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Abstract—Tracing is a tool frequently used in the debugging
and optimization of software. While there exist different tracing
solutions, each of them comes as a tightly coupled trace collection,
analysis and visualization bundle, and thus, it can only be used
to answer a narrow range of questions. Due to this limitation
and the complex nature of software workflow in the embedded
domain, we believe that tracing and the analysis of traces have to
be flexible and extensible. In this paper, we propose a methodology
of trace processing. We introduce a generic model of describing
traces and operations that are performed on them, irrespective of
the tracing solutions being used. Also, with the help of our model,
one can describe new processes and workflows that involve trace
data from a combination of sources. To present the use of our
methodology, we systematically model four use cases that solve
complex debugging and analysis tasks. At the end, we show how
one of these use cases fits into a modular framework using a
prototype implementation.

Keywords—Tracing; trace-processing; workflow modeling; de-
bugging; multicore.

I. INTRODUCTION

With the ever-increasing complexity of hardware and
software systems, the task of programming and maintaining soft-
ware has become more and more challenging. This is especially
true when considering parallel systems, i.e., multicores and
Systems-on-Chip (SoCs). To debug and optimize these systems,
classical debugging tools and methods are often insufficient.

Tracing, that is the recording of data on the dynamic
behavior of a software system, has been introduced with great
success in some problem domains, e.g., performance optimiza-
tion in High-Performance Computing (HPC) or debugging of
embedded and real-time systems. So far, however, existing
trace solutions cover only few specific use cases at a time. The
technologies of trace collection and visualization are customized
to these cases. In HPC, tools are specialized to deal with highly
parallel programs, typically using the message passing model
of programming. Trace analysis and graphical visualization
is tailored to the task of performance optimization of such
applications. In the area of embedded computing, we will
find tools that can record a system’s execution with hardware
assistance, at a cycle-accurate level, without changing the timing
behavior of the target. This data is then used for debugging
and analysis purposes. Due to its non-intrusive behavior, this
method is suitable for debugging timing related issues in real-
time systems.

Existing trace solutions, such as [1, 2, 3], collect a
vast amount of data, which is then processed and presented
to the developer. However, these products mostly come as

integrated solutions, tightly coupling trace collection, analysis
and visualization.

With the afore-mentioned increased complexity in systems,
we believe that tracing and the analysis of traces need to be
flexible and easy to handle and extend. For instance, tools have
to be extensible to fit complex debugging and optimization tasks.
Keeping these properties in mind, we introduce a methodology
to describe traces and operations on them. This methodology
can be used to model different elements of a trace-based analysis
and debugging workflow. Moreover, it provide ways to model
complex processes that use the trace data from different tools or
sources. We also present how different debugging and analysis
use cases can be efficiently modeled using our methodology. By
modeling a use case, dependencies between different trace data
involved, and the interfaces between different tools become
obvious, which helps during concrete implementation. At the
end, we show how one of the modeled workflows can be
mapped on to a modular framework, as part of our prototype
implementation.

Previously, there has been some work on languages describ-
ing event traces. Auguston [4] suggested FORMAN language,
which is used to describe computations over event traces. It
uses an event grammar to define intended program behavior
during debugging or testing of programs. Boroday et al. [5]
presents a generalized formal framework to model event traces
in a distributed system. Another language called Tiddle is
proposed by Sadowski and Yi [6] to test dynamic analyses by
generating concurrent benchmarks. However, these languages
do not provide a way to define complex analysis workflows, that
involve trace data from different sources. Also, these modeling
techniques cover specific use cases, e.g., communication, or
concurrency bugs, rather than being generic and scalable to
other use cases as well.

Visualization tool by McGavin et al. [7] describes a
methodology to explore large sets of execution traces. It
gives control to the user to filter events and get on-demand
information related to a particular object, after loading all the
trace data into the tool. Whereas with our modular framework
consisting of transformation modules, pre-filtering of trace
data can be done before loading it into an output module, i.e.,
visualization or analysis tool. Hamou-Lhadj and Lethbridge [8]
discuss different analyses and visualization tools for Object-
Oriented systems, and the possibility to combine features from
each tool into a common framework as their future work.
The discussion centers on trace exploration and compression
techniques to reduce the volume of generated traces.
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The remainder of this paper is structured as follows. In
Section II, we present a brief introduction to tracing and an
overview of the current tracing, analysis and visualization
technologies. In Section III, we describe our model and
methodologies for trace data manipulation and workflow
description. Section IV presents use cases which utilize our
model to describe complex trace-analysis workflows. Section
V shows the mapping of one of the modeled use case to a
modular framework, before Section VI concludes this paper.

