
Linking E-Mails and Source Code Using BM25F

Raffaele Branda, Anna Tolve, Licio Mazzeo, and Giuseppe Scanniello
University of Basilicata, Potenza, ITALY

Email: raf.bran@gmail.com, anna.tolve@tiscali.it, licio.mazzeo@gmail.com, giuseppe.scanniello@unibas.it

Abstract—Existing approaches to recover links between e-
mails and software artifacts are based on text search or text
retrieval and reformulate link recovery as a document retrieval
problem. We refine and improve such solutions by leveraging
the parts of which an e-mail is composed of: header, current
message, and previous messages. The relevance of these parts is
weighted by a probabilistic approach based on text retrieval. We
implemented our novel solution exploiting the BM25F model. The
results of an empirical study conducted on a public benchmark
indicate that the new approach in many cases outperforms the
baseline approaches chosen. In addition, the proposed approach
is easy to use and it is accurate enough to be worth the costs it
may introduce in the corpus preprocessing and indexing.

Keywords - Empirical Study; Probabilistic Approach;
Traceability Recovery

I. INTRODUCTION

Maintenance operations are carried out for several reasons
and are typically classified as corrective, perfective, and adap-
tive [1]. Whatever is the maintenance operation, the greater
part of the cost and effort is due to the comprehension of
source code [2]. Pfleeger and Atlee [3] estimated that up to
60% of software maintenance is spent on the comprehension
of source code. There are several reasons that make source
code comprehension even more costly and complex and range
from the size of the subject software to its overall quality.
Other reasons are related to the knowledge of a subject system
that is implicitly expressed in software artifacts (i.e., models,
documentation, source code, e-mails, and so on) [4]. This
knowledge is very difficult to retrieve and it is very often
enclosed in non-source artifacts [5].

Among non-source artifacts, those composed of free-form
natural language (e.g., documentation, wikis, forums, e-mails)
are intended to be read by stakeholders with different experi-
ence and knowledge (e.g., managers, developers, testers, and
end-users). This kind of artifacts often implicitly or explicitly
references to other forms of artifacts, such as source code
[6]. Linking e-mails and source code could improve software
comprehension and could help to understand the justification
behind decisions taken during the design and development [7].
Then, links between e-mails and source code are worthwhile
within the entire software lifecycle and in software mainte-
nance, in particular (e.g., [4], [8]).

Several approaches have been proposed to recover links
among software artifacts (e.g., [9], [10], [11]). Only a couple
of them are concerned with e-mails [12], [13] and can be
classified as: rule-based and Information Retrieval (IR) based.

Rule-based. To detect latent links between emails and
source code entities hand-code specific rules (i.e., sets of
regular expressions) have to be specified. These rules are in
turn triggered whenever they match with a portion of email

text (e.g., [6]). For example, if the identifiers in the source
code repository follows the CamelCase naming convention,
we basically know that each identifier is either a single or a
compound name (i.e., a sequence of unseparated single names).
In the case of class names, all the single names start with a
capital letter. Therefore, we can define a regular expression
so that every time we find a string in an e-mail of the form
Foo, FooBar, FooBarXYZ, etc., we can mark it as a link
between the source code and the e-mail. This kind of approach
is computationally lightweight for small/medium corpora (e.g.,
repositories with a small number of e-mails) and easy to
implement. Conversely, they lack of flexibility since they are
strictly programming-language-dependent. Even more, they do
not provide any ranking score associated with the discovered
link (i.e., information about a link is binary: a link is either
present or not).

IR-based. These approaches reformulate the problem as
a particular instance of the more general document retrieval
problem. They use IR techniques to compare a set of source
artifacts (software entities) with a set of target artifacts (e-
mails). Each source code entity (e.g., the class name) is used
as the query to retrieve the set of most relevant e-mails.
Candidate links are then devised by inspecting the ranked list
of retrieved e-mails. Relevance between any pair of source
and target artifacts (i.e., source code entity and email) can
be determined by their textual/lexical similarity, which is
computed by using a specific IR model in conjunction with
a particular term-weighting score (e.g., cosine similarity using
tf-idf vector space model) [14]. The main advantage of IR-
based approaches is that they are more flexible and associate
each discovered link with a ranking score.

In this paper, we propose an IR-Based approach that refines
and improves existing solutions by leveraging the parts of
which an e-mail is composed of, namely the header, the
current message (from here on, body), and the sentences from
previous messages (quote). The relevance of these parts has
been weighted by means of a text retrieval probabilistic model.
In particular, we implemented our novel solution exploiting
the BM25F model [15], [16]. This model is based on a term
weighting scheme which takes into account the fact that semi-
structured documents from a corpus can be composed of fields
[17]. These fields differently contribute to the representation
of documents and then to the accuracy of the links retrieved.
To assess the validity of our proposal, we have conducted
an empirical study on the public benchmark proposed by
Bacchelli et al. [12].

