

UCDMD: Use Case Driven Methodology Development

Hanieh Zakerifard, Raman Ramsin

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

e-mail: hzakeri@ce.sharif.edu, ramsin@sharif.edu

Abstract—Situational Method Engineering (SME) focuses on

project-specific construction of methodologies based on the

characteristics of the project situation at hand. Requirements

Engineering (RE) is considered as a key activity in SME and is

concerned with the elicitation, specification, modeling and

validation of methodology requirements. However, unlike

requirements engineering in software development, the RE

methods currently practiced in SME are still immature, and

methodology engineering has a lot to learn from Software

Engineering (SE) in this regard. Use Cases are widely used in

software engineering to express the functional requirements of

software systems, and the use case model is an effective tool for

capturing stakeholder requirements in a clear and

unambiguous fashion. Despite its potential benefits, the use-

case-based approach has not been used in SME yet. The main

objective of this paper is to propose the UCDMD (Use-Case-

Driven Methodology Development) methodology as a new

object-oriented approach to SME; in this approach,

methodology requirements are completely expressed in terms

of use cases, and are utilized in a SME process for developing

the target methodology. The use-case-driven nature of the

proposed process promotes requirements traceability, and

object-oriented realization of the use cases facilitates the

implementation of CASE tools for the methodology produced.

Keywords-situational method engineering; requirements

engineering; use case modeling; use case-driven development

I. INTRODUCTION

When developing software systems, selecting the
appropriate methodology is always an important issue.
Nevertheless, after using software development
methodologies for decades, developers have realized that
there is no general-purpose methodology that suits every
project situation. The need for project-specific
methodologies has therefore resulted in the emergence of
SME, which is specifically concerned with the
construction/adaptation of a methodology according to the
specific characteristics of the software development project
at hand [1]. As in any development effort, it is important in
SME to perform RE activities precisely, so as to ensure that
the produced methodology satisfies the needs of the target
software development project situation. RE in SME is
concerned with eliciting, specifying and validating the real-
world goals, functional/non-functional requirements, and
constraints of a methodology in a specific project situation
[2]. Although a wide range of RE approaches have been used
in SE, the RE approaches which are used in SME are few
and immature in comparison.

Use case modeling has become a popular technique for
capturing and describing the functional requirements of
software systems [3]. Use case driven SE approaches support
requirements traceability during the development process,
and assist in managing change and evolution [4]. As the use
case model provides a high-level view of the interactions
between the system and its users (actors), it has been
effectively used for capturing the functional requirements of
interactive systems. Use cases are vastly used in object-
oriented software development methodologies [4], which
prescribe various techniques for mapping use cases to their
object-oriented software realizations.

 A software development methodology is akin to a
complicated interactive system in which interaction with the
user plays a pivotal role: A methodology governs the
software development process by prescribing the products
that should be produced and the corresponding activities that
should be performed, and it does all of this by providing
guidance to its users, which mainly consist of managers,
users, developers, and other project stakeholders. A SME
effort is thus faced with the same problems and challenges
which are encountered when developing any other type of
interactive system; use cases are therefore potentially useful
for elicitation and specification of methodology requirements
in SME efforts. Furthermore, just as use cases are mapped to
object-oriented software in software development
methodologies, the use cases produced for methodology
development can be mapped to custom-made software tools
for enacting the target methodology. The target methodology
can therefore be implemented as a methodology-based
CASE tool; this makes the approach very appealing for use
in a Process-centered Software Engineering Environment
(PSEE). Despite their potential benefits, use cases have not
been used for methodology development yet.

We propose UCDMD as a use-case-driven approach to
SME in which requirements are expressed in terms of use
cases, and the target methodology is developed through a
process which prescribes the activities that should be
performed and the products to be produced. Being use-case-
driven means that all the artifacts of UCDMD are produced
in order to realize the use cases; traceability is thus achieved.