II. SURVEY OF TRACING TECHNOLOGIES

Tracing can be seen as directly derived from one of the
oldest methods in debugging: the use of print statements to
output program state at runtime. The method has, however,
evolved, and the use of tracing techniques yields a much more
systematic approach to debugging than the simple insertion of
print statements. Especially in complex parallel systems, the
messages produced by manually printing program state will be
hard to read and interpret. This is where tracing solutions offer
graphical visualization that helps the developer to comprehend
the recorded trace data.

In this section, we present a brief overview of trace-
collection methods. We show the basic sources of trace events
that are used as inputs to our trace-processing workflows.

A. Instrumentation-Based Tracing

One important method of tracing is instrumentation: addi-
tional code is added to the software at points of interest, which
causes the target itself to generate event traces. These are then
stored or transmitted for later analysis. There are different
ways of instrumenting the target software. The most basic is
manual insertion of instrumentation code by the developer.
Alternatively, the insertion can be automated, often with the
help of the compiler. Another class of tools performs dynamic
instrumentation of the target application, that is, they change
the code at run time.

The recording of event traces with the help of instru-
mentation can be performed in different components of a
system. Aside from the application itself, instrumentation
placed within the operating system can produce valuable
information on system execution, capturing the interaction of
several applications, together with global resources like device
drivers.

Instrumentation-based trace techniques are used in different
domains, and several specialized solutions are available: in
the area of HPC, tools like [1, 2, 3] together with their
respective visualization front-ends, are popular to optimize the
performance of highly parallel applications. Instrumentation of
the operating system kernel is used in debugging, but also on-
line monitoring of systems. Solutions are available for numerous
platforms, including Linux [9], Windows [10], BSD or QNX
[11]. Also for embedded systems, specialized solutions are
available, e.g., for low-overhead collection of events for timing
analysis [12].

The advantage of using instrumentation to collect trace
events is that it allows good control on the type and number of
events to be collected. In this way, the volume of the generated
trace can be limited to the events actually needed. Manual

instrumentation of the application is easy to use, and can
access application-specific data. Common examples would be
the indication of program states, or the value of internal program
variables.

However, instrumentation does influence the run-time be-
havior of the target application. So, in debugging timing-related
issues, the target may exhibit a changed behavior due to the
instrumentation, and the results may be useless. Also in systems
that are already operating at the limit of CPU utilization may
not be suitable for instrumentation, as the additional overhead
may render the system dysfunctional.

B. Hardware-Based Tracing

Modern processors implement hardware interfaces that
generate execution traces. Here, event traces are generated
by the hardware and are typically on a low level, i.e., the
execution of single machine instructions. The generated data is
transferred off-chip via a high-speed serial interface, e.g., Serial
Wire Debug (SWD) [13]. To receive the trace data, usually
another hardware device (hardware debugger) is needed that
decodes the event stream and transfers the data to a debugger
application on the host computer. Examples of such solutions
are [14, 15, 16].

A hardware trace contains detailed data on the execution of
all software. In contrast, an instrumentation-based trace captures
events only in the parts of the system that are instrumented,
so it captures events only the developer expected. To also
see unexpected events like hardware interrupts or unexpected
memory accesses due to corrupted pointers, a hardware trace is
much more useful. Another great advantage of hardware-based
tracing is that it does not influence the timing behavior of
the target system. This means that it is also suitable to debug
timing issues in real-time systems.

The transfer of a target-system trace to a host computer
can require extremely large bandwidths. If we take the ARM
platform as an example, this can lead to a required bandwidth
of 1 Gbit/s per core for a simple instruction trace and up to 16
Gbit/s per core for a complete data trace [17]. When considering
multicores and SoCs with many on-chip trace sources, one
quickly sees limitations in the amount of trace data that can be
transported from the target to the development host. Obtaining a
complete execution trace of a multicore processor is at the least
challenging, and often impossible due to bandwidth limitations.

