
Enhanced Search: An Approach to the Maintenance of Services Oriented

Architectures

Norman Wilde, Douglas Leal, George Goehring, Christopher Terry

Department of Computer Science

University of West Florida

Pensacola, FL, USA

e-mail: nwilde@uwf.edu, douglas.leal@gmail.com, pensacoder@gmail.com, cterry@students.uwf.edu

Abstract— This paper describes the use of search techniques to

ease the burden of software maintenance for Services Oriented

Architecture composite applications. Services Oriented

Architecture is a paradigm that offers many potential business

and social benefits, especially because it creates opportunities

for composite software applications that share data and

functionality across organizational boundaries. However, along

with these benefits will come new challenges in the

maintenance of these applications. The first necessity in any

software maintenance task is to comprehend how the existing

software functions. To gain this comprehension, maintainers

will need to study a bewildering variety of artifacts, ranging

from XML-based interface descriptions, through source code

in a variety of languages, to traditional text documents in many

different formats. For some years, we have been experimenting

with the use of modern search techniques, enhanced where

possible by rule-based reasoning, to aid maintainers of

composite applications in gathering the information they will

need to do their jobs. In this paper, we describe version 2 of

our SOAMiner search system and discuss how its design

emerged from our experiences. While SOAMiner is still a

prototype, we argue that search, enhanced and specialized for

Services Oriented Architecture can provide useful support to

maintainers of these very heterogeneous applications.

Keywords-Services Oriented Architecture; SOA; Software

Maintenance; Search; Rule-Based Systems.

I. INTRODUCTION

The last decade has seen the emergence of a new
paradigm for large scale software applications often called
Services Oriented Architecture (SOA). While definitions of
SOA vary, the term usually refers to large composite
applications implemented as large-grained services running
on different nodes and communicating by message passing
(see Figure 1). Implementation technologies differ, but often
follow the Web Services interoperability standards.

The SOA architectural style has great potential to achieve
business or social goals through interoperability across
organizational boundaries. As an example of SOA, consider
the CONNECT project, which provides a set of software and
standard interfaces for health information exchanges in the
United States [1]. The goal of CONNECT is to enable health
data to follow a patient wherever he may need treatment.

Figure 1. A SOA composite application with services from three partner

organizations exchanging messages.

However, to achieve such benefits over the long term,
SOA composite applications will have to be maintainable in
a rapidly changing world. Several authors have pointed out
characteristics of SOA that may make maintenance difficult
[2][3][4]. Often, one such characteristic is distributed
ownership, so that different services in the composite
application are operated and maintained by different partner
organizations. Thus, changes to specifications may need to
be negotiated, coordination of updates may be complicated
and the maintainer's information about some services may be
incomplete. The mix of partners may change unpredictably
over the application's lifetime, requiring quick re-engineering
to adapt as services are offered or withdrawn. Critical
security issues may emerge without warning, and it may be
difficult to identify their impacts without knowing how
partner services are implemented.

A traditional stumbling block in all software maintenance
has been the need for program comprehension. The first
question a maintainer must always ask is "how does the
software work now?" Changes made to a software system
without deep understanding can be highly error prone. A
particular maintainer's problem has always been the
delocalized software plan in which the original programmer's

479Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

strategy for addressing some specific issue has been
implemented by related code in several distant program
modules [5]. Subtle faults may be introduced if a maintainer
makes changes in one of these modules in ignorance of
possible effects in others.

In SOA, the delocalization is not confined to a single
executable but may spread across different services which, as
we have seen, may have different owners. While every
service has a published interface, which is sufficient to
invoke it, in practice there are often additional data and
operation sequencing constraints that must be learned by
experience or by study of documentation [6].

There has been a modest amount of recent research on
maintaining SOA applications. Papazoglou, Andrikopoulos,
and Benbernou categorize changes into "deep" and "shallow"
and discuss how to keep services compatible [7]. Several
authors have proposed dynamic analysis approaches that
analyze inter-process messages to pull together a view of
execution across the multiple services. An early tool of this
kind was IBM's Web Services Navigator, which provides
several visualizations of message logs [8]. A later paper from
the same group describes a process that looks more deeply
into message contents to identify data correlations between
different messages [9]. Yousefi and Sartipi propose
analyzing dynamic call trees from distributed execution
traces to identify features in a SOA application [10]. A
different reverse engineering approach, which does not rely
on executing the system, recovers concept maps from the
interface descriptions as a starting point for knowledge
engineering interviews with system experts [11].

