
Several Issues on the Layout of the UML Sequence and Class Diagram

Oksana Nikiforova, Dace Ahilcenoka, Dainis Ungurs, Konstantins Gusarovs, Ludmila Kozacenko

Faculty of Computer Science and Information Technology

Riga Technical University

Riga, Latvia

{oksana.nikiforova, dace.ahilcenoka, dainis.ungurs, konstantins.gusarovs, ludmila.kozacenko}@rtu.lv

Abstract — Models are widely used and are one of the advanced

tools of software engineering. Therefore, it is very important

that the models and diagrams are well built not only

considering their content, but also how they visually represent

information, how they are layout. Layout is an important factor

considering readability and comprehensibility of a diagram.

Providing manual diagram layout is time consuming; it can also

be ineffective; therefore, this paper is a research about diagram

automatic layout. UML provides a variety of diagrams, which

covers all of the system development life cycle steps. The most

important UML diagrams are class and sequence diagrams,

because they are the main diagrams to present system structure

and behavior. We analyze existing layout techniques and

algorithms, offer new ones and evaluate them regarding their

applicability to class and sequence diagram layout in different

modeling tools, how they comply with layout criteria.

Keywords – UML class diagram; UML sequence diagram;

layout algorithm; BrainTool.

I. INTRODUCTION

One of the tasks of software development is to present
different aspects of the system before developing the software
solution for that system. To solve this task, system modeling
became one of the important activities during software
development. Models are useful for understanding problems,
communicating with everyone involved within the project
(customers, domain experts, analysts, designers, etc.),
modeling enterprises, preparing documentation and designing
programs and databases. Modeling promotes better
understanding of requirements, more clear designs and more
maintainable systems. Graphical models help to provide a
common base for system developers at different levels of
system domain and are used at different stages of system
abstraction. It is specially pointed to such standardized
modeling mean as Unified Modeling Language (UML) [1].

The graphical aspect of modeling language turns
developers to an intuitive language semantics and perceptible
location of model elements on the diagram. Thus, modelers
have to decide two main tasks during creation of the diagram:
to think of how to present system functionality by diagram
elements and to invent an optimal placement of diagram
boxes and wires. Thus, the systematic approach to elements
placement within the diagram, which is specified as a task of
diagram layout, plays an important role in completing the task
of system modeling. This paper tries to solve the problem of
diagram layout in correspondence with the most used UML
diagrams, namely the UML class diagram and the UML

sequence diagram. The goal of the research is to offer layout
algorithms for both diagrams, to implement the presenting
algorithms within the BrainTool [2] modelling tool, which
gives an ability to generate UML diagrams from the two-
hemisphere model [3].

The paper is structured as follows. The next sections
introduce requirement set to layout the UML sequence and
class diagrams. The algorithm based on the defined
requirement sets is described in the second and the third
section. The fourth section gives a brief overview of the
related work and compares our solution with the existing
ones. We discuss about the present research and state the
direction for the future in the conclusion of the paper.

II. LAYOUT ALGORITHM FOR THE UML SEQUENCE

DIAGRAM

Basically, the software system development starts with the
business information gathering and presenting it in the form
suitable for further software system modeling. Then, this
presentation of business information has to be transformed
into the model, which in object-oriented manner for software
development requires to present objects to interact in the form
of UML sequence diagram [1]. It shows objects, their lifelines
and messages to be sent by objects-senders and performed by
object-receivers and is used to present dynamic aspect of the
system. The dynamic of interactions is defined by an ordering
of the messages. It serves as a basis for definition of
operations performed by objects to be grouped into classes, as
well as to present and to verify a dynamic aspect of class state
transition. UML sequence diagram is a popular notation to
specify scenarios of the processing of operations as its clear
graphical layout gives an immediate intuitive understanding
of the system behavior. UML sequence diagram is stated as
one of the ambiguous UML diagrams, with an implicit and
informal semantics that designers can give to basic sequence
diagram as a result of this conflict.