Realizing this, hardware vendors have started the integration
of more-flexible tracing logic into their chips. Examples are
ARM CoreSightTM [18], or Infineon’s MCDS [19]. With its
help, it is possible to program flexible triggers and filters, and
thus reduce the volume of the trace data and the bandwidth
needed to transfer it.

While typically hardware-based trace solutions capture data
from the processor cores, and thus data specific to the software
being executed, other devices can be traced as well. Examples
include traces of on-chip buses and interconnects [20] or
peripheral devices [21].

C. Other Data on Dynamic System Behavior

Apart from traces collected using dedicated software or
hardware solutions, there exist many other useful sources of
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Figure 1: Elements used in the graphical representation of trace processing
workflows.

data on the runtime behavior of a system. Some of them can
be useful in an analysis to provide a context in which the
software was executed. This is especially valuable when dealing
with embedded systems that have close interaction with their
surroundings.

Examples are traces of communication links, which can be
captured externally using a network monitor or a bus analyzer,
or information from external sensors and actuators. Also other
existing sources of data present in software can be exploited
in trace analysis, e.g., existing log files, providing a high-level
view of the system’s activities.

III. METHODOLOGY OF TRACE PROCESSING

In this section, we introduce a model to describe traces
and operations on them. Our objective is to provide a basis
on which to argue about transformations, analyses, and the
graphical visualization of trace data. Our approach can be used
to describe workflows of trace processing in an abstract way,
independent of a particular trace-collection technology. With
the help of our methodology, complex applications in the area
of trace analysis can be systematically described.

Throughout this paper, we use a simple graphical represen-
tation to visualize applications of our model. An overview of
elements is shown in Fig. 1. They are described in detail in
this section.

A. Trace Features

Traces are the central artifact of our model representation.
Our model annotates a trace with three features: the Aspect
captured by the trace, the Scope of the trace data, and its Level
of Detail. We do not model the details of the trace data itself,
or impose any restrictions on trace formats and representations.
For the purpose of our model description, a basic definition of
traces is sufficient. Thus, we define a “trace” to be an ordered
sequence of events. The order may be established by associating
a timestamp with each event. Additionally, trace events may
contain arbitrary data; again, there is no restriction imposed by
our methodology.

We do not provide a formal language for the description
of trace features in our model, but rather focus on the high-
level representation of traces using plain English. It is up to
the developer, how detailed this description should be. In our
graphical representation, a trace is depicted as a rectangular box
with three fields, one for Aspect, Scope and Level of Detail.

1) Trace Aspect: The trace Aspect describes which prop-
erties of the target system are captured in the trace data. It is
the most important of our three properties, as it describes the
nature of the respective trace. The Aspect of a trace determines
which questions can be answered by interpretation of the trace
data, and it is often closely linked with the method of trace
collection.

Examples of trace Aspects can be “program execution
flow, i.e., which instructions or functions were executed at
which time”, “program state, i.e., the values of variables over
time”, “packets seen on a network link”, “transactions on
an internal bus”, “performance metrics”, and “inter-process
communication”.

2) Trace Scope: The Scope of a trace describes which parts
or which components of a system are covered by the trace.
Components of a system may be hardware devices, such as
CPU cores or communication interfaces, or software entities,
such as applications, threads, or objects.

In trace analysis, it is important that the trace data captures
the right scope. For efficient operation, the trace should not
contain more or less information than is needed to answer
the developer’s questions. If the scope is too broad, it may
be difficult to grasp the essential information, and if it is too
narrow, interactions between several components may be lost
from the trace.

As the selection of a Scope for a trace defines which subset
of the set of all available events is contained within the trace, it
directly influences the volume of the resulting trace. Thus, the
trace Scope determines the bandwidth required for transmission
of the trace, or the capacity needed for its storage. The possible
values of the Scope feature naturally depend on the Aspect
captured by the trace. When considering a trace of the program
execution flow, the Scope may be, for example, “instructions
executed by application A”, “instructions executed in interrupt
service routines”, or “instructions executed on Core n”. In
contrast, a trace of network packets or protocols may have
scopes like “TCP, HTTP, or telnet session”, “connection in a
client-server scenario” or “communication link”.

3) Level of Detail: The Level of Detail (LoD) gives
information on the resolution or precision of the trace. It can
be described as a set of information captured to fulfill the
requirements in achieving a certain trace Aspect.