Looking for a simpler and more flexible approach, for
some time our group has been researching ways to exploit
the power of modern search techniques and adapt them to the
specific needs of SOA maintainers. The overall project is
called SOAMiner and has gone through a series of
prototyping and exploration phases [12]. In this paper, we
will describe version 2.0 of SOAMiner, which incorporates
the experience from these earlier studies. SOAMiner is built
on top of the Apache Solr™ open-source search platform
[13]. The new version of SOAMiner provides a combination
of conventional text search, specialized search that exploits
the structure of many SOA artifacts, and rule-base
abstraction to provide summarized descriptions of SOA
services and data.

In the next section of this paper, we explain how these
three strategies emerged from our experience in applying
search to SOA. Then, in Section III, we illustrate their
application by showing how SOAMiner can address a
maintenance scenario for a simple SOA composite
application. Finally, in Section IV, we conclude with some
thoughts about SOA and the evolution of SOA systems.

II. SEARCHING SOA ARTIFACTS

In trying to comprehend a SOA composite application, a
maintainer must deal with a bewildering variety of artifacts.
These may include XML documents that describe service
interfaces, source code for service implementations, and any
conventional documentation that a service provider has
chosen to offer. In developing a search strategy for these

different classes of artifacts a key decision is the granularity
of response. If a search returns just the few words that match
the query, then the maintainer will struggle to understand
how these fit into the application as a whole. If a large
volume of surrounding text is also returned, then the
maintainer may be buried in extraneous details. In this
section, we discuss our experiences in searching these
different classes of SOA artifacts and the granularity we
have chosen for each class.

A. Searching XML Artifacts

When SOA is implemented using Web Services, then
much of the information about each service is coded in XML
format as specified in one or more of the Web Services
Standards ([14], Chapter 16). The most common standards
cover Web Services Description Language (WSDL) to
specify how to call a service and XML Schema Definitions
(XSD) to specify the data exchanged in messages. Some
SOA systems also use Business Process Execution Language
(BPEL) which is essentially a programming language
encoded in XML for orchestrating interactions among
services.

The XML artifacts may often be very large; we have seen
extreme WSDL's of over 1 MB and several thousand lines is
not uncommon for an XSD. Such files are often generated by
some tool but it may still be necessary for the maintainer to
study them himself when trying to comprehend a service.
The structure of these files does not facilitate human
navigation.

For example, to identify the data types being used by a
particular service a maintainer needs to read its WSDL
"bottom up", starting from a <service> tag near the end,
locating the <port> tag it contains, navigating from there to a
referenced <binding> tag, which in turn references the
<portType>. From there the <portType> encloses a set of
<operations> with <input> and <output> tags each pointing
to a <message> tag. However, the maintainer is still not
finished because in most cases each <message> simply
references the actual data types, which are either enclosed
within the <types> section near the beginning of the WSDL,
or possibly contained within a completely separate XSD file
[14].

Generic search approaches, such as a text editor's 'find' or
a document-oriented web search engine, do not work very
well on these XML artifacts. Such approaches ignore too
much context because they are unaware of the significance
of XML tag names and of the information conveyed by
element nesting. Figure 2 provides one example showing
how a port type is defined in a WSDL. Element nesting
determines that the messages relate to the operation and the
operation to the port type.

<!-- portType for the InventoryRepository process -->
<portType name="InventoryRepositoryPortType">
 <operation name="checkInventory">
 <input message="tns:InventoryRepositoryRequestMessage" />
 <output message="tns:InventoryRepositoryResponseMessage"/>
 </operation>
</portType>

Figure 2. Portion of a WSDL showing the definition of an operation

within a port type.

480Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

When SOAMiner searches XML, the basic granularity is
the element start tag, so that a search for "checkInventory"
would return just the <operation> tag from Figure 2. If the
system is large, the user can specify a faceted search to limit
the results to a single tag type. As well, in SOAMiner we
also attach to each tag its parent and any children in the
XML document. Thus, if using our search GUI, the user
could hover over that result and see the surrounding
<portType> and the <input> and <output> tags. That
provides the maintainer with a few more hints as to the
context of each search result so he can focus quickly on the
results that are of most interest.