The time aspect plays the most important role and helps to
organize messages in correct sequences. Vertical axis is used
to display time, the beginning of the diagram is at the top and
it is read downwards. Sequence diagram can consist of many
different elements; however, the authors will use only those,
which can be acquired from the two-hemisphere model,
which is a kind of initial presentation of the problem domain
in the model form, which consist of process model
interrelated with conceptual model. It is possible to generate
UML sequence and class diagram from the two-hemisphere
model based on the direct transformation of diagrams, which

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

are already explained in [3][4]. To enable implementation of
the model transformation by a tool, it is necessary to have an
algorithm for element placement after the transformation
execution.

A. Layout Requirements for the UML Sequence Diagram

Table 1 shows the list of criteria for layout the elements of
the UML sequence diagram in descending order of their
importance. Criteria are marked with SD identifier. General
layout criteria result from the theory of perception [5].
Specific diagram like the UML sequence diagram has
additional criteria, e.g., “slidability”. There are six perceptual
principles referring to organization of diagram elements,
when the elements are considered as a group [6]. These
principles are acquired from Gestalt theory [5]. There are
three more principles related to perceptual element
segregation. All of these Gestalt theory principles are
considered as aesthetic criteria. General aesthetic criteria are
widely discussed in [7][8][9].

TABLE I. CRITERIA FOR LAYOUT OF THE UML SEQUENCE DIAGRAM

ID Name of

criterion

Description

SD0 Precise

sequence of
messages

Notational convention of the UML requires to

display messages in the order they are being
sent.

SD1 Avoid object

and lifeline

overlapping

When objects or lifelines are overlapping it is

hard or sometimes impossible to read the

diagram.

SD2 Elements to

be arranged

orthogonally

Sequence diagram is an example of orthogonal

diagram - message arrows are situated

horizontally (typically) and lifelines -
vertically.

SD3 Diagram flow It is very important to layout elements by

creating obvious flow - visible start and end of
the diagram, easier to follow the elements and

read the diagram. The first message is located

at the top left corner of sequence diagram.

SD4 Minimize
crossings

In the sequence diagram message arrows
should not cross at all, therefore with crossings

is understood message arrow crossings over

lifelines and number of this kind of crossings
should be reduced.

SD5 Message

arrow length
minimization

To make the diagram more comprehensible

and the area smaller, the message arrow length
should be minimized

SD6 Reduction of

long message

arrow number

It is difficult to follow long message arrows, so

they should be as few as possible.

SD7 Minimize

longest

message
arrow length

The longest message arrow should be

shortened if possible, e.g., placing elements

closer.

SD8 Uniform

message

arrow length

Message arrows with similar length make

diagram more understandable. Similar arrow

length is also needed to fulfill the “slidability”
criteria.

SD9 Improve

“slidability”

“Slidability” is an aesthetic criteria for better

clearness, particularly important in bigger
sequence diagrams, where the whole diagram

fails to fit in one screen.

A sequence diagram is specific in its visual presentation.
All the objects are allocated horizontally at the top of the
diagram and the life lines are drawn vertically top-down.

Therefore, the criteria for the UML sequence diagram should
be carefully selected or even modified, so that they could be
applied. For example, one specific criterion for sequence
diagram is correct sequence of messages, which is the
meaning of this diagram. Poranen et al. [10] and Wong and
Sun [6] have identified the criteria specific for sequence
diagrams.

B. Basic Principles of the Layout Algorithm

Considering the specificity of sequence diagram the
authors propose to use an algorithm, which is based on
topology-shape-metrics planarization step and uses one
principle of force-directed approach – object tends to attract
those objects, with which it communicates. The algorithm
places the elements possibly close and tries to arrange
communicating participants beside based on priorities.
Priorities are calculated considering object attraction forces –
as more messages between elements as higher priority for
them to be beside. The layout algorithm calculates the
distance between the elements considering lengths of
messages and class object names. Algorithm places elements
as close as possible by taking into account the diagram flow
(e.g., interacting objects are being placed beside if possible).
The pseudo-code of the layout algorithm implemented is the
following [11]:

Figure 1 shows an example of “bad” layout of the UML

sequence diagram and the corresponding good layout of the
same object interaction. The algorithm is implemented in
BrainTool, which serves for generating UML diagrams from
the two-hemisphere model mentioned above.