Similar to the Scope feature, the LoD in a trace depends
upon the trace Aspect. Also it influences the trace volume as in
the case of a Scope. Carefully choosing the LoD can simplify
the trace collection, transmission, and storage in cases where
the lower LoD is tolerated by the analysis in question.

For example, a trace Aspect “execution flow” may have
LoD like “complete set of instructions”, “only branches”, or
“only function entries and exits”. On the other hand trace Aspect
“data values” can have LoD like “modifying a certain memory
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location”, “reader or writer process/thread”, or “reads/writes
within a specific region of the code”.

B. Basic Trace Transformations

A trace transformation is a step of processing, which takes
one or more traces as input, and based on them generates one
or more traces as output. Within our model, a transformation
always affects at least one of the three trace properties.

The effects of some operations are easy to capture and
understand. For example, filtering operations will usually
either narrow the Scope of a trace, or lower its Level of
Detail. Examples would be the processing of a hardware trace
containing all executed instructions through a filter, which
reduces the data to include only the executed calls and returns,
thus yielding a lower LoD (function entry/exit instead of
instruction accurate). Also, a reduction in Scope is common,
and can be seen as a filter operation performed on the trace. An
example is the filtering of a trace of scheduling events of the
operating system, to extract only those events related to a certain
application. These two operations are easily implemented as
filters, extracting some events from a trace and discarding the
others.

Other transformations are more complex. Among them are:
broadening of a Scope; which combines traces with distinctive
features. This combination of different traces with distinctive
features has the potential of substantially increasing the value
of tracing. In systems with complex interactions of different
components, it is often necessary to combine data from many
different sources to track down the origin of a software failure. If
this integration of data sources can be performed systematically,
as opposed to the developer switching back and forth between
tools, debugging and optimization can be greatly simplified.

Changing the Aspect of a trace is another complex trans-
formation, which can require some more-elaborate analysis
and processing. A complete trace of program execution could
be processed, such that instead of the execution flow of the
application it reflects the value of certain variables over time.

In the processing of hardware traces, there is a commonly
used transformation that increases the level of detail. The trace
unit of modern CPUs compresses the trace data to reduce
bandwidth. Usually, only the branch instructions are captured,
knowing that from this information the instructions executed
between branches can be reconstructed. This step is implicitly
performed by the host-side tracing tools.

C. Trace Sources and Sinks

To model trace-processing workflows, it is not only nec-
essary to describe trace transformations, but also to specify
where traces come from (their sources) and what eventually
happens to them (their sinks). Trace sources are means of trace
collection, of which we already described several in Section II.
We distinguish two kinds of sinks: visualization and analysis.

The trace sources are the point where traces enter our
modeled workflows. The trace-collection method determines
the features of the trace at this point. Multiple trace sources
can be employed in one workflow, e.g., combining traces that
capture different Aspects or Scopes of the same system.

It is important to mention that workflows described by our
model can have many processing steps, not all of which will
be actually implemented in software. It is possible for some of
the steps to be implicitly performed in hardware, e.g., on-chip
filtering of trace events. In these cases it is up to the developer,
whether this implicit processing step is modeled, or whether
the model uses the already filtered data as a trace source.

A visualization presents the trace data to the user, showing
the trace events on a time line. On the other hand, an analysis
takes a trace as input and generates results in arbitrary form.
Their semantics differ from the transformations described
earlier, in that their output is not a new trace. Thus, the analysis
result, which might take the form of a textual or graphical report,
lies outside the scope of our model. Examples of analyses are:
timing properties like average execution times of functions or
distributions of response times, analysis of lock contention, or
analysis of data accesses to detect race conditions.

Both visualization and analysis can present data to the
developer in an interactive way. It may be possible to “browse”
the trace graphically, scroll, zoom, etc. User interaction can
influence the processing inside the modeled workflow. By
selecting elements from the analysis or visualization, the
user could change the parameters of certain transformations,
causing a re-calculation of the results. Such an influence on
the processing of traces is represented by a dashed arrow in
our graphical representation.

IV. MODELING OF TRACE-ANALYSIS WORKFLOWS

In this section we present four examples, how our method-
ology can be applied to model certain analysis workflows. In
addition to describing complex workflows, our methodology
can be utilized to constitute a flexible modular framework. The
sources providing trace data as an input, translate into input
modules. Also the user interaction becomes part of an input
module. The sinks utilizing trace data for visualization and
analysis are mapped as output modules. Finally, trace transfor-
mations that involve processing of traces are implemented as
transformation modules.