The rest of this paper is organized as follows: Section II
provides a brief review on the research background; Section
III explains the proposed UCDMD methodology, and
Section IV provides an example of its enactment; a criteria-
based evaluation of the proposed methodology is presented
in Section V; and Section VI provides the conclusions and
suggests ways for furthering this research.

434Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

mailto:hzakeri@ce.sharif.edu

II. RESEARCH BACKGROUND

Although use cases have not been previously used as a
basis for methodology development, they have been widely
used in process modeling approaches; instances have been
reported in [5][6][7][8][9]. However, this cannot be
considered as use-case-driven SME.

In this section, the concepts and methods on which this
research is based will be introduced. To this aim, we will
first present an overview of RE in SME, and will then briefly
introduce an existing process framework for SME; we have
used this framework as the basis for developing UCDMD.

A. RE in SME

 Since the advent of SME, different approaches have

been proposed for RE in this context: The research reported

by Ralyté [10] presents the roadmap-driven approach in

which process-driven and intention-driven strategies are

used for eliciting the requirements; a criteria-based approach

has been proposed by Ramsin and Paige [11] in which

requirements are identified through a top-down iterative-

incremental process; and the framework proposed by Olsson

et al. [12] is a comprehensive general process for RE in

SME, providing detailed descriptions for the various

activities and techniques prescribed. None of the above RE

approaches is defined as part of a comprehensive SME

process. In contrast, UCDMD is a comprehensive object-

oriented SME process in which requirements (use cases)

play a pivotal role in producing all the deliverables.

B. SME Process Framework

The generic pattern-based process framework for SME,
proposed by Asadi and Ramsin [13], is made up of three
serial Phase process patterns: Method Initiation, Method
Construction, and Deployment (see Fig. 1). The phases of
the framework consist of several Stage patterns along with
their constituent Task patterns. The framework can be
instantiated and configured to fit the SME situation at hand.
We have used this framework for constructing UCDMD.

III. PROPOSED METHODOLOGY – UCDMD

In this section, our proposed UCDMD methodology will
be described in detail. However, before delving into the
particulars of UCDMD, we will first explain how the notion
of use case has been adapted for application in SME.

A. Use Case Driven RE in SME

A use case represents a sequence of interactions between
the system and its actors to achieve a specific functional goal
of the system [14]. It is deeply rooted in the problem domain,
and is understandable to all stakeholders. Use cases are
prevalently used in SE. But in order to utilize them in SME,
we should first devise a mapping between the notion of use
case as used in SE to the notion of use case purposed for
application in SME. In SME, the target product is a
methodology, not a software system in the traditional sense
of the term; methodology actors are the roles in the software
development environment (e.g., developers and managers)
which affect the methodology (e.g., by tuning it or providing

it with information), or are affected (governed) by it; a
methodology use case is an atomic SE activity or task which
is prescribed and governed by the methodology and whose
fulfilment is of value to at least one actor. A methodology’s
use cases are elicited from its users and can be based on the
situational factors of the organization and the project at hand.
However, as in SE, methodology use cases only capture the
functionality expected from the methodology, not its
nonfunctional features (such as seamlessness); furthermore,
methodology use cases describe what a methodology does
without specifying how it does it (in other words,
methodology use cases are not concerned with techniques).

B. Levels of Modeling in UCDMD

Modeling is an integral part of any methodology. In SE
methodologies, different levels of modeling are used for
modeling the implementation-independent aspects of the
system (problem domain) as separate from its
implementation-specific features (solution domain). The
same distinction is true in SME methodologies. However,
there is no established definition for the problem and
solution domains in the SME context. Therefore, the first
step in developing a SME methodology is to define these
domains and the different levels of modeling required (from
Abstract to Concrete: Logical to Physical). We have used the
levels proposed by Agh and Ramsin [15] as a basis for
defining the following three modeling levels for UCDMD:

 Methodology-Type-Independent Level: This level
signifies the problem domain in SME, focusing on the
definition of general methodology requirements and
features, regardless of methodology type (e.g., agile or
plan-driven). Situational factors and use cases are
modeled at this level, comprising the nonfunctional and
functional requirements. General structural and
behavioral modeling of the methodology is also
performed, aiming at realizing the requirements by
developing a general, type-less methodology.