Structure of the paper. We illustrate our approach in
Section II. In Section III, we present the design of the empirical
evaluation, while we discuss the achieved results in Section IV.
Final remarks conclude the paper.

271Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

II. THE APPROACH

IR-based traceability recovery approaches reformulate
traceability recovery as a document retrieval problem. We
refine and improve such solutions by leveraging header, body,
and quote of e-mails. We describe the steps of our approach
in the following subsections.

A. Creating a Corpus

Each e-mail results in one document in the corpus. Each
document has three well defined fields: header, body, and
quote. The header field contains the subject of an e-mail,
while the body the sentences of the current message. All
the sentences from previous messages are within the quote
field. In particular, it includes a chain of messages (e.g.,
ideas, opinions, issues, or possible solutions) exchanged among
stakeholders (mostly developers) linked in the sequence in
which they espoused that discussion. We also consider the
quote because IR approaches produce better results when a
huge amount of lexical information is available [14]. Moreover,
the body and the quote fields are separately considered since
the lexical information within the body is on the current focus
of a discussion, while the quote field includes text that might
provide useful information on the entire discussion thread.

B. Corpus Normalization

The corpus is normalized: (i) deleting non-textual tokens
(i.e., operators, special symbols, numbers, etc.), (ii) splitting
terms composed of two or more words (e.g., first_name
and firstName are both turned into first and name),
and (iii) eliminating all the terms within a stop word list
(including the keywords of the programming languages: Java,
C, ActionScript, and PHP) and with a length less than three
characters. We applied these normalization rules because they
have been widely applied in IR-based traceability recovery
approaches (e.g., [11]).

Splitting identifiers could produce some noises in the
corpus. For example, if the name of a class is FileBuffer,
it is possible that a software engineer talks about FileBuffer
in an e-mail rather than File and Buffer. However, if the
identifiers are not split the things could go from bad to worse:
the class name is not in the text of the e-mails (e.g., [12]
and [13]), while that name is used as the query. To deal with
this issue, we apply the same normalization process on both
the corpus and the queries and use the “AND” operator to
formulate each query.

Differently from the greater part of the traceability recovery
approaches (e.g., [9], [11]), we did not apply any stemming
technique [14] to reduce words to their root forms (e.g., the
words designing and designer have design as the
common radix). This is because we experimentally observed
that the use of a Porter stemmer [18] led to worse results. Also,
in [12] the stemming was not used for similar reasons.

C. Corpus Indexing

We adopt here a probabilistic IR-based model, namely
BM25F [15]. This model extends BM25 [16] to handle
semistructured documents from a corpus. The BM25 model
was originally devised to pay attention to term frequency and

document length, while not introducing a huge number of
parameters to set [19]. BM25 showed very good performances
[16] and then widely used specially in web document retrieval
applications [17], [20]. BM25F was successively proposed to
build a term weighting scheme considering the fact that doc-
uments from a corpus can be composed of fields (e.g., [17]).
Each document is in the corpus and contains information on
the contained fields. Then, the fields of a document differently
contribute to the document representations. We used BM25F
because it has been successfully used on very large corpuses
[20] in terms of both scalability and quality of retrieved
documents [21]. The use of other probabilistic models could
lead to different results. This point is subject of future work.

In both “vector space” and “probabilistic” IR methods,
an information retrieval scheme is built for considering each
document as a point in a multi-dimensional geometrical space.
Therefore, BM25F is based on the bag-of-words model, where
each document in the corpus is considered as a collection of
words disregarding all information about their order, morphol-
ogy, or syntactic structure. A word could appear in different
fields of the same document. In this case, that word is dif-
ferently considered according to the field in which it appears.
Applying BM25F, each e-mail in the corpus is represented by
an array of real numbers, where each element is associated
to an item in a dictionary of terms. BM25F does not use a
predefined vocabulary or grammar, so it can be easily applied
to any kind of corpora.

BM25F works on the occurrence of each term in the fields
of all the documents in the corpus. These occurrences are used
to build a term-by-document matrix. In the current instantiation
of this step we modified the original definition of BM25F to
better handle the problem at hand. In the model, a generic
entry of the table is computed as follows:

id f (t,d) = log(
N−d f (t)+0.5

d f (t)+0.5
+1)∗weight(t,d) (1)

where N is the total number of documents in the corpus, while
d f is the number of documents where the term t appears.
The weight of the term t with respect to the document d is
computed by weight(t,d) as follows:

weight(t,d) = ∑
c in d

occursd
t,c ∗boostc

((1−bc)+bc ∗ lc
avlc

)
(2)

lc is the length of the field c in the document d; avlc is the
average length of the field c in all the documents; and bc is
a constant related to the field length; and boostc is the boost
factor applied to the field c. occursd

t,c is the number of terms
t that occur in the field c of the document d. This equation is
dependent on the field and document relevance and it is similar
to a mapping probability. This is because BM25F is considered
a probabilistic IR-based model. Regarding the constants of (1),
we chose 0.75 as the value for bc, while 1 is the boost value
applied to each field (i.e., header, body, and quote). These
values were experimentally chosen and are customary in the
IR field [21].