B. Rule-Based Abstraction from XML Artifacts

However, we can do even better than that by exploiting
knowledge about the semantics of the different XML tags
through a process of rule-based abstraction. We have
implemented such abstractions in a component of SOAMiner
called SOAIntel. An expert can specify a set of rules for
SOAIntel to define an abstraction, which summarizes some
characteristic of a class of SOA implementations. For
example, the rules could describe the above mentioned chain
of reasoning to relate the service to the data items in its input
and output messages. The resulting abstraction would be a
compact description of the service, its operations, and their
messages.

Rules are encoded using the DROOLS Expert rule-based
system [15]. SOAIntel uses the rules and the DROOLS
reasoning engine to analyze the XML inputs and produce a
set of abstractions. These abstractions are then loaded into
the SOAMiner index so that they may also be returned by
SOAMiner searches. Thus, a maintainer searching on
"checkInventory" would also find that this operation is part
of a service abstraction named InventoryRepository and thus
see that its messages use an element called inventoryQuery,
etc.

The rule-based abstraction process is very flexible, so
that new rule sets can easily be added to cope with changes
to the Web Services standards or with specific maintenance
needs for any particular class of composite applications [16].

C. Searching Source Code and Documentation

The source code for a SOA service may be in any of a
multitude of languages; in fact one of the objectives of SOA
is to allow services written in one language to invoke
transparently services written in another. In several of the
most common languages, such as Java and C#, much of the
code is commonly generated within an Integrated
Development Environment (IDE). For example, a Java
developer using NetBeans will call a tool called wsimport to
read a WSDL interface description and generate Java classes
for the message data types and a shell service
implementation. The generated code can be rather obscure,
and as well makes use of many Java annotations to guide the
run-time environment as the service executes. While the
availability of generated code greatly reduces the amount of
code a service developer needs to program, it also creates
complex mechanisms that a maintainer may need to learn.

The diversity of source languages and run-time
mechanisms makes it very difficult to develop a general code
search tool with any intelligence. Instead, for now,
SOAMiner falls back on normal text search, to locate lines of
code matching a given query string.

The situation is similar for natural language
documentation, which may be in text, Portable Document
Format (PDF), HyperText Markup Language (HTML) or
some word processor format. In the future, it may be possible
to apply text mining techniques such as text classification
and text clustering to these documents, but for now
SOAMiner relies on general text search, using the facilities
of Apache Tika™ to parse each document format and extract
the text contents [17]. Since lines and even paragraphing
may not be meaningful for all document types, each
SOAMiner search simply returns the entire document
contents.

D. Search semantics for SOA

Software Engineers search software for many reasons,
but two very common ones are concept location [18] and
impact analysis [19]. Concept location has to do with finding
the places in a software system where some particular
concept is addressed. For example, one could ask "where are
font changes handled in this word processor?" and search for
the concept "font" in code, documentation, etc. On the other
hand, impact analysis is concerned with establishing the
scope of a needed change. If, for example, the Software
Engineer has determined that a particular function needs to
be modified, then he needs to look at all the places that
function is called so that he can see what the change may
impact.

One of the observations we made after working with the
first versions of SOAMiner was that the semantics of these
two kinds of search are really quite different. Concept
location will usually use natural language semantics and
most of the techniques used in search engines should be
applied. For example, queries should be stemmed and case
insensitive, so that "font" will match "fonts" or "Font".
Query words should break on punctuation or case changes so
that again "font" will match "font_change" or "fontChange".

However, for impact analysis the rules should be very
different and use identifier semantics. Normally the Software
Engineer will have located a particular variable or function
name, such as "fontChange", and only wants to locate
occurrences of that identifier. A search with natural language
semantics would return all text where either "font" or
"change" appeared, and that would be far too many places to
examine.

The solution adopted in version 2 of SOAMiner is to
provide two alternate indexes, one using natural language
semantics and the other using more restrictive identifier
semantics. The user may choose which to use for any
particular query depending on the results sought.