 Methodology-Type-Dependent and Technique-
Independent Level: At this level, the type of the target
methodology is specified, requirements are realized
based on the defined type, and relevant structural and
behavioral models are produced/refined. Even though
the type has been determined, the methodology only
consists of activities and tasks which specify what
should be done. This is because techniques, which
describe how the activities and tasks should be
performed, have been deliberately left out.

 Technique-Dependent Level: The techniques and
technique-dependent elements of the methodology are
added, requirements are realized based on these
elements, and the relevant models are produced/refined.

Figure 1. Generic SME Process Framework – Adapted from [13].

435Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

C. UCDMD Process

UCDMD consists of three serial phases, which in turn
consist of iterative stages (see Fig. 2). The second phase is in
fact UCDMD’s iterative development engine. The phases
and their internal stages will be explained in this subsection.

1) Initiation Phase
The objective of this phase is to provide a solid

foundation for methodology construction. Eliciting and
modeling the requirements and establishing the infrastructure
of the target methodology are the main goals of this phase.

a) Requirements Engineering (Stage)

The aim is to define methodology requirements by
eliciting, modeling, and prioritizing the situational factors
and requirements. The activities are described below:

Capturing domain vocabulary: A glossary is produced of
the main concepts of the problem domain. This document
will help identify the actors, use cases and
structural/behavioral elements of the target methodology.

Eliciting situational factors: Situational factors [16] are
elicited through studying available documents and
interviewing the users of the methodology (e.g., managers
and developers). Documents may include organizational
process documents, documents of the project at hand, and
documents of the target methodology. The situation of the
project is determined by giving values to the situational
factors; these values will be updated based on the
methodology type determined in the next phase. Lists of
candidate situational factors are already available [17].

Mapping situational factors to functional/non-functional
requirements: As situational factors are mainly non-
functional in nature, they are mostly mapped to non-
functional requirements of the target methodology. However,
some situational factors can and will be mapped to specific
functionalities of the target methodology; typical instances
include situational factors which pertain to management
issues, which are typically mapped to umbrella activities.
These functional requirements will be documented to be
used as candidate use cases after conflict resolution.

Resolving conflicts: In this stage, the conflicts that exist
among the requirements are identified and resolved [17].

Identifying use cases: Starting from the initial list of
functional requirements (mapped from situational factors),
actors and use cases of the target methodology are identified
through an iterative process. The process first focuses on
identifying the actors (roles of methodology users); use cases
are then identified/revised based on the expectations of the
actors, resulting in a UML (Unified Modeling Language) use
case diagram [3]. The question that should be asked from
actors to identify their relevant use cases is: “What are the
software development activities that you expect the
methodology to guide you through?” The use cases thus
identified are the SE activities on which the target
methodology should provide instructions and guidelines. Use
cases are therefore constituents of the target methodology.

Prioritizing use cases: Use cases are primarily prioritized
based on business value, and then by the development risks
involved. Use cases and their priorities are iteratively
reviewed and revised during the development process.

Figure 2. UCDMD Process.

Refining use cases: Detailed descriptions of the use cases
are produced which elaborate on their preconditions,
postconditions, actors, and flows of events (steps).

Structuring use case model: Structural relationships
among use cases and actors (generalization/specialization
and include/extend) are identified and added to the model.

Validating use case model: The use case model is
verified and validated by methodology users. The checklist
proposed by Cockburn [14] is very useful for this purpose.

b) Infrastructure Definition (Stage)

The objective of this stage is to determine the
architecture of the methodology and acquire the required
tools. The activities performed in this stage are as follows:

Establishing architecture: Based on the elicited
requirements, a high-level lifecycle is defined for the
methodology. This lifecycle is usually selected from among
existing frameworks. If a specific lifecycle is not requested,
the generic lifecycle proposed by Pressman [18] can be used.