In the original definition of BM25F [20], if a term occurs
in over half the documents in the corpus, the model gives
a negative weight to the term. This undesirable phenomena
is well established in the literature [14]. It is rare in some

272Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

applicative contexts, while it is common in others as for an
example in the recovery of links between e-mails and source
code. In such a context, in fact, e-mails quote sentences from
previous messages and then the difference among e-mails (in
the same discussion thread) is not that great with respect to
the terms contained. To deal with this concern, we modified
the computation of id f . The adopted solution is that shown in
the equation (1), which is based on that suggested in [22]. The
main difference with respect to the canonical computation of
id f is that 1 is added to the argument of the logarithm.

D. Query Formulation

In the traceability recovery field, source artifacts are used
as the query [9]. The number of queries is then equal to the
number of source artifacts. In this work, we used source code
entities as the source artifacts and applied the following two
instantiations for Query Formulation: (i) class names and (ii)
class and package names. We opted here for that solution
because we wanted to compare our novel approach with some
baselines (included those in [12]) on a public benchmark [13].
In addition, this solution allowed us to automatically formulate
“semi-structured” queries directly parsing the source code1.

The queries are normalized in the same way as the corpus.
When the textual query is composed of more than one term
(e.g., ArgoStatusBar), the boolean operator “AND” is used
with the individual terms of that query (Argo, Status, and
Bar). This implies that all the individual terms have also to
exist anywhere in the text of a document.

E. Ranking Documents

For a probabilistic IR method, the similarity score between
a query with a document in the corpus is not computed by
the cosine similarity, but by a different formula motivated by
the probability theory [14]. In this work, we used a formula
based on a non-linear saturation to reduce the effect of term
frequency. This means that the term weights do not grow
linearly with term frequency but rather are saturated after a
few occurrences:

score(q,d) = ∑
t in q

id f (t)∗ weight(t,d)
k1 +weight(t,d)

(3)

where q is the textual query and d is a document in the corpus.
The values for id f (t) and weight(t,d) are computed as shown
in the equations (1) and (2), respectively. The parameter k1
usually assumes values in the interval [1.2,2]. We used 2 as
the value because experiments suggested that it is a reasonable
value [14] to maximize retrieval performances.

F. Examining Results

A set of source artifacts is compared with set of target arti-
facts (even overlapping). Then, all the possible pairs (candidate
links) are reported in a ranked list (sorted in descending order).
The software engineer investigates the ranked list of candidate
links to classify them as actual or false links.

1Different kinds of queries can be formulated automatically or not. For
example, the source code content could be also used as the query. We
experimentally observed that the use of this kind of query leads to worse
results with respect to the other two kinds of query we prose here. Therefore,
we did not consider this instantiation for the Query Formulation step. This
result is in line with that of Bacchelli et al. [12].

III. EMPIRICAL EVALUATION

Based on the above instantiation of our approach, we
implemented an Eclipse plug-in, named Linking e-mAils and
Source COde (LASCO). This plug-in has been described in a
previous tool demo paper [23]. To asses both the approach
and the plug-in, we conducted an empirical study (i.e., an
experiment). The presentation of that study is based on the
guideline suggested in [24].

A. Definition

As suggested in [24], the goal of our study has been
defined using the Goal Question Metrics (GQM) template [25]:
Analyze traceability recovery links between e-mails and source
code for the purpose of evaluating the use of BM25F on
header, body, and quote with respect to the accuracy of the
retrieved links from the point of view of the researcher and
the practitioner in the context of open source systems.

To this end, we then formulated and investigated the
following research question: Does our proposal outperform
baseline approaches based on text search or text retrieval
methods? We considered in this study the following baselines:

1. BM25F with the “OR” operator: We apply the BM25F
model and the “OR” operator in the step Query Formulation.
The Corpus Indexing step is executed by considering the e-
mails as composed of header, body, and quote. The only
difference with respect to our proposal is that the “OR”
operator is used against the “AND” operator;
2. BM25F considering body and quote together: We apply
the BM25F model and the operators “AND” and “OR”. Fur-
thermore, the Corpus Indexing step is performed considered
two fields: (i) header and (ii) body and quote together;
3. Lucene with “AND” and “OR” operators: In the Corpus
Indexing step, we use Lucene. It uses a combination of Vector
Space Model (VSM) and the Boolean model to determine how
relevant a document is to a query. We here apply both the
operators “AND” and “OR”. Since Lucene is based on VSM,
more times a query term appears in a document relative to the
number of times the term appears in all the documents in the
corpus, the more relevant that document to the query is;
4. VSM: It represents the documents in the corpus as term
vectors, whose size is the number of terms present in the
vocabulary. Term vectors are aggregated and transposed to
form a term-document matrix. To take into account the rel-
evance of terms in each document and in all the corpus, many
weighting schema are available. In our empirical evaluation,
we employed the tf-idf (term frequency - inverse document
frequency) weighting;
5. LSI: Even for a corpus of modest size, the term-document
matrix is likely to have several tens of thousand of rows
and columns, and a rank in the tens of thousands as well.
LSI is an extension of VSM developed to overcome the
synonymy and polysemy problems [26]. SVD (Singular Value
Decomposition) is used to construct a low-rank approximation
matrix to the term-document matrix [27]. In LSI there is no
way to enforce Boolean conditions [14];
6. Lightweight linking technique (LLT) - case sensitive
(CS): To reference software entities from e-mails, the names
of the software entities are used as text search queries. There
exists a link between a software entity and an e-mail, when

273Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

there is a case sensitive match on the entity name;
7. LLT - mixed approach (MA): In case the name of
software entities are compounded words, they are split (e.g.,
ClassName becomes Class Name). The compounded
words are then used for the case sensitive match on the entity
name, otherwise it is used a regular expression based on class
and package name;
8. LLT - MA with regular expression (RE): This approach
is based on that above. A different regular expression is
used to better handle non-Java systems. Further details about
Lightweight linking techniques can be found in [12].

The baselines from 1 to 5 are different instantiations of
the recovery process shown in Section II, while the others are
lightweight approaches based on regular expressions. In all the
IR-based baseline approaches, with the exception of the first
and second one, the corpus was indexed considering together
header, body, and quote.

B. Planning

1) Context: Many IR-based traceability recovery ap-
proaches depend on users’ choices: the software engineer
analyzes a subset of the ranked list to determine whether each
traceability link has been correctly retrieved. It is the software
engineer who makes the decision to conclude this process.
The lower the number of false traceability links retrieved,
the better the approach is. The best case scenario is that all
the retrieved links are correct. IR-based traceability recovery
methods are far from this desirable behavior [9]. In fact, IR-
based traceability recovery approaches might retrieve links
between source and target artifacts that do not coincide with
correct ones: some are correct and others not. To remove
erroneously recovered links from the candidate ones, a subset
of top links in the ranked list (i.e., retrieved links) should be
presented to the software engineer. This is possible by selecting
a threshold to cut the ranked list (e.g., [11], [28]).

There are methods that do not take into account the
similarity between source and target artifacts: Constant Cut
Point, it imposes a threshold on the number of recovered
links, and Variable Cut Point, it consists in specifying the
percentage of the links of the ranked list to be considered
correctly retrieved. Alternative possible strategies for threshold
selection are based on the similarity between source and target
artifacts: Constant Threshold, a constant threshold is chosen,
Scale Threshold, a threshold is computed as the percentage
of the best similarity value between two vectors, and Variable
Threshold, all the links among those candidate are retrieved
links whether their similarity values are in a fixed interval. In
our experiment, we used the Constant Threshold method. This
is the standard method used in the literature [9]. We applied
this method employing thresholds assuming values between 0
and 1. The increment used was 0.01.

For each software entity, the Query Formulation step was
instantiated using either the original class name or the concate-
nation of class and package names. Many of the design choices
have been taken because our main goal was to compare the
results of our solution with those presented in [12].

2) Variable selection: The traceability links retrieved by
applying both our approach and the baselines are analyzed
in terms of correctness and completeness. Correctness reflects

the fact that an approach is able to retrieve links that are
correct. To measure the correctness, we used (as custom-
ary) precision (precision = |T P|

|T P|+|FP|). On the other hand,
completeness reflects how much the set of retrieved links is
complete with respect to the all actual links. Recall is used
to measure this aspect (recall = |T P|

|T P|+|FN|). where T P (true
positives) is the set of links correctly retrieved. The set FN
(false negatives) contains the correct links not retrieved, while
FP (false positives) the links incorrectly presented as correct.

When the e-mails in the benchmark do not have any
reference to source code artifacts, the union of T P and FN
is empty (i.e., |T P|+ |FN|= 0). In all these cases, we cannot
calculate the values for the recall measure. The values for
precision could not be computed in case the approach found
no link between an e-mail and the source code. Similar to
[12], we avoided these issues calculating the average of |T P|,
|FP|, and |FN|, on the entire dataset. We then computed the
average values for precision and recall. Precision and recall
assume values in the interval [0,1]. The higher the precision
value, the more correct the approach is. Similarly, the higher
the recall value, the better the approach is.

To get a trade-off between correctness and completeness,
we applied the balanced F-measure (i.e., F1 =

2∗precision∗recall
precision+recall).

F1 was used to estimate the accuracy of the approach. This is
the main criterion we considered in the study. This measure has
values in the interval [0,1]. When comparing two approaches,
the one with higher F1 value is considered the best, namely
the most accurate.

