al. [8]: DTM is what is used in this work.
It models a topic evolution as a discrete Markov pro-
cess with normally distributed changes between time
periods that allows only steady changes over time.
It uses time-sequentially organized documents of the
corpus to capture the topics evolution and creates a
document-topic matrix and topic-term matrix at each
time period. Document-topic matrix represents each
document as multi-membership mixture of topics to
show the topic strength evolution. Topic-term matrix
represents each topic as a multi-membership mixture
of terms to show the topic content evolution

III. THE PROPOSED APPROACH

Figure 1 shows a high-level overview of our approach. We
first obtain the source code of the studied systems. Second,
we filter out noisy data by applying a number of preprocessing
steps on the corpus. Third, we determine the optimal number of
topic for this corpus. Fourth, we obtain word distributions and
the releases into time sequences. These distributions and se-
quences are used as input for DTM to produce document-topic
matrix and topic-term matrix at each release. Our approach is
very similar approach to Hu et al. [11] but it is different than
their approach in two main aspects: the target of the topic
modeling (commits vs source code) and choosing the number
of topics (random vs well-established method).

A. Data Preprocessing
A number of pre-processing steps are applied to the source

code [4]. These pre-processing steps are common in most
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information retrieval techniques [1]. First, syntax and program-
ming language keywords are filtered out. Second, each word is
then tokenized according to well-known naming practices, for
instance, underscores (first name) and camel case (firstName).
Third, common English terms are removed (stop words) to
eliminate noise. The final step is to prune the vocabulary. The
number of terms that can end up the bag-of-words is very
large, which usually would cause a problem in most text-
mining applications. In order to select the most useful subset,
a filter has been applied to remove the overly common terms
that appear in too many documents (=90%), as they can be
seen as a non-informative and background terms.

B. Choosing K
Choosing how many topics to use in topic models is still a

research problem not only for the source code domain. Topic
excerption in textual documents also encounters the same
problem. In this work, we adopted a well-known method for
determining the number of topics [12]. This method specifies
that the number of topics K can be determined by running
LDA for different values of K with freezing the LDA hyper-
parameters. For each value of K, they estimate the symmetric
Kullback-Leibler divergence [13] between the singular values
of the topic-word matrix and the document-topic matrix using
the following equation:

Measure = KL(CM1||CM2) +KL(CM2||CM1) (1)

The method calculates the symmetric Kullback-Leiber diver-
genece of the Singular value distributions of of two matrices
M1 and M2. In this equation, CM1 represents the singular
values distribution of the topic word matrix, CM2 represents
the distribution obtained by normalizing the vector L*M2
where L is a one-dimensional vector of documents lengths in
the corpus and M2 is the document topic-matrix. To determine
K, choose K where the minimum value of the measure is. It
is noteworthy that these distributions CM1 and CM2 are in
sorted order.

C. Running Dynamic Topic Models
After we filtered noisy words in the corpus by applying the

pre-processing steps, we use DTM to generate the document-
topic matrix and topic-term matrix for each release after we
feed the DTM the word distribution and the time sequences.
Dynamic topic modeling applies these steps using several
sequential time slices in the data set. We wrote an R script
that applies our approach. We used the ’topicmodel’ package
version 0.2-1 in the R language version 3.1.12. The LDA
parameters were chosen based on the recommendation of the
literature [14]. The used parameters are = 50/K and = 0.01
where K is the number of topics.

D. Visualization of Strength and Content
After applying our approach, we visualize the results using

the document-topic matrix and topic-term matrix. We calculate
several topic metrics to symbolize both the strength and content
of topics evolutions. We measure how the topic strength
changes over time by computing a normalized assignment
metric at each time point. This metric is the average value
of the topic memberships of all documents in that topic at
a time, which indicates the total presence of the topic in that
time. The strength evolution of a topic is a time-indexed vector

of normalized assignment values for that topic. Then, for the
topic content, which includes the words and their distributions,
it contains two parts: the word and its frequency within a
topic. We choose the top 10 most frequent words to illustrate
a topic and measure how the topic content changes over time
by computing Term-Frequency (TF) at each time point.

IV. RESULTS

In this section, we applied our approach to the repository
of jEdit. We show the example topics and the captured infor-
mation of version 3 of jEdit in Table I. We discuss our results
and the empirical data in detail. The results are demonstrated
in Figure 2, Figure 3, and Figure 4. These figures display a
number of top words from selected topics in each version based
on the term frequency (TF) value of each word in that topic. By
looking at the figures, we observe the topic strength evolution
by mapping the assignment value of topics to versions as well
as the topic content evolution by mapping TF values of several
top words to versions.