Selecting tools: The tools (e.g., PSEE [16]) required for
developing the methodology are identified and acquired.

2) Development Phase
The objective of this phase is to design and construct the

target methodology. This phase consists of three stages
which develop the methodology through an iterative-
incremental process driven by the use cases.

a) Type-independent Analysis Stage

The aim of this stage is to produce structural/behavioral
models for a general (type-independent) methodology which
satisfies the use cases selected for realization in the current
iteration. The activities of this stage are described below:

Structural modeling: Based on the use cases and non-
functional requirements elicited, a UML class diagram is
produced of the target methodology’s structural elements.
Existing frameworks, such as OPF (OPEN Process
Framework) [19], can be used for identifying the classes.
These analysis classes are of three general types: Work-units,

436Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Products, and Roles (producers); however, many subclasses
of each type are involved in constructing a methodology.
Objects of these classes will interact to realize the use cases.

Behavioral modeling: Behavioral aspects of each use
case are modeled in a UML activity diagram. The activity
diagram is partitioned into swimlanes which correspond to
the structural objects of the methodology (which realize the
use case), and its actors in the context of the use case.

Realizing use cases: For each use case, the object
interaction necessary for realizing the use case should be
modeled in a UML sequence diagram. The swimlaned
activity diagrams previously produced are used as bases for
developing these analysis sequence diagrams.

Determining/Revising order of use cases: It is usually
necessary for the use cases to be executed in a certain,
predefined order. In this case, the order of execution is
modeled in a UML interaction overview diagram.

Testing: The models produced in the current iteration are
tested for completeness, accuracy, consistency, validity, and
conformance to the methodology architecture.

b) Type-dependent Design Stage

The purpose of this stage is to develop a type-dependent
and technique-independent version of the methodology, thus
transitioning to the solution domain.

Determine Methodology Type (Sub-stage)

The aim of this sub-stage is to determine the type of the
target methodology through the following activities:

Determining/Revising methodology type: If the type of
the methodology has not been constrained by its users, it has
to be determined based on the requirements. The type can
connote the methodology’s paradigm (e.g., object-oriented or
agent-oriented), overall strategy (e.g., agile or plan-driven),
design/implementation approach (e.g., component-based or
service-oriented), application domain (knowledge-based or
real-time), or a combination of the above.

Revising methodology infrastructure: The architecture of
the methodology is refined based on the selected type.
Instead of refining the current architecture, the methodology
engineer may choose to replace it with an existing process
framework. For instance, the Object-Oriented Software
Process (OOSP) [20] can be used in case an object-oriented
type is desired, and the framework proposed by Kouroshfar
et al. [21] can be used if a component-based type is targeted.

Methodology-type-dependent Modeling (Sub-stage)

The objective of this sub-stage is to realize the use cases
of the current iteration based on the methodology type,
regardless of the techniques required for implementing the
activities. The tasks of this sub-stage are described below:

 Refining structural model: The analysis class diagram is
refined and extended based on the methodology type,
resulting in a design class diagram.

Realizing use cases (design): The use cases selected for
the current iteration are realized based on analysis sequence
diagrams, the design class diagram, and the new architecture;
design sequence diagrams are thus produced.

Revising order of use cases (design): The interaction
overview diagram is reviewed and revised based on the
design sequence diagrams and the revised architecture.

Testing (design): Design models are tested for
completeness, accuracy, consistency, validity, and
conformance to the new architecture.

c) Implementation (Stage)

The methodology designed in the previous stage consists
of activities which describe what is to be done, but falls short
of specifying how the activities should actually be
performed. The implementation stage is concerned with
specifying the techniques which define how the activities of
the methodology should be carried out. The target
methodology is then constructed based on the specified
techniques so that the use cases are satisfied.