3) Instrumentation: To estimate our approach and to com-
pare it with the baselines, we used the benchmark proposed
in [13]. For each system and all the threshold values, we
computed the values of precision, recall, and F1. To compare
our approach with the baselines, we selected the constant
threshold that produced the best accuracy.

IV. RESULTS AND DISCUSSION
A. Results

The results achieved by applying our approach are shown in
Table I. The table also reports the results achieved by applying
the “OR” operator. The results are grouped according to the
two different instantiations of the step Query Formulation: (i)
class name and (ii) class and package names. The last row
reports the average values for each measure. Better average
accuracy was achieved using class and package names and the
“AND” operator (F1 = 0.44). With respect to each individual
system, we obtained the higher accuracy for Habari, namely
the system implemented in PHP (F1 = 0.59). On that system,
the higher value of correctness was also obtained (precision =
0.77). It is worth mentioning that the results for that system are
the same both using class name alone and class and package
names together. This is because PHP 5 did not have packages.
Namespaces (i.e., packages) where only introduced in PHP
5.3. The same held for Augeas (the C software system).

Table II shows the results achieved by indexing the corpus
using: (i) header and (ii) body and quote together. With respect
to accuracy, better results were achieved using the operator
“AND” and class and package names. The best average accu-
racy value was 0.41. Among the analyzed software systems,
the best accuracy was obtained for Habari (F1 = 0.61).

274Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

TABLE I. BM25F RESULTS INDEXING THE CORPUS USING: (i) HEADER, (ii) BODY, AND (iii) QUOTE
Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names + “OR”

System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.32 0.53 0.40 0.05 0.55 0.10 0.41 0.72 0.52 0.04 0.48 0.07
Freenet 0.23 0.49 0.31 0.03 0.23 0.06 0.30 0.52 0.39 0.02 0.40 0.05
JMeter 0.32 0.41 0.36 0.10 0.41 0.16 0.49 0.62 0.55 0.06 0.43 0.10

Away3D 0.31 0.51 0.39 0.15 0.24 0.18 0.39 0.44 0.41 0.12 0.24 0.16
Habari 0.77 0.48 0.59 0.29 0.35 0.32 0.77 0.48 0.59 0.29 0.35 0.32
Augeas 0.12 0.27 0.16 0.04 0.32 0.08 0.12 0.26 0.16 0.04 0.32 0.08

Average value 0.35 0.45 0.37 0.11 0.35 0.15 0.41 0.51 0.44 0.10 0.37 0.13

TABLE II. BM25F RESULTS INDEXING THE CORPUS USING: (i) HEADER AND (ii) BODY AND QUOTE TOGETHER
Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names + “OR”

System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.34 0.51 0.41 0.07 0.58 0.12 0.40 0.46 0.43 0.05 0.55 0.09
Freenet 0.22 0.54 0.31 0.08 0.45 0.14 0.29 0.62 0.40 0.07 0.5 0.13
JMeter 0.29 0.45 0.36 0.14 0.41 0.21 0.34 0.66 0.45 0.12 0.45 0.19

Away3D 0.29 0.76 0.42 0.21 0.24 0.22 0.37 0.44 0.40 0.16 0.23 0.19
Habari 0.74 0.52 0.61 0.46 0.45 0.46 0.74 0.52 0.61 0.46 0.45 0.46
Augeas 0.11 0.35 0.17 0.10 0.17 0.13 0.11 0.35 0.17 0.06 0.35 0.10

Average value 0.33 0.52 0.38 0.18 0.38 0.21 0.38 0.5 0.41 0.15 0.42 0.19

TABLE III. LUCENE RESULTS
Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names+ “OR”

System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.32 0.50 0.39 0.06 0.50 0.11 0.39 0.47 0.43 0.03 0.53 0.06
Freenet 0.20 0.59 0.30 0.07 0.47 0.11 0.27 0.64 0.38 0.05 0.56 0.10
Jmeter 0.27 0.46 0.34 0.10 0.36 0.15 0.34 0.70 0.46 0.07 0.49 0.13

Away3D 0.29 0.77 0.42 0.17 0.22 0.19 0.37 0.44 0.40 0.13 0.24 0.17
Habari 0.61 0.55 0.58 0.45 0.40 0.43 0.61 0.55 0.58 0.45 0.40 0.42
Augeas 0.10 0.27 0.15 0.05 0.21 0.08 0.10 0.27 0.15 0.05 0.20 0.08

Average value 0.30 0.52 0.36 0.15 0.36 0.18 0.35 0.51 0.40 0.13 0.40 0.16

TABLE IV. RESULTS BY BACCHELLI et al. [12]
VSM with t f − id f LSI LLT - case sensitive LLT - mixed approach LLT - mixed approach with RE

System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.25 0.34 0.29 0.60 0.48 0.53 0.27 0.68 0.38 0.64 0.61 0.63 0.35 0.68 0.46
Freenet 0.15 0.25 0.19 0.62 0.43 0.51 0.17 0.70 0.27 0.59 0.59 0.59 0.27 0.69 0.39
JMeter 0.21 0.34 0.26 0.52 0.40 0.45 0.15 0.73 0.25 0.59 0.65 0.62 0.30 0.72 0.42