We applied our approach to the repository of jEdit from
2002 to 2012, which includes 10 main releases (3.0, 3.1, 3.2,
4.0, 4.1, 4.2, 4.3, 4.4.1, 4.5, 5.0). We found that most topics’
strength evolution fluctuated greatly during the studied time
period, which indicates that development topics are varied and
distributed in each version. Furthermore, we observed that the
top two words across different topics are add and plugin, which
represents the active growth of plugins, an essential feature of
jEdit. We studied each topics strength and content. We found
three important topics:

Selection. Topic 1 relates heavily to selections done in
jEdit. We found that the most frequent words contained in this
topic were line, text, selection, length and area. The topic’s
strength reaches to peak (8%) in version 9 (4.5), and before
that time it varies from 3.1% to 5.8% and fluctuates greatly.
We looked in more details at the top words in version 9,
and found that the TF of these words seems to decline after
version 9. This was the real content evolution trend of this
topic, because we found that the top words rarely appeared in
previous versions.

Formatting. In topic 5, words such as color, window, font,
height and width are common throughout the whole selected
versions, which clearly represent the continuing availability of
these features in jEdit. The topics strength varies from 1.9% to
8% and also experiences great fluctuation. The peak strength
was reached in version 2, but after other functionalities, which
implies other development topics, the strength fell down in
consecutive versions.

GUI. In topic 7, words such as border, handler, action,
button, panel, area and event are common during the whole
time, meaning that several components relate to GUI. The
topic’s strength reaches to peak (about 15%) in version 8 and
we found that about 20% of the top matching words come
from this version. We also found that border is a notable GUI
feature provided by jEdit because the word border is almost
the top frequent term within this topic from the beginning to
end.

There are other development topics, such as bug fixing and
feature requests, directory for plugins, buffer and bufferset,
regular expressions, build system files and code cleanup.
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Figure 2. 10 Top Words Evolution for Topics.

TABLE I. EXAMPLE TOPICS AND THE CAPTURED INFORMATION OF VERSION 3 OF JEDIT

Topic Top 10 Words
Selection line, offset, caret, start, selection, end, param, count, pre, since

Formatting color, highlight, font, width, line, enabled, height, length, text, dimension
Menu border, label, handler, button, layout, name, panel, window, event, size

V. THREATS TO VALIDITY

In this section, we discourse some limitations to our study.
The approach of this work depends on the quality of comments
and identifier names found in the code. jEdit is known for
its robust designs, extensive documentation, strict coding and
naming conventions. In addition, a previous study revealed
that majority of java systems have good comments and good
identifiers names, which make them sufficient for such topic
analyses [15].

Regarding pre-processing steps, we performed four differ-
ent steps on the source code. However, there is no consensus
in the literature on which steps are essential or beneficial. Re-
garding parameter values, we used a well-established approach
to find the optimal number of topics, which is much better
than previous work in which they randomly selected a number
of topics. We have focused on one open source Java-based
systems. however, we cannot generalize the results. Additional

case studies are needed to investigate closed-source and other
programming languages systems.

VI. RELATED WORK

Mining software repositories is booming in the software
engineering research community these recent years [16]–[18].
We discuss some of the related work on mining software
repositories efficiently to help software maintenance tasks.

Sun et al. [19] proposed an approach based on LDA to find
out what kind of historical information is needed to support
software maintenance. They evaluated their approach by a new
study on another important software maintenance task, i.e.,
feature location. Furthermore, their benchmarked their studies
with more subject programs and metrics.

Herzig et al. [21] conducted empirical studies of tangled
changes, which introduce noise in software repositories [20].
Their results were promising in which they showed that about
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20% of all bug fixes consist of multiple tangled changes.
Keivanloo et al. proposed a collaborative platform for the
purpose of sharing software datasets. Their platform supports
data extraction, integration from various version control, issue
tracking, and quality evaluation repositories. Their main focus
was the integration of the information in software repositories.

Thomas et al. [4] proposed to use LDA to study the
software evolution. They investigated whether the topics from
the LDA corresponded well with actual code changes. Their
results showed the effectiveness of using topic models as tools
for studying the evolution of a software system. Furthermore,
Their studies provided a good motivation for other researchers
to use the topic model to mine the topics from software
repositories.

VII. CONCLUSION

Available topic evolution models address only strength
evolution or content evolution of the unstructured software
repositories, not both like our approach. Having both the
content evolution and the strength evolution will provide more
comprehensive and complete results in order to understand
the evolution of the source code than either one of them.
In this work, we applied the Dynamic Topic Models to the
source code to represent both their topic strength and content
evolution. An empirical analysis of one well-known and open
source projects, jEdit was conducted. We found that DTM
produce complete and comprehensive view of software evolu-
tion, which is useful for a variety of stallholders to understand
the changes of development topics from different aspects in a
version. A future direction would be choosing more finest pre-
processing steps. Another direction is to apply this approach on
more software systems and conduct more comparative studies
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