Technique-dependent Modeling (Sub-stage)

The aim of this sub-stage is to determine techniques for
implementing the target methodology’s use cases. The
activities performed in this sub-stage are described below:

Specifying techniques: Techniques are typically chosen
from among those proposed by methodologies/frameworks
which are of the same type as the target methodology; for
instance, a list of agile techniques has been provided by
Abad et al. [17]. Techniques are selected based on the use
cases, non-functional requirements, and available resources.

Refining structural model (implementation): The
structural model of the methodology (class diagram) is
refined and extended based on the techniques introduced,
resulting in the implementation class diagram.

Realizing use cases (implementation): Use cases are
realized based on the design sequence diagrams,
implementation class diagram, and the methodology so far
produced, thus yielding implementation sequence diagrams.

Revising order of use cases (implementation): The
interaction overview diagram is updated based on the added
techniques. The resulting diagram is an extension of the
design version, and should not contradict it in any way.

Method Construction (Sub-stage)

The classes which have so far been defined possess the
final state and behavior necessary for realizing the use cases,
and the sequence diagrams show how instances of specific
classes should interact to realize the use cases. However, the
final methodology should be configured from activities
which correspond to the use cases, and which comprise a
complete methodology that conforms to the defined
architecture. The activities of this sub-stage are as follows:

Determining construction blocks: The structural elements
that should be incorporated into the methodology in the
current iteration are determined. By default, each use case is
mapped to a coarse-grained construction block (activity).
The structural elements (class instances) which should
interact to realize the use case are also considered as
construction blocks; these blocks are typically taken as
internal elements of the activity corresponding to the use
case. The method engineer can also choose to use method
components retrieved from a repository.

Configuring construction blocks: The construction blocks
defined in the previous activity are configured with
appropriate preconditions/postconditions, and their internal
structure is determined: The method engineer should decide
which blocks should be incorporated into other blocks.

437Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Integrating construction blocks into produced
methodology: The construction blocks configured in the
previous activity are integrated with the methodology built
so far. The method engineer decides where each new
construction block should go, and what changes should be
made to facilitate the integration. It should be noted that
multiple instances of the same block may be integrated into
different phases/stages of the methodology.

Identifying reusable blocks: Reusable blocks of the
methodology are identified and stored in a repository.

Testing: All products are tested for accuracy, consistency,
validity, and conformance to the overall architecture.

Implementing supporting software: This activity
produces software support for the methodology, in parallel
with the development of the methodology itself. As
previously observed, since an object-oriented use-case driven
process has been followed for producing the methodology,
the class diagrams and sequence diagrams produced can be
directly used for implementing software support for the
methodology (usually as a methodology-based CASE tool).

Reviewing iteration: Products, plans, and even the
UCDMD process are reviewed and revised. Decision should
be made to either initiate a new iteration (if unrealized use
cases remain), or to proceed to deployment.

3) Deployment Phase
This phase aims to deliver the target methodology to its

intended users, and to maintain it during usage.

a) Delivery (Stage)

The objective of this stage is to deploy the evaluated
methodology to the development environment and conduct
postmortem tasks. The activities are as follows:

Delivering: The produced methodology is delivered to its
end users, ready to be enacted in software development
projects. The necessary manuals and documents are
produced, and training is conducted. The resources necessary
for enacting the methodology (including tool support) are
provided, and support and maintenance plans are produced.

Conducting postmortem: The lessons learnt from the
project, including the problems encountered and their
solutions, are documented for use in future SME projects.

b) Maintenance (Stage)

The purpose of this stage is to resolve the problems
encountered during methodology enactment (corrective
maintenance), to add new features to the methodology upon
request (perfective maintenance), or to adapt the
methodology to the changes made to the development
environment and/or the situational factors (adaptive
maintenance). Changes are applied to the methodology by
executing the relevant stages of the Development phase.

IV. EXAMPLE

In this section, we demonstrate the enactment of parts of
the UCDMD methodology through an example.

In the Initiation Phase, our example starts with
identifying the situational factors and mapping them to
requirements, as shown in Table I. Fig. 3 shows a use case
diagram produced for this set of requirements.