Away3D 0.35 0.31 0.33 0.35 0.33 0.34 0.32 0.74 0.44 0.40 0.54 0.46 0.41 0.72 0.52
Habari 0.34 0.39 0.36 0.36 0.41 0.38 0.40 0.41 0.41 0.83 0.09 0.17 0.49 0.38 0.43
Augeas 0.10 0.20 0.14 0.10 0.28 0.14 0.09 0.72 0.15 0.14 0.02 0.04 0.15 0.64 0.24

Average value 0.23 0.31 0.26 0.43 0.39 0.39 0.23 0.66 0.32 0.53 0.42 0.42 0.33 0.64 0.41

The results achieved with Lucene are shown in Table
III. The best average accuracy value was reached using the
operator “AND” and class and package names (i.e., 0.40). The
better accuracy was achieved for Habari (F1 = 0.58).

Table IV summarizes the results presented in [12], instan-
tiating Query Formulation step with class name. As mentioned
before, the results for class and package names together are not
reported for VSM and LSI because the authors observed that
better results were achieved using only class names. Table IV
also shows the results for the lightweight linking techniques.

The results indicate that our proposed technique is more
accurate than BM25F using two fields (header and body and
quote together) on all the Java systems with the exception of
Freenet (the F1 values were 0.39 and 0.40, respectively). On
the non-Java systems, the use of BM25F indexing the corpus
with three or two fields did not produce remarkable differences
in accuracy (see Table I and Table II).

Our approach using class and package names as the queries
is more accurate than VSM. Similar results were achieved for
Lucene using both the operators and class name and class and
package names together as the queries. Indeed, our proposal
did not outperform Lucene only on Away3D when using the
“AND” operator and class name as the query. The F1 values
were 0.41 and 0.42, respectively.

As far as LSI, our approach is more accurate on all the non-
Java system and Jmeter. For ArgoUML the difference in favor
of LSI was negligible (the F1 values was 0.52 with respect to
0.53). A larger difference in accuracy was obtained for Freenet.

Our proposal outperformed LLT-CS in accuracy on all the
systems with the exception of Away3D (the F1 values were
0.44 and 0.41, respectively). BM25F with three fields was on
average more accurate than LLT MA with and without RE
(see the average values of F1). With respect to LLT MA, we
achieved better F1 values results on Habari and Augeas (0.59
vs. 0.17 and 0.16 vs. 0.04, respectively). On the Java systems
LLT MA was more accurate than our approach. For LLT MA
RE, we reached better results on the Java systems and Habari.

Regarding the correctness and completeness of the re-
trieved links, we can observe an interesting pattern in the data:
our approach mostly allowed obtaining a more complete set of
retrieved links that are correct. This result is desirable when
you are interested in the recovery of links among software
artifacts (e.g., [9]).

B. Discussion

1) IR-Based recovery: For Java systems, LSI outperformed
other approaches based on IR techniques with respect to the
accuracy of the retrieved links. A reason is that each e-mail in
the corpus quotes a large number of sentences from previous

275Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

messages. This is the best scenario for using LSI [14]. In
fact, this technique is used to disclose the latent semantic
structure of a corpus and to recognize its topics, so dealing with
synonymy and polysemy problems. Further, each document
in the corpus has a large size as compared with the entities
used as the queries. This might also represent another possible
reason for having achieved better results on Java systems.
The considerations above and the fact that LSI outperformed
our approach in terms of accuracy only on Freenet (this
difference was 0.04, while this difference was in favor of our
approach on ArgoUML and JMeter and was 0.01 and 0.1,
respectively) suggest that BM25F represents an alternative also
when dealing with large documents in the corpus.

In the case that e-mails in the corpus quote a small
number of sentences from previous e-mails our approach out-
performed other baseline approaches based on IR techniques.
This happened for all the non-Java systems. For the Habari
system, the e-mails were very short and then BM25F made
the difference also considering the information in the body
and quote together.

For the system implemented in C (i.e., Augeas), the ap-
plication of the IR-Based approaches mostly produced worse
results in terms of correctness, completeness, and accuracy. As
also suggested in [12], a possible justification is related to the
names of the entities. However, our approach outperformed the
IR based baselines. Again, indexing the e-mails considering
two or three fields did not produce remarkable differences.

The instantiation of the Query Formulation step with class
and package names improved the correctness and completeness
when our technique was used. Then, it is possible that the
choice of the source artifact can make the difference in the
accuracy of the links recovered.