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

(a) (b)

Figure 1. Example of “bad” (a) and “good” (b) layout of the UML sequence diagram.

III. LAYOUT ALGORITHM FOR THE UML CLASS

DIAGRAM

The UML class diagram describes system’s structure by
showing its classes with the methods and attributes, and
relations between classes. The visual presentation of the UML
class diagram lookes like graph with vertexes and edges, but
due to class diagrams ability to present different types of
relationships between classes, the diagram is classified as a
graph with specific constructions of arcs of different types.

A. Layout Requirements for the UML Class Diagram

There is no set standard for the location of classes. It is
generally agreed upon to place the most important objects at
top left and read the diagram to the right and downwards [6],
however, by not following this rule would not make the
diagram less readable.

By analogy with the UML sequence diagram, layout
criteria for the UML class diagram result from the theory of
perception. The same as for sequence diagram, the layout
algorithm for class diagram should take into consideration all
the Gestalt theory principles described above.

In addition, it is possible to define requirements’ set for
UML class diagram elements’ layout on basis of perceptual
theory. This helps to determine UML diagram’s layout
algorithm’s tendency. Therefore, an algorithm provides the
opportunity to automate layout of UML diagram’s elements
and transform given diagram to its normal form.

Some of defined requirements conflict with each other
(for example, minimizing the subset separation requirements
and exploiting the proximity requirement). This means that it
is essential to define significance for conflicting requirements
especially for diagrams’ elements layout automation; also this
ability can be given to user. We leave this task and
discovering of new requirements for diagrams’ elements
layout for further studies.

However, it is up to the creator of the layout algorithm to
decide which criterion is more important. All the described
principles and requirements can be used for creation of
algorithm for diagram’s elements’ automated layout. Table 2
shows the list of criteria for the UML class diagram layout.
Criteria are marked with CD identifier.

TABLE II. CRITERIA FOR LAYOUT OF THE UML CLASS DIAGRAM

ID Name of

criterion

Description

CD0 Join
inheritance

arcs

Joining inheritance arcs provide a more
understandable structure and suggest

hierarchy. It also decreases the amount of

connections to a class, which can make it
easier to view.

CD1 Ensure

association

representation

There are several ways to represent

associations, depending on how much

information is shown.

CD2 Employ

selectivity

Some information contained in a class or

relationship can be less useful than other,

so displaying only the useful information
can help the understandability of the

diagram.

CD3 Use colors Many people are sensitive to colors [5].

This can be used to visually group classes.

CD4 Minimize

crossings and

bends

Crossings and bends can make it harder to

distinguish what classes a relationship

connects.

CD5 Center parents
or children

Centering parents or children can visually
group them together.

CD6 Reduce length

of
relationships

Shorter relationships help decrease the size

of the diagram and make it easier to view.

CD7 Ensure

inheritance
direction

It is generally agreed upon, that child

classes should be placed below parent
class [8]. This helps display the hierarchy.

CD8 Avoid

overlapping

Overlapping can cause loss of data and

remove the representation of object

shapes. All this leads to less readable
diagrams.

CD9 Employ

symmetry

Symmetry can improve the readability of a

diagram.

CD10 Employ
orientation

It is advisable to layout diagrams in a way,
to read them from top to bottom and from

left to right. This is more common in most

countries and helps to guide the flow of
information.

CD11 Employ

orthogonality

Orthogonal relationships are easier to

follow than bent or straight lines and help
avoid overlapping.

CD12 Place labels

horizontally

Placing all the labels horizontally helps

readability of the diagram.

CD13 Place
associations

horizontally

Associations should be placed horizontally
if possible. It helps readability of the

diagram as well as placement of labels.

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

B. Basic Principles of the Layout Algorithm

The layout algorithm operates in four major steps [12].
Prior to these steps, algorithm gathers data on all the classes
and their relationships in the diagram and places them in
specific data types and constructs, for easier usage.