In the following section, we present the prototype framework
implementation using one of the described examples. For the
rest of the examples, our model documents trace-processing
workflows in an abstract way, and does not concern itself with
concrete implementations.

A. Combination of Application and Kernel Trace

Manually instrumenting a target application is an effi-
cient way of collecting trace data. The developer can select
instrumentation points, and can thus easily create a trace
containing application state, phases in program execution, and
values of important variables. However, one weakness of this
approach is that it can capture only the single application
that is instrumented. Especially in embedded systems, this is
often insufficient, and instead the developer needs a view of
the complete system, showing interactions between different
applications, and between applications and the operating system.

The first use case of our methodology addresses this
issue, by processing separately collected traces from the user
application and the operating system kernel, and integrating
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them into one combined view. The workflow is shown in Fig.
2a.

The essential transformation (t2) in this workflow performs
a “broadening” of trace Scope by combining the execution
flow of the application with the relevant scheduling events
from the kernel trace. This way, the application’s timing can
be displayed in the context of the complete system, and in
case of timing anomalies a picture of the system state with the
current constellation of running applications and occurrences
of interrupts is available.

While the application trace is directly used by transfor-
mation (t2), the kernel trace first undergoes some filtering:
from a kernel trace containing a multitude of different events,
we extract only events related to scheduling, system calls, and
interrupts that affect our target application as shown by transfor-
mation (t1). This transformation also uses auxiliary application
information that helps in mapping of target application to kernel
trace.

Note that the trace Aspect remains unchanged by all
transformations. We always consider the program execution
flow. Also, the Level of Detail is largely kept unchanged. All
processing and analysis is done on a relatively high level of
abstraction, considering program phases and single scheduling
events, but not further details on instructions executed.

B. Extraction of Data-Centric Trace Information

In object oriented programs, it can become useful to keep
track of an object’s lifetime. It starts from the object creation,
different processes/threads accessing it, interactions with other
objects, and finally deletion of the object. Moreover, the
inclusion of locks to protected shared objects makes interactions
more complex and difficult to analyze. With the help of such
an analysis, one can find anomalies in software like data races
(simultaneous access to an object with at least one of them
being a write operation), locking violations, contention for
guarded shared objects, and memory leaks (objects created but
never deleted).

Hardware tracing allows the developer to generate cycle-
accurate event traces. It can include a complete set of instruc-
tions, and reads and writes to memory addresses. This use case
of our methodology uses hardware tracing as a source, and
reduces the LoD to specific objects and locks with the help of
the developer. The workflow is shown in Fig. 2b.

The transformation (t1) filters the Scope of the hardware
trace from the CPU to the target application. Furthermore,
(t1) also performs an important transformation of Aspect of
the trace to “data value trace”. This is achieved by extracting
the selected LoD from instruction and data-trace events, e.g.,
memory reads and writes, and reader/writer process or thread
information.

Later, the transformations (t2) and (t3) are performed,
generating new traces with similar Aspects as before, i.e., data
value trace. These transformations reduce the LoD to specific
shared objects and locks inside the application, rather than a
complete set of variables. From this point on, the transformed
trace can be used as an input to the trace-analysis tool. The user
may also provide auxiliary information regarding the relation
between a lock and an object to analyze them over time. This

mapping helps to find any problems with regard to simultaneous
accesses from different writers/readers and the locks guarding
them.

The trace data with object as a Scope can then be used as
an input to the visualization tool for a graphical representation
of the object’s lifetime. The dotted arrow (user input) from the
analysis tool to the visualization sink shows that the user can
also influence the graphical time line of an object of interest.

C. Backtracing of Memory Issues

Root causes of memory-related faults become more difficult
to find, especially when software is running on a multicore
system with shared memory resources. Consider a case where
an incorrect value is being assigned to a memory location,
causing the program to become dysfunctional. It can be of
great help if a backward chain of calculations can be analyzed
to know the source code location causing that faulty write. To
achieve this, it requires the program state to be maintained
by the tool for that point in time. This use case addresses
workflow-modeling of a similar scenario.