The use of a stemming technique in the Normalization step
produced worse results. Then, this technique seems useless in
the recovery of links between source code and e-mails, when
using BM25F (with two and three fields) and Lucene. On these
instances, the use of the “AND” operator led to better results
in terms of accuracy and correctness of the retrieved links
with respect to the “OR” operator. This result held for all
the systems. For completeness, the results achieved with the
“AND” operator were mostly better than those achieved with
the “OR” operator. Only in four cases the use of the “OR”
operator led to better recall values.

The use of source code (program statements and/or source
code comment) as the query was also analyzed. The results
revealed that this kind of instantiation for the Query Formu-
lation step led to worse results with respect to the other two
kinds of queries considered here. This result is in line with that
shown in[12] and has the following implication: it is better to
use class name and class and package names as the queries.

We also performed an analysis to get indications on
whether BM25F might introduce scalability issues. We used a
laptop equipped by a processor Intel Core i7-2630QM with
4 GB of RAM and Windows Seven Home Premium SP-
1 64bit as operating system. This analysis was performed
on each system and the baseline processes implemented for
our experiment (see Section III-A). The results indicated that
the time to build, normalize, and index the e-mails of the
entire benchmark was twice when using three fields (i.e., 5033

milliseconds) with respect to the use of two fields (i.e., 2668
milliseconds). For Lucene, the average execution time on all
the systems in the benchmark was 2660 milliseconds. For the
Query Formulation step, nearly the same pattern was observed.
Further details are not provided for space reason.

2) Lightweight Approaches: Regarding the accuracy of the
retrieved links, LLT MA outperformed the other lightweight
techniques and our approach on the Java systems. On the non-
Java system with the exception of Away 3D, LLT MA did not
outperform our approach and the differences in the F1 values
were significant (0.59 vs. 0.17 and 0.16 vs. 0.04, respectively).
The difference on Away3D was small (F1 values were 0.41 and
0.44, respectively). Similarly, LLT MA did not outperform LLT
MA RE on the non-Java systems. The achieved results suggest
that our approach and LLT MA RE are more independent from
the kind of documents in the corpus. Since our approach was
more accurate, we can then conclude that it is the best and can
be applied without making any assumption on the mailing list
and the programming language of the understudy system. The
same did not hold for lightweight techniques based on regular
expressions because they heavily rely on common conventions
and intrinsic syntactical characteristics of the corpus [12].

C. Lesson Learned

The accuracy of our approach increased when e-mails con-
tain a huge amount of text and the entity names are carefully
chosen and naming conventions are used. Furthermore, when
e-mails did not contain a huge amount of text, the application
of BM25F on two or three fields did not produce noteworthy
differences. Then, BM25F on header, body, and quote with the
operator “AND” is the best alternative.

We experimentally observed that, in terms of accuracy, our
approach outperformed on 5 out of 6 systems the lightweight
technique that is more independent from the kind of e-mails
in the corpus (i.e., LLT MA RE) [12]. To apply our approach,
any assumption on the system understudy has to be made and
any particular configuration setting is required. Therefore, our
approach is easier to use than lightweight approaches and it is
accurate enough to be worth the costs it may introduce in the
corpus preprocessing and indexing phases. Furthermore, IR-
based approaches, such as the one we introduce here, are more
scalable. They are more efficient than lightweight techniques
when the number of e-mails in the corpus increases. Finally,
lightweight techniques return documents without any ranking:
an e-mail either matches or not a regular expression. As a
consequence, all the retrieved links have to be analyzed. In
addition, incremental processes cannot be used to keep only
relevant links (e.g., [29]).

1) Pieces of evidences: We distilled our findings and lesson
learned into the following pieces of evidence (PoE):
PoE1. Accuracy increases when using class and package
names as the queries;
PoE2. Applying our approach on three fields (i.e., header,
body, and quote) improves the results when the corpus contains
e-mails with a huge amount of text and the entity names are
carefully chosen by developers;
PoE3. Using the “AND” operator leads to better results in
terms of correctness, completeness, and accuracy;
PoE4. The corpus normalization by using stemming techniques
reduces the accuracy of the recovered links;

276Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

PoE5. Our approach scales reasonable well also when the
number of documents in the corpus increases;
PoE6. Our approach is more independent from the mailing list
than lightweight approaches.

D. Threats to Validity

To comprehend the strengths and limitations of our study,
we present here the threats that could affect the validity
of the results and their generalization. Although our efforts
in mitigating as many threats as possible, some threats are
unavoidable. A possible threat is related to the used benchmark
that is built on human judgement. The use of open source
software represents another threat to validity. Although many
large companies are using open source software in their own
work or as a part of their marketed software, it will be worth
replicating the study on real project. These replications will
help us to confirm or contradict the achieved results. The
instantiation of Query Formulation is another possible threat.
We used class names or class and package names to compare
our approach with those in [12].

V. CONCLUSION

We proposed, implemented [23], and evaluated an approach
to recover links between e-mails and source code. The ap-
proach is based on text retrieval techniques combined with
the BM25F probabilistic model. To assess the validity of our
proposal, we conducted an empirical evaluation using a public
benchmark [13]. Based on this benchmark, we performed a
comparison between our approach and 8 baselines. The results
indicated that our approach in many cases outperformed the
IR-based baseline approaches and the lightweight techniques
proposed in [12].