III. ILLUSTRATIVE EXAMPLE

To provide an example of the power of enhanced search,
we may apply it to a simple SOA composite application
called WebAutoParts.com, a hypothetical on-line automobile

481Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

parts dealer. The owners of WebAutoParts have adopted an
agile development strategy, in which a small amount of
internal code orchestrates commercially available services to
provide needed functionality quickly [20]. WebAutoParts is
an academic system, not a real application, so several of its
components are stubs instead of full code. Still it models the
complexity of a real application since it consists of in-house
services with BPEL and some other code artifacts, WSDL
artifacts that describe external services from well know
vendors (e.g., Amazon Web Services, StrikeIron.com), and
XSD schemas to define data types used in system messages
(see Table I). The application provides an order processing
work flow (see Figure 3) in which incoming orders are first
checked to confirm that inventory is available, then sales tax
and shipping are computed, and finally the order is stored
and a note placed in a message queue to trigger order
fulfillment (packing and shipping).

To illustrate the use of SOAIntel, two rule sets were
written that generate two different kinds of abstractions from
the XML files. The first abstraction is a compact service
summary that shows the service and port type, the operations
in that port type, and the names of the input and output
messages of each operation. For the great majority of
services this summary will obviate the need to step through
the WSDL tag by tag to understand the service interface.

The second rule set generates a data type summary
abstraction that shows the different data items making up a
message. During our earlier studies with the first version of
SOAMiner users requested this kind of summary to help
them navigate the complexities of data typing in SOA [21].
The Web Services standards give developers a wide variety
of ways to define the data in messages, and the definitions
may look very different even if the final message content is
much the same. For example, the data definitions may be in
different places, either in the <types> section of the WSDL
itself, or else located in an associated XSD file.

Figure 3. The WebAutoParts order processing work flow showing

internal (shaded) and external services.

TABLE I. WEBAUTOPARTS ARTIFACTS

File Type Files Lines

WSDL (XML) 6 2433

BPEL (XML) 2 189

XSD (XML) 2 64

JAVA (Code) 6 450

C# (Code) 3 336

Microsoft Word 1 718

HTML 1 374

PDF 1 230

The style of the definition can also vary widely since

developers may use different combinations of XSD
elements, references and complex types to say much the
same thing. (The different design patterns have been given
names such as Russian Doll and Venetian Blind, and each
has its own advantages and drawbacks in terms of re-
usability and visibility [22]). To reduce this confusion our
second rule set extracts a simple list of the data items making
up each message, independent of the location or form of the
definition.

To see how a maintainer could use enhanced search in
studying an application such as WebAutoParts, consider the
following hypothetical scenario. Employees of
WebAutoParts have reported that, occasionally when
packing and shipping an order, an item is found to be out of
stock, even though the order processing workflow showed
that inventory was available. Something in the computation
of stock levels is obviously in error. The problem is passed to
a software engineer for action. Let us suppose that this
software engineer has little previous experience with the
order processing work flow of Figure 3.

Table I enumerates the artifacts that describe
WebAutoParts. There are a total of 10 XML files, 9 code
files and 3 documentation files. These are loaded into the
SOAMiner Solr index using the parsers for XML, code and
documentation respectively.

As always, the software engineer's first question is "How
are stock levels computed now?" He uses SOAMiner to do a
concept location query on "stock". The results are shown in
column A of Table II. Just one documentation file was
located and he picks that as the starting point most likely to
give him an overview of the situation. The documentation
file turns out to provide a general description of order
processing and provides roughly the same information that
readers of this paper have already seen. While it mentions
briefly that stock levels are checked it does not say how. It
does, however, show the overall workflow and indicates
what services participate in it.

TABLE II. RESULTS OF QUERIES ON WEBAUTOPARTS

 Column A

concept location

"stock"

Column B

impact analysis

"numberInStock"

XML tags 2 element tags 2 element tags

Abstractions 2 message data items

abstractions

2 message data items

abstractions

Code lines 13 Java, 6 C# 9 Java, 3 C#

Documentation files 1 Word doc none

482Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

The software engineer next looks at the two abstractions,
which show the data items making up the
InventoryRepositoryRequestMessage and the
InventoryRepositoryResponseMessage. He can see
immediately that these are respectively the input and output
messages of an operation called checkInventory in the
InventoryRepository service. His query on "stock" matched a
data item named "numberInStock" which is contained in
both messages. (Concept location queries use the natural
language semantics index in which words break on changes
of case, so the query word "stock" matches
"numberInStock".)