The pseudo-code of the layout algorithm implemented is
the following [12]:

During the first step, each class is assigned a score. This

score is calculated based on how many relationships a class
has, as well as the type of these relationships. Additionally,
class content is taken into account, such as attribute and
method count.

In the second step, all the classes are divided into small
groups. The groups are created around the classes with the
highest scores. Each group contains classes’ no more than
two relationships away from the main class of the group. This
ensures each group is compact and contains classes with
similar content. As a special condition, parent class that has
generalization relationships will always be the main class of a
group. All the child classes will be part of it.

The third step covers the layout of individual groups.
Since the diagram is now divided into many small clusters of
classes, each group contains a small and limited amount of
classes. This limit can be set by the user to personalize the
workflow of algorithm. Because the amount of cases is small,
a simple layout can be applied, by checking the type of
relationship classes have and placing them accordingly, to
suit various layout criteria.

Step four involves returning and re-doing steps one to
three, treating the newly created and laid out class groups as
standalone classes. Because the classes are generally drawn as
rectangles, so a group of classes can also be combined and
displayed in a similar way. An already implemented approach
that remotely resembles this is structured class notation [1].

In order to successfully implement the steps described
above, a specific approach is used. All the classes and in later
iterations- class groups, are placed in a container object. This
object contains all the required data for the layout- class
coordinates, width, height and score. Because it can contains
a single class and a group of classes, the algorithm only needs
to iterate trough the same object type. This improves the
workflow of the algorithm.

Figure 2 shows an example of “bad” layout of the UML
class diagram and the corresponding good layout of the same
class structure. The class diagram consists only from seven
classes, but still it is possible to demonstrate the ability of the
algorithm to layout the diagram.

(a) (b)

Figure 2. Example of “bad” (a) and “good” (b) layout of the UML class diagram

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

IV. RELATED WORK AND EVALUATION OF THE RESULT

The problem of automatic UML diagram layout still exists
and it is widely discussed in relation to class and sequence
diagrams. The cause of the layout problem is that algorithms
are not well suited for each diagram type and there are many
different aesthetic criteria to comply with. Some of the
criteria are easier to implement than others, for example SD1,
SD2, SD4-SD8 [10]. Another problem in automatic layout is
that many of the aesthetic criteria are conflicting, e.g.,
message arrow length minimization (SD5) and minimization
of crossings (SD4), and because reducing message arrow
length is more likely to cause more crossings. The authors of
[10] mention that the optimal layout is algorithmically
complicated challenge, which is one more problem to
automatic layout, for example an optimal linear layout
problem is considered as NP-complete problem [13].

Since there are many different layout algorithms a
solution can be found by studying different possibilities to
tailor algorithm to specific problem or combine several of
them to get the expected results. Diagram layout algorithms
are based on graph theory and graph layout algorithms [14].
Algorithms can be divided into approaches, where the most
used ones are topology-shape-metrics, hierarchical, visibility,
divide and conquer, force-directed approaches; they are
described in [7]. Genetic algorithms can also be used in
diagram layout.

Topology-shape-metrics approach is one of the most used
one [15]. The approach is suitable for orthogonal graphs and
it supports many different aesthetic criteria [7]. Eichelberger
and Schmid [9] mention that the algorithms of this approach
have been used to layout UML class diagrams and are
implemented in such tools as GoVisual [16] and
yWorksUML [17]. The approach has three main steps,
namely, planarization, orthogonalization and compaction,
which are well described by di Batista et al. [7].

Hierarchical approach, also called Sugiyama approach, is
also used in UML class diagram automatic layout [18]. This
approach is suitable for directed acyclic graphs - more or less
hierarchic graphs, which is not the sequence diagram case.

Visibility approach is the general approach suitable for
various types of graphs. It has been used in entity-relationship
diagram layout by Tamassia [19]. The approach also has three
main steps, as mentioned in [9] and [7]. This approach can be
put in the middle between both previously described
approaches. Having studied this approach more closely we
can conclude that this approach is less suitable for the
sequence diagram than topology-shape-metrics because of its
second and third steps.