TABLE I. EXAMPLE OF SITUATIONAL FACTORS AND REQUIREMENTS

Degree of formalism required in the methodology
Situational

Factors
Degree of developers’ technical expertise

Technology innovation level of the target system

Maintainability Non-functional

Requirements Risk management

Specify requirements

Functional

Requirements

Break down into tasks

Design architecture

Test

Development

Figure 3. Example of a use case diagram for methodology development.

Use cases are then refined, and detailed descriptions are
provided for each of them. Table II shows the particulars of
the “Break Down into Tasks” use case. An architecture is
then defined for the methodology; we have adopted the
generic lifecycle [18] for our example. An important model
produced in this phase is the interaction overview diagram,
an example of which is shown in Fig. 4.

TABLE II. EXAMPLE OF A USE CASE DESCRIPTION

Use case: Break Down Into Tasks

ID: 3

Brief Description: The goal is to break down the requirements of the

current iteration into fine-grained development (implementation) tasks.

Primary Actors: Analyst

Secondary Actors: None

Preconditions:
- The requirements of the current iteration have been determined.

Main flow:

1. The use case is started when the Analyst requests the requirements of
the current iteration to break them down into fine-grained tasks.

2. Methodology instructs Analyst on how to break down requirements.

3. For each requirement of this iteration:
3.1. Analyst breaks down requirement.

3.2. Methodology instructs Analyst on how to store the tasks.

3.3. Analyst stores the tasks.
3.4. Methodology instructs Analyst on how to evaluate the results.

3.5. Analyst evaluates the results.

Postconditions: Fine-grained tasks are ready for the current iteration.

Alternative Flows:
- Suspend breaking down into tasks.

Figure 4. Example of an interaction overview diagram.

438Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

In the Development phase, type-independent analysis is
first performed. Design models are produced after defining a
type for the methodology: In our example, an agile
methodology has been targeted; therefore, an agile process
framework (from [22]) has replaced the initial architecture.
The design class diagram of our example, and the design
sequence diagram for “Break Down into Tasks”, are shown
in Fig. 5 and Fig. 6, respectively. The methodology is then
implemented based on the design models (see Fig. 7).

V. EVALUATION

In order to gain a better understanding of the merits of
the methodology proposed herein, we have conducted a
criteria-based evaluation of UCDMD; the results are shown
in Table III. The evaluation is based on the following
evaluation criteria, specially designed to check the
methodology for traits which a use-case-driven SME
methodology would be expected to exhibit: Use-case-related
[14], RE-related [2], general methodology-related [23], and
SME-related [15]. It can be observed that UCDMD satisfies
most of the criteria, faring especially well in the use-case-
related, RE-related and SME-related categories.

VI. CONCLUSION AND FUTURE WORK

Using an object-oriented, use-case-driven approach for
SME is a step forward; due to their functional nature, use
cases can be mapped to the coarse-grained activities which
form a methodology. On the other hand, using the object-
oriented paradigm provides SME with the numerous benefits
that the approach entails, including enhanced reusability,
encapsulation, and flexibility. Moreover, our approach is also
beneficial in facilitating the provision of tool support: The
models produced can be directly used for implementing
bespoke software support for the methodology.

Figure 5. Example of a design class diagram.

Figure 6. Example of a design sequence diagram.

Figure 7. Example of an implemented methodology (lifecycle view).

Future work can be focused on applying UCDMD in an
industrial-scale SME project. A parallel strand can proceed
with refining and enhancing the tool production features of
the approach. Future research can also focus on classifying
the use cases typically encountered in SME projects.

ACKNOWLEDGMENT

We wish to thank Mr. Mohammad Reza Besharati for

reviewing the Example and Evaluation sections.

REFERENCES

[1] J. Ralyté, S. Brinkkemper, and B. Henderson-Sellers, Situational
Method Engineering: Fundamentals and Experiences. Springer, 2007.