It seems highly likely that the error involves in some way
the numberInStock data item and the checkInventory
operation. Thus next the software engineer does an impact
analysis query on "numberInStock". The query uses the
identifier semantics index so it will only find exact matches
to that string. The results are shown in Column B of Table II.
The query finds the same two XML tags and message data
items abstractions, but it locates a smaller set of code lines,
reducing the places the software engineer needs to look. The
code lines are in a Java implementation of the
InventoryRepository service and a shell C# implementation
of a test client to that service.

Now that he has the big picture, the software engineer
can start looking at code. Here he can make use of
specialized IDE's for Java or C# having their own very good
search facilities. Combining his overall view of the workflow
with a little analysis reveals a classic "omitted logic"
problem [23]; while InventoryRepository gets the correct
value for the numberInStock at any moment, there is nothing
to prevent a second order from checking that same stock
level before the first has completed order fulfillment, so the
same stock may be committed twice. As often occurs, the
error is not really "in" any particular service, but is a
consequence of implicit assumptions made as the different
services were orchestrated together.

IV. CONCLUSIONS

In this paper, we have argued that Services Oriented
Architectures will not attain their full potential unless these
applications can be rapidly maintained. SOA applications
will need to provide high availability in a world with
changing requirements, shifting partner alliances and
emergent security threats. Their maintainers will need to
gather information quickly to comprehend and respond
correctly to each challenge.

In confronting these challenges, maintainers will need
both good governance and good tools. In SOA, the term
"governance" refers to the set of policies, rules, and
enforcement mechanisms for developing, using, and
evolving SOA-based systems [24]. There is a great danger of
organizations trying to go too far too fast with SOA and
creating composite applications that go beyond the
organization's capacity to maintain. The scope of
applications, the range of implementation technologies and
the rate of requirements creep need to be limited to match
organizational capabilities.

If the organization provides a reasonable governance
framework, then well qualified software engineers with good
tools should be able to do the job. Our SOAMiner is only
intended as one example of the sorts of tools that will be
needed. The current version remains a prototype. There are
some places where it is less precise than we would wish, for
example in the handling of namespaces. The user interface
remains a work in progress. However, we feel that the
flexibility provided by the combination of modern search
with rule-based abstraction is well suited to the changing
world of SOA. The search techniques can be applied to just
about any kind of artifact encountered in a SOA system,
while the abstraction mechanism can leverage a rule base
that grows with experience. Thus, a search tool like
SOAMiner can provide some useful information almost all
the time, and can provide better and better information as
experience grows.

It will be interesting to see how well the SOAMiner
approach scales to real-world SOA. Limited experience with
one larger system indicated that the pure search aspects
provided excellent performance, which was to be expected
since the Solr search engine was developed with large data
sets in mind. The scalability of the rule-based abstractions
may be more problematic. Our limited experience so far is
that performance can depend on how well the rules are
crafted to exploit the DROOLS index structure.

The evolution of SOA systems will never be easy, but
with thoughtful governance, skilled software engineers and
good tools, it should be possible to manage the challenges.

ACKNOWLEDGMENT

Work described in this paper was partially supported by
the University of West Florida Foundation under the Nystul
Eminent Scholar Endowment. Apache, Apache Solr, and
Apache Tika are trademarks of The Apache Software
Foundation. Used with permission. No endorsement by The
Apache Software Foundation is implied by the use of these
marks.

REFERENCES

[1] "What is CONNECT?", Internet:
http://www.connectopensource.org/about/what-is-connect,
link accessed 2014.07.22.

[2] N. Gold and K. Bennett, "Program comprehension for web
services", International Workshop on Program
Comprehension (IWPC'04), June 2004, pp. 151-160, doi:
10.1109/wpc.2004.1311057.

[3] N. Gold, C. Knight, A. Mohan, and M. Munro,
"Understanding service-oriented software", IEEE Software,
Vol. 21, March 2004, pp. 71-77, doi:
10.1109/ms.2004.1270766.

[4] G. Lewis and D. Smith, "Service-Oriented Architecture and
its implications for software maintenance and evolution",
Frontiers of Software Maintenance, FoSM 2008, Sept. 2008,
pp. 1-10, doi: 10.1109/fosm.2008.4659243.

[5] S. Letovsky and E. Soloway, "Delocalized plans and program
comprehension", IEEE Software, vol.3, no.3, May 1986, pp.
41-49, doi: 10.1109/MS.1986.233414.