Divide and conquer approach first divides graph in parts,
arranges elements and then merges these parts together [7].
Regarding to sequence diagram, this approach is only suitable
to diagrams with separable subsets therefore not suitable for
all kinds of sequence diagrams.

Force-directed approach is suitable for undirected graphs
[7]. The force-directed approach simulates a physical system
of forces, where a system tries to achieve the state of
minimum energy. One of main criteria in this approach is

minimization of crossings, which is not the most important
criteria for sequence diagrams.

There is a wide range of genetic algorithms and they can
be used for various purposes, as it was mentioned by
Galapovs and Nikiforova in [20]. Genetic algorithms simulate
processes from nature, like mutations crossover and selection.
Genetic algorithms were used in [21] for class diagram layout
and according to the research results these algorithms are time
consuming (20 minutes for 17 class layout).

Authors compared the relevance of each algorithm for the
sequence diagram to genetic algorithms, topology-shape-
metrics and force-directed approach algorithms proved to be
theoretically most suitable according to how they meet the
sequence diagram criteria. Other approaches are not
considered to be suitable at all because they either do not
consider the right order of the priorities of criteria or they are
not suitable for such diagram/graph type (e.g., they are
tailored for undirected, acyclic types of graphs, but the
sequence diagram is directed and cyclic).

There are several tools that provide automatic diagram
layout, e.g., Borland Together [22] supports automatic UML
sequence diagram layout, but uses lawless set of layout
criteria while Rational Rose [23] supports UML class, but
does not support sequence diagram layout. Sparx Enterprise
Architect [24] and Visual Paradigm [25] are tools that also
provides automatic UML sequence diagram layout, however,
it does not satisfy all the mentioned criteria of layout [11].

Table 3 shows how different criteria of the UML
sequence diagram layout are supported by different
algorithms and how they are implemented in UML modeling
tools. The evaluation “Yes/No” means that criterion is/is not
supported. The evaluation “partly” means that criterion is not
supported completely, only part of the criterion is
implemented. The evaluation “adjustable” means that
criterion can be implemented by the algorithm.

The same evaluation for criteria supporting in different
modeling tools according the layout of class diagram is
shown in Table 4.

Researches also have been made on other types of UML
diagrams. Eichelberger and Schmid [9] give researches on
automatic layout of UML use case diagrams. Bist et al.
presented an approach to draw sequence diagrams in
technical documentation to ease communication between
project members [26]. Poranen et al. proposed various criteria
for drawing a sequence diagram based on traditional graph
drawing aesthetics and the special nature of sequence
diagrams [10]. Wong and Dabo give requirement set based on
cognitive science for sequence and class diagrams, which can
help to improve diagrams’ readability [27].

The KIELER project [28] evaluated the usage of
automatic layout and structure-based editing in the context of
statecharts. It provided a platform for exploring layout
alternatives and has been used for cognitive experiments
evaluating established and novel modeling paradigms.
However, it was rather limited in its scope and applicability.

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

TABLE III. CRITERIA EVALUATION FOR LAYOUT OF THE UML SEQUENCE DIAGRAM

Abbreviations used in the table are the following: TSMA – Topology-Shape-Metrics Approach, HA – Hierarchical Approach, VA – Visualization Approach,

DCA – Divide and conquer approach , FDA – Force-Directed Approach, MSA – Multi-Scale Algorithms, GA – Genetic Algorithms, EA – Enterprise
Architect, T – Together, VP – Visual Paradigm, BT – BrainTool, adj – adjustable.