For example, the event traces of specific variables are
visualized in a tool showing data values being assigned to them
over a time period. The tool allows the user to inquire about
the incorrect value on demand. This interaction from the user
triggers the backward analysis by inquiring the program state
being maintained by the analysis tool. Finally, an interactive
report provides the instruction writing the wrong value to the
variable. Fig. 2c explains the steps involved to model such an
analysis with the help of a hardware trace source.

It is important to mention that transformation (t1) may be
implicitly performed by configuring a hardware trace-recording
tool to record events related to a single application only.
In this case the model will directly contain trace data with
“application” as the Scope. Information like memory addresses,
data reads/writes, and program-counter values acquired from
instruction and data trace are used by the analysis tool to
maintain the program state.

The next transformation (t2) changes the Aspect of the
trace to “data-value trace” and filters the Scope to a particular
variable in an application using variable reads/writes, address
of variable in memory etc. as LoD. Finally, the visualization
tool uses this trace to show variable data values over time.

The dotted line from the visualization tool represents the
user interaction. The analysis report from the program state
further represents the subpart of the analysis tool that is
interactive and allows the user to influence the transformation
(t2) for a refined visualization.

D. Incorporation of Data from on-chip Bus Trace

Since embedded systems are composed of a set of different
components, traces from buses, peripherals, and controllers can
add value for a comprehensive analysis. Specially by combining
an event trace containing all bus transactions with an instruction
trace can provide information related to program read and write
accesses, thus also broadening the Scope.

The only problem with such a combination is that it requires
the target to export all the required information to clearly map
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load/store instructions to read and write accesses. This can
become difficult with limited bandwidth of trace ports.

This use case presents a similar scenario where combining
hardware and bus traces can help the user to investigate unusual
bus activities. The user can interactively examine a region in
the visualization tool that shows a high number of average
bus stalls. This inquiry leads to the analysis tool which, with
the help of the combined trace, maintains reports related to
program read and write accesses, contention among different
bus transactions or any conflicts. For instance, the user may
find the application or source-code location that is causing the
extra stalls by holding the bus, after looking into this analysis
report. Moreover, it can be used to find if the CPU is waiting
for a response from a peripheral device that also shares access
from another application. Fig. 2d provides the model of this
workflow.

Hardware trace in this case contains an extra LoD: Per-
formance counters, which are hardware registers commonly
available in most CPUs for measuring performance metrics
like cache misses, instruction count, cycle count, bus stalls and
so on. The transformation (t1) changes the Aspect of the trace
from “instruction flow” to “program flow” by extracting the
data events related to executed calls and returns, thus lowering
the level of detail to function entry/exit.

Transformation (t2) further filters down the trace to selective
target applications and their respective LoD, i.e., function en-
try/exit and counter values for bus stalls. The visualization tool
then can be used to graphically present function entries/exits,
along with the average bus-stalls histogram for the duration of
the function execution. A similar workflow can also be modeled
using instrumentation-based tracing as a source only.

In case of higher bus-stall cycles causing longer executions
for a function, the user can select that region from the histogram
for a detailed analysis. This is shown by the dotted line from
the visualization tool which influences the information used as
input to the analysis tool.

The transformation (t3) takes data like load and store
instructions from the instruction trace and maps this information
with bus transactions to get the trace with application-specific
reads and writes. The analysis tool uses this trace data to provide
a more-detailed analysis related to any conflicts, contention,
and stalls over the system bus. Moreover, the user can influence
the transformation (t3) for a refined analysis represented by
the dotted arrow from the analysis tool.

V. CASE STUDY IMPLEMENTATION:
INTEGRATED APPLICATION AND KERNEL TRACING

The objective of this section is to present how a modeled
workflow can be translated into a modular framework applica-
tion. In order to support this mapping, we implemented the first
example described in the previous section as a prototype. This
example integrates different trace sources, not only to broaden
the scope but also to provide a comprehensive visualization for
the developer. It shows how this improved visualization can
help to find sporadic errors in an application.

A. Prototype implementation

As a proof of concept, we began with the implementation of
combined application and kernel tracing. We chose VampirTrace

[1] for the application and LTTng [9] for kernel tracing
respectively. Event traces from VampirTrace were stored in the
Open Trace Fromat (OTF) [22], and in the Common Trace
Format (CTF) [23] from LTTng.

We manually instrumented two applications using Vampir-
Trace for entry and exit of different phases (functions). One of
these applications was periodic with timing