[6] S. Halle, T. Bultan, G. Hughes, M. Alkhalaf, and R.
Villemaire, "Runtime verification of web service interface

483Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

contracts", IEEE Computer, Vol. 43, March 2010, pp. 59-66,
doi: 10.1109/mc.2010.76.

[7] M. P. Papazoglou, V. Andrikopoulos, and S. Benbernou,
"Managing Evolving Services," IEEE Software, Vol. 28, No.
3, May/June 2011, pp. 49-55, doi: 10.1109/MS.2011.26.

[8] W. De Pauw, et al., "Web services navigator: visualizing the
execution of web services", IBM Systems Journal, Vol. 44,
No. 4, Oct. 2005, pp. 821-845, doi: 10.1147/sj.444.0821.

[9] W. De Pauw, R. Hoch, and Y. Huang, "Discovering
Conversations in Web Services Using Semantic Correlation
Analysis", IEEE 20th International Conference on Web
Services, ICWS'2007, July 2007, pp. 639-646, doi:
10.1109/ICWS.2007.200.

[10] A. Yousefi and K. Sartipi, "Identifying distributed features in
SOA by mining dynamic call trees", IEEE International
Conference on Software Maintenance (ICSM), Sept. 2011,
pp. 73-82, doi: 10.1109/ICSM.2011.6080774.

[11] J. Coffey, T. Reichherzer, B. Owsnick-Klewe, and N. Wilde,
"Automated Concept Map Generation from Service-Oriented
Architecture Artifacts", Proc. of the Fifth Int. Conference on
Concept Mapping CMC2012, Sept. 2012, pp. 49-56.

[12] E. El-Sheikh, et al., "Towards enhanced program
comprehension for service oriented architecture (SOA)
Systems", Journal of Software Engineering and Applications,
Vol. 6, No. 9, Sept. 2013, pp. 435-445, doi:
10.4236/jsea.2013.69054.

[13] "Apache Lucine, Apache Solr", Internet:
https://lucene.apache.org/solr/, link accessed 2014.07.22.

[14] N. Josuttis, SOA in Practice: The Art of Distributed System
Design, O'Reilly, 2007, ISBN: 0-596-52955-4.

[15] "Drools - JBoss Community", Internet:
http://drools.jboss.org/, link accessed 2014.07.22.

[16] G. Goehring, et al., "A knowledge-based system approach for
extracting abstractions from service oriented architecture

artifacts", International Journal of Advanced Research in
Artificial Intelligence (IJARAI), Vol. 2, No.3, 2013, pp. 45-
52, doi: 10.14569/IJARAI.2013.020307.

[17] "Apache Tika", Internet: http://tika.apache.org/, link accessed
2014.07.22.

[18] V. Rajlich and N. Wilde, "The role of concepts in program
comprehension", 10th International Workshop on Program
Comprehension, June 2002, pp. 271-278, doi:
10.1109/WPC.2002.1021348.

[19] M. Petrenko and V. Rajlich, "Variable granularity for
improving precision of impact analysis", International
Conference on Program Comprehension, 2009. ICPC'09, May
2009, pp. 10-19, doi: 10.1109/ICPC.2009.5090023.

[20] N. Wilde, J. Coffey, T. Reichherzer, and L. White, "Open
SOALab: Case study artifacts for SOA research and
education", Principles of Engineering Service-Oriented
Systems, PESOS 2012, June 2012, pp. 59-60, doi:
10.1109/PESOS.2012.6225941.

[21] L. White, et al., "Understanding interoperable systems:
Challenges for the maintenance of SOA applications", 45th
Hawaii International Conference on System Sciences
(HICSS), January 2012, pp. 2199-2206, doi:
10.1109/HICSS.2012.614.

[22] E. Hewitt, Java SOA Cookbook, O'Reilly, 2009, ISBN: 978-
0-596-52072-4.

[23] R. L. Glass, "Persistent software errors", IEEE Transactions
on Software Engineering, Vol. SE-2, No. 2, March 1981, pp
162-168, doi: 10.1109/TSE.1981.230831.

[24] G. Lewis and D. Smith, "Four pillars of service-oriented
architecture", CrossTalk, September 2007, pp. 10-13.
Available from: http://www.crosstalkonline.org/storage/issue-
archives/2007/200709/200709-Lewis.pdf, link accessed
2014.07.22.

484Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