ID Name of criterion TSMA HA VA DCA FDA MSA GA EA T VP BT

SD0 Precise sequence of messages yes yes yes yes yes yes adj partly partly partly yes

SD1 Avoid object and lifeline overlapping yes no no no no adj adj yes yes yes yes

SD2 Elements need to be arranged orthogonally no no no no no no adj partly no yes yes

SD3 Diagram flow yes yes yes adj yes no adj no no no yes

SD4 Minimize crossings adj adj adj adj adj adj adj no partly no yes

SD5 Message arrow length minimization adj adj adj adj adj adj adj no no no yes

SD6 Reduction of long message arrow number adj adj adj adj adj adj adj no no no yes

SD7 Minimize longest message arrow length yes yes no adj yes no adj no no partly yes

SD8 Uniform message arrow length no no no no no no adj no no no no

SD9 Improve “slidability” no no no yes yes no adj no no no no

TABLE IV. CRITERIA EVALUATION FOR LAYOUT OF THE UML CLASS DIAGRAM

Algorithms CD1 CD2 CD3 CD4 CD5 CD6 CD7 CD8 CD9 CD10 CD11 CD12 CD

13

Sparx Enterprise Architect 11

Ring No Yes Yes Yes Poor No Medium No Poor No Yes No Yes

Ellipse No Yes Yes Yes Poor No Medium No Poor No Yes No Yes

Box No Yes Yes Yes Poor No Poor No Medium No Yes No Yes

Page No Yes Yes Yes Very Poor No Medium No Poor No Yes No Yes

Di-graph No Yes Yes Yes Good No Medium Yes Medium Poor Yes No Yes

Spring No Yes Yes Yes Medium No Good No Poor No Yes No Yes

Right to left No Yes Yes Yes Very Good No Medium Yes Good Poor Yes Yes Yes

Visual Paradigm 11

Automatic No Yes Yes Man. Very Good No Medium No Very Good Medium Yes Yes Yes

Hierarchical Yes Yes Yes Man. Medium No Very
Poor

Yes Good Medium Yes Medium Yes

Orthogonal No Yes Yes Man. Good No Medium No Very Good Medium Yes Yes Yes

Ring No Yes Yes Man. Medium No Good No Good No Yes No Yes

Organic No Yes Yes Man. Medium No Good No Good No Yes No Yes

Compact No Yes Yes Man. Medium No Good No Good No Yes No Yes

MagicDraw 18.0 beta

Class
diagram

Yes Yes Yes Yes Good No Medium Yes Good No Yes Yes Yes

Hierarchycal Yes Yes Yes Yes Good No Medium Yes Medium No Yes Yes Yes

Orthogonal No Yes Yes Yes Good No Poor No Good No Yes Yes Yes

Organic No Yes Yes Yes Medium No Good No Good No Yes Yes Yes

Circular No Yes Yes Yes Medium No Poor No Good No Yes Yes Yes

Braintool

Organic No Yes Yes Yes Good No Good No Poor Poor Yes No Yes

Compact No Yes Yes Yes Medium No Good No Medium Medium Yes Good Yes

Modular No Yes Yes Yes Good Yes Good Yes Medium Good Yes No Yes

Purchase et al. analyzed graph layout aesthetics in UML

diagrams, focusing on user preferences, and conducted
empirical studies of human comprehension to validate those
aesthetic criteria and rank their effect [8]. They also compared
various UML notations, and suggested which notations are
more understandable [29].

Since there are so many criteria, with some conflicting
with each other, software engineers and tool designers are

often overwhelmed and confused on choosing the appropriate
algorithm to use. The result of the experiments with diagram
import/ export and evaluation of their layout in several
modeling tools shows that there are still problems with
optimal allocation of diagrams elements. And still the
problem is not solved. Therefore, we can assume that the
algorithms offered and implemented in BrainTool is a step
forward in the evolution of the UML diagram layout.

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

V. CONCLUSION

As mentioned in the introduction of the paper, the task of
element placement during system modeling has an impact on
better understanding of system model and more effective
usage of them during development of the system. Nowadays,
one of the leaders in system development is object oriented
manner of software development and object oriented system
modeling has its own way for presentation of different aspects
of the system. Therefore, we focused on the problem of
diagram layout creating UML diagrams, which is declared as
a standard for presentation of software system model and
provides a notation, which grows from analysis through
design into implementation in object oriented programming
languages.