[2] O. Jafarinezhad and R. Ramsin, “Development of Situational
Requirements Engineering Processes: A Process Factory Approach,”
Proc. IEEE Computer Software and Applications Conf. (COMPSAC
12), 2012, pp. 279–288, doi: 10.1109/COMPSAC.2012.39.

[3] H. Gomaa, Software Modeling and Design: UML, use cases, patterns,
and software architectures. Cambridge University Press, 2011.

[4] R. Ramsin and R.F. Paige, “Process-centered review of object-
oriented software development methodologies,” ACM Comput. Surv.,
vol. 40, Feb. 2008, pp. 1–89, doi: 10.1145/1322432.1322435.

[5] B. Westfechtel, Models and Tools for Managing Development
Processes. Springer, 1999.

[6] H. Johnson, “An approach to software project management through
requirements engineering,” M.Sc. Thesis, Texas Tech University,
2010.

[7] C. Hug, A. Front, D. Rieu, and B. Henderson-Sellers, “A Method to
Build Information Systems Engineering Process Metamodels,” J.
Syst. Softw., vol. 82, Nov. 2009, pp. 1730–1742, doi:
10.1016/j.jss.2009.05.020.

[8] M.D. Taufan, “Method Management System: Rule-Based Method
Enactment Using MediaWiki and Semantic MediaWiki,” M.Sc.
Thesis, Radboud University Nijmegen, 2011.

[9] F. Karlsson and K. Wistrand, “Combining method engineering with
activity theory: theoretical grounding of the method component

439Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6340157
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6340157

concept,” Eur. J. Inf. Syst., vol. 15, Jan. 2006, pp. 82–90, doi:
10.1057/palgrave.ejis.3000596.

[10] J. Ralyté, “Requirements definition for the situational method
engineering,” Proc. Conf. Engineering Info Systems in the Internet
Context, 2002, pp. 127–152, doi: 10.1007/978-0-387-35614-3_9.

[11] R. Ramsin and R.F. Paige, “Iterative criteria-based approach to
engineering the requirements of software development
methodologies,” IET Software, vol. 4, Feb. 2010, pp. 91–104, doi:
10.1049/iet-sen.2009.0032.

[12] T. Olsson, J. Doerr, T. Koenig, and M. Ehresmann, “A Flexible and
Pragmatic Requirements Engineering Framework for SME,” Proc.
International Workshop on Situational RE Processes, 2005, pp. 1–12.

[13] M. Asadi and R. Ramsin, “Patterns of Situational Method
Engineering,” Proc. Software Engineering Research, Management
and Applications Conf. (SERA 09), 2009, pp. 277–291, doi:
10.1007/978-3-642-05441-9_24.

[14] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001.

[15] H. Agh and R. Ramsin, “Pattern-Based Model Transformation
Method for Applying Model-Driven Development to Method
Engineering,” unpublished, 2014.

[16] B. Henderson-Sellers and J. Ralyté, “Situational Method Engineering:
State-of-the-Art Review,” Journal of Universal Computer Science,
vol. 16, Feb. 2010, pp. 424–478, doi: 10.1.1.165.7993.

[17] Z. Shakeri Hossein Abad, M. Hasani Sadi, and R. Ramsin, “Towards
tool support for situational engineering of agile methodologies,” Proc.
International Asia-Pacific Software Engineering Conf. (APSEC 10),
2010, pp. 326–335, doi: 10.1109/APSEC.2010.45.

[18] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 7th
ed. McGraw-Hill, 2009.

[19] D. Firesmith and B. Henderson-Sellers, The OPEN Process
Framework: An Introduction. Addison-Wesley, 2001.

[20] S.W. Ambler, Process patterns: Building large-scale systems using
object technology. Cambridge University Press, 1998.

[21] E. Kouroshfar, H. Yaghoubi Shahir, and R. Ramsin, “Process patterns
for component-based software development,” Proc. International
Symp. Component-Based Software Engineering (CBSE 09), 2009,
pp. 54–68, doi: 10.1007/978-3-642-02414-6_4.