REFERENCES

[1] E. B. Swanson, “The dimensions of maintenance,” in Proc. of Interna-
tional Conference on Software Engineering. IEEE CS Press, 1976, pp.
492–497.

[2] A. V. Mayrhauser, “Program comprehension during software mainte-
nance and evolution,” IEEE Computer, vol. 28, pp. 44–55, 1995.

[3] S. Pfleeger and J. Atlee, Software Engineering - Theory and Practice.
Pearson, 2006.

[4] A. De Lucia, F. Fasano, C. Grieco, and G. Tortora, “Recovering
design rationale from email repositories,” in Proc. of the International
Conference on Software Maintenance. IEEE, 2009, pp. 543–546.

[5] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods,” IEEE
Trans. Software Eng., vol. 32, no. 1, pp. 4–19, 2006.

[6] A. Bacchelli, M. Lanza, and M. D’Ambros, “Miler: a toolset for
exploring email data,” in Proc. of the International Conference on
Software Engineering. ACM, 2011, pp. 1025–1027.

[7] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza, “Content
classification of development emails,” in Proceedings of the 2012
International Conference on Software Engineering. IEEE Press, 2012,
pp. 375–385.

[8] N. Bettenburg, B. Adams, A. E. Hassan, and M. Smidt, “A lightweight
approach to uncover technical artifacts in unstructured data,” Proc. of
the International Conference on Program Comprehension, vol. 0, pp.
185–188, 2011.

[9] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4,
2007.

[10] S. K. Sundaram, J. H. Hayes, A. Dekhtyar, and E. A. Holbrook,
“Assessing traceability of software engineering artifacts,” Requir. Eng.,
vol. 15, no. 3, pp. 313–335, 2010.

[11] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. Software Eng., vol. 28, no. 10, pp. 970–983, 2002.

[12] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proc. of International Conference on Software Engi-
neering. ACM, May 2010, pp. 375–384.

[13] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking
lightweight techniques to link e-mails and source code,” in Proc. of
Working Conference on Reverse Engineering. IEEE Computer Society,
2009, pp. 205–214.

[14] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008.

[15] S. Robertson, H. Zaragoza, and M. Taylor, “Simple bm25 extension
to multiple weighted fields,” in Proc. of International Conference on
Information and Knowledge Management. ACM, 2004, pp. 42–49.

[16] S. Robertson and H. Zaragoza, “The probabilistic relevance framework:
Bm25 and beyond,” Found. Trends Inf. Retr., vol. 3, pp. 333–389, April
2009.

[17] K. Y. Itakura and C. L. Clarke, “A framework for bm25f-based
xml retrieval,” in Proc. of International Conference on Research and
Development in Information Retrieval. ACM, 2010, pp. 843–844.

[18] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[19] K. S. Jones, S. Walker, and S. E. Robertson, “A probabilistic model of
information retrieval: development and comparative experiments,” Inf.
Process. Manage., vol. 36, pp. 779–808, November 2000.

[20] J. R. Pérez-Agüera, J. Arroyo, J. Greenberg, J. P. Iglesias, and V. Fresno,
“Using bm25f for semantic search,” in Proc. of the International
Semantic Search Workshop. ACM, 2010, pp. 2:1–2:8.

[21] J. Pérez-Iglesias, J. R. Pérez-Agüera, V. Fresno, and Y. Z. Feinstein,
“Integrating the Probabilistic Models BM25/BM25F into Lucene,”
CoRR, vol. abs/0911.5046, 2009.

[22] L. Dolamic and J. Savoy, “When stopword lists make the difference,”
J. Am. Soc. Inf. Sci. Technol., vol. 61, no. 1, pp. 200–203, Jan. 2010.

[23] L. Mazzeo, A. Tolve, R. Branda, and G. Scanniello, “Linking e-mails
and source code with lasco,” in Proc. of the European Conference on
Software Maintenance and Reengineering. IEEE Computer Society,
2010.

[24] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering - An Introduction.
Kluwer, 2000.

[25] V. Basili, G. Caldiera, and D. H. Rombach, The Goal Question Metric
Paradigm, Encyclopedia of Software Engineering. John Wiley and
Sons, 1994.

[26] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society of Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[27] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large
Symmetric Eigenvalue Computations, Vol. 1. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2002.

[28] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-
code traceability links using latent semantic indexing,” in Proc. of the
International Conference on Software Engineering. IEEE CS Press,
2003, pp. 125–137.

[29] A. De Lucia, R. Oliveto, and P. Sgueglia, “Incremental approach and
user feedbacks: a silver bullet for traceability recovery,” in Proc. of the
International Conference on Software Maintenance. IEEE Computer
Society, 2006, pp. 299–309.

277Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