As a notation of system modeling for different aspects of
the system, UML introduces 14 types of diagrams, which can
describe system from different points of view. However,
Ambler stress yet in 2004 that the UML class, sequence and
activity diagrams are considered more important than others
[30]. And since that time, after 10 years, still the state of the
art is not changed in the importance and popularity of the
UML diagrams. Nowadays, commonly used UML diagrams
in software development projects still are the UML class and
sequence diagrams [31][32]. So far, we presented the layout
algorithm and its application for UML class and sequence
diagram and demonstrates the application of the algorithms in
the model transformation tool – BrainTool.

The layout algorithms we offered for the two UML
diagrams, namely, sequence and class, satisfy the most
criteria stated for diagram layout, which are defined by
different authors. In the case with the UML sequence diagram
the algorithm support 8 criteria from 10 stated, whereas the
best result is 4 criteria for other algorithms and two criteria
for the modelling tool. In the case with the UML class
diagram, the evaluation of the algorithm offered and
implemented by BrainTool is also the same obvious.

ACKNOWLEDGMENT

The research presented in the paper is supported by
Latvian Council of Science, No. 342/2012 "Development of
Models and Methods Based on Distributed Artificial
Intelligence, Knowledge Management and Advanced Web
Technologies".

REFERENCES

[1] Unified Modeling Language: superstructure v.2.2, OMG.
Available: http://www.omg.org/spec/UML/2.2/Superstructure
[retrieved: August, 2014].

[2] BrainTool. Available at http://braintool.rtu.lv/ [retrieved:
August, 2014]

[3] O. Nikiforova and M. Kirikova, “Two-hemisphere model
drivenapproach: engineering based software development,”
The 16th International Conference Advanced Information
Systems Engineering, A. Persson and J. Stirna, Eds.
BerlinHeidelberg: Springer-Verlag, LNCS 3084, 09.2004, pp.
219-233.

[4] Nikiforova O., Kozacenko, and D. Ahilcenoka. “Two-
Hemisphere Model Based Approach to Modelling of Object
Interaction,” Proceedings of the Eight International
Conference on Software Engineering Advances, Mannaert H.

et al. (Eds), IARIA ©, Venice, Italy, October 28-November 1,
2013, pp. 605-611.

[5] B.E. Goldstein, Sensation and Perception. Wadsworth, 2002.

[6] K. Wong and D. Sun “On evaluating the layout of UML
diagrams for program comprehension,” IWPC 2005, 13th
International Workshop on Program Comprehension, May 15-
16, 2005, St. Louis, Missouri, USA. IEEE Computer Society
2005, pp. 317-326.

[7] G. di Battista, P. Eades, R. Tamassia, and I. Tollis, Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice
Hall, 1999.

[8] H. C. Purchase, J-A. Allder, and D. Carrington, "Graph Layout
Aesthetics in UML Diagrams: User Preferences," Journal of
Graph Algorithms and Applications, vol. 6, no. 3, 2002, pp.
255-279. [Online]. Available: Universitat Trier,
http://www.informatik.uni-trier.de [retrieved: August, 2014].

[9] H. Eichelberger and K. Schmid, "Guidelines on the aesthetic
quality of UML class diagrams." In Information and Software
Technology, vol. 51, no. 12, 2009, pp.1686-1698. [Available:
ScienceDirect, http://www.sciencedirect.com. [retrieved:
August, 2014].

[10] T. Poranen, E. Makinen, and J. Nummenmaa “How to Draw a
Sequence Diagram,” SPLST'03 Proceedings of the Eighth
Symposium on Programming Languages and Software Tools,
June 17-18, 2003, Kuopio, Finland. University of Kuopio,
Department of Computer Science 2003, pp. 91-102.

[11] D. Ahilcenoka, Development of the Layout Algorithm of the
UML Sequence Diagram, Master Thesis, Riga Technical
University, 2014.

[12] D. Ungurs, Development of the Layout Algorithm of the UML
Class Diagram, Master Thesis, Riga Technical University,
2014.

[13] M. Garey and D. Johnson, Computers and intractability - A
Guide To The Theory Of NP- Completeness. W.H.
FREEMAN AND COMPANY, 1991.