[22] S. Tasharofi and R. Ramsin, “Process patterns for agile
methodologies,” in Situational Method Engineering: Fundamentals
and Experiences, J. Ralyté, S. Brinkkemper, and B. Henderson-
Sellers, Eds. Springer, 2007, pp. 222–237, doi: 10.1007/978-0-387-
73947-2_18.

[23] M. Taromirad and R. Ramsin, “CEFAM: Comprehensive Evaluation
Framework for Agile Methodologies,” Proc. IEEE Software
Engineering Workshop (SEW 08), 2008, pp. 195–204, doi:
10.1109/SEW.2008.19.

TABLE III. RESULTS OF CRITERIA-BASED EVALUATION

UCDMD Evaluation Possible Values Criterion Definition Criterion Name

Yes Yes/Partially/No
Is it possible to describe all functional requirements as use

cases?
Descriptive potential

U
se

-C
as

e-
R

el
a

te
d

 E

v
a

lu
a

ti
on

 C
ri

te
ri

a

Yes Yes/No Are the work-products traceable to use cases? Use case traceability

Yes (activity diagrams) Yes (techniques), No Are use case steps modeled? Flow modeling

Yes Yes/No Is the use case model reviewed/revised during the process? Review and revision

Yes Yes/No Can the actors be mapped to different roles/teams?
Mapping of actors to

roles/teams

Yes Yes/No
Are any specific patterns/guidelines provided for applying

the use cases in SME?
Applicability

Business value, Development

risk

Architectural value,
Functional value, Business

value, Development risk

On what bases are the requirements prioritized?
Requirements

prioritization

R
eq

u
ir

em
en

ts
-E

n
g

in
ee

ri
n

g
-

R
el

a
te

d
 E

v
a

lu
a

ti
on

 C
ri

te
ri

a

Yes (driven by use cases) Yes (techniques), No Is the development process based on the requirements? Basis in requirements

Yes (use cases are updated at
the start of each iteration)

Yes (techniques), No
Does the development process allow changes to the
requirements?

Requirements change

Mapping to functional

requirements, methodology
type, or techniques

Mechanisms How are the non-functional requirements realized?
Realization of

non-functional

requirements

Explicitly Explicitly, Implicitly, No
Does the methodology explain the details of the development
process?

Process definition

G
en

er
a

l
M

et
h

od
o

lo
g

y
-R

el
a

te
d

E
v

a
lu

a
ti

on
 C

ri
te

ri
a

Yes (traceability, continuous

verification/validation,

iterative process)

Yes (techniques), No Does the methodology support quality assurance activities? Quality assurance

Yes (continuous verification/

validation, iterative process)
Yes (techniques), No Does the methodology support risk management techniques? Risk management

Yes (through reviews at the

end of each iteration)
Yes (how), No

Does the methodology allow the process and modeling

language to be tuned during its execution?
Flexibility

Yes (models facilitate the
implementation of tools)

Yes (how), No Is tool support provided or facilitated? Tool support

Yes Yes, No Can the products be traced to situational factors?
Traceability to

situational factors

S
M

E
-R

el
a

te
d

E
v

a
lu

a
ti

on
 C

ri
te

ri
a

Analysis, Design,

Implementation, Test,
Deployment, Maintenance

Analysis, Design,

Implementation, Test,
Deployment, Maintenance

Which phases of the generic lifecycle are covered by the

development process?

SME lifecycle

coverage

Assembly-Based, Extension-
Based, Paradigm-Based

Assembly-Based, Extension-

Based, Paradigm-Based,

Hybrid, Roadmap-Driven

Which SME approaches/strategies [16] are supported by the
development process?

Support for SME

strategies

440Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://www.informatik.uni-trier.de/~ley/pers/hd/r/Ralyt=eacute=:Jolita.html
http://www.informatik.uni-trier.de/~ley/db/journals/jucs/jucs16.html#Henderson-SellersR10
http://www.informatik.uni-trier.de/~ley/db/journals/jucs/jucs16.html#Henderson-SellersR10
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5693209
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5693209