[14] K. Freivalds, U. Dogrusoz, and P. Kikusts, “Disconnected
Graph Layout and the Polyomino Packing Approach,” GD
2001 9th International Symposium on Graph Drawing,
September 23-26, 2001, Vienna, Austria. Lecture Notes in
Computer Science, Springer-Verlag, 2002, pp. 378-391.

[15] J. Sun, Automatic, Orthogonal Graph Layout, Project work,
Hamburg University of Technology, 2007.

[16] Oreas optimization, research and software, GoVisual Diagram
Editor. Available: http://www.oreas.com/gde_en.php.
[retrieved: August, 2014]

[17] yWorks, Automatic Layout of Networks and Diagrams.
Available:
http://www.yworks.com/en/products_yfiles_practicalinfo_gall
ery.html [retrieved: August, 2014].

[18] J. Seemann, “Extending the Sugiyama Algorithm for Drawing
UML Class Diagrams: Towards Automatic Layout of Object-
Oriented Software Diagrams,” GD '97, Graph Drawing, 5th
International Symposium, September 18-20, 1997, Rome,
Italy. New York: Springer Verlag, 1997, pp. 415-424.

[19] R. Tamassia, “New Layout Techniques for Entity-Relationship
Diagrams,” Proceedings of the Fourth International
Conference on Entity-Relationship Approach October 29-30,
1985, Chicago, Illinois, USA. IEEE Computer Society and
North-Holland, 1985, pp. 304-311.

[20] M. Mitchell, An Introduction to Genetic Algorithms. A
Bradford Book, 1999.

[21] A. Galapovs and O. Nikiforova, “Several Issues on the
Definition of Algorithm for the Layout of the UML Class
Diagram,” 3rd International Workshop on Model Driven
Architecture and Modeling Driven Software Development
(MDA & MDSD 2011) in conjinction with the 6th
International Conference on Evaluation of Novel Approaches

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

to Software Engineering, June 8-11, 2011, Beijing, China.
SciTePress Digital Library 2011, pp. 68-78.

[22] Borland a micro focus company, Borland Together. Available:
http://www.borland.com/products/Together/. [retrieved:
August, 2014].

[23] IBM, Rational Rose product family. Available: http://www-
01.ibm.com/software/awdtools/developer/rose/. [retrieved:
August, 2014]

[24] Visual Paradigm "Drawing activity diagrams". Available:
http://www.visualparadigm.com/support/documents/vpumluser
guide/94/200/6713_drawingactiv.html [retrieved: August,
2014].

[25] Sparx systems, "Enterprise Architect". Available:
http://www.sparxsystems.com.au/ [retrieved: August, 2014].

[26] G. Bist, N. MacKinnon, and S. Murphy, “Sequence diagram
presentation in technical documentation,” SIGDOC 2004:
Proceedings of the 22nd Annual International Conference on
Design of Communication, NewYork, NY, USA, ACMPress,
2004, pp. 128–133.

[27] K. Wong and S. Dabo, “On evaluating the layout of UML
diagrams for program comprehension,” Software Quality
Journal, 2006, pp. 233–259.

[28] KIELER project, the Kiel Integrated Environment for Layout
Eclipse Rich Client [Online] Available
http://www.informatik.uni-kiel.de/rtsys/kieler [retrieved:
August, 2014]

[29] H.C. Purchase, M. McGill, L. Colpoys, and D. Carrington
“Graph drawing aesthetics and the comprehension of UML
class diagrams: an empirical study,” CRPITS 2001: Australian
Symposium on Information Visualisation, Australian
Computer Society, Inc., 2001, pp. 129–137.

[30] S. W. Ambler. The Object Primer: Agile Model-Driven
Development with UML 2.0. Third Edition. Cambridge, UK:
Cambridge University Press, 2004. 572 p. ISBN 978-
0521540186.

[31] Runtime Verification: First International Conference, RV
2010, St. Julians, Malta, November 1-4, 2010. Proceedings
(Lecture Notes in Computer Science / Programming and
Software Engineering), Barringer et al. (eds.), 2010.

[32] L. T. Yang, E. Syukur, and S. W. Loke Handbook on Mobile
and Ubiquitous Computing: Status and Perspective, CRC
Press, 2012.

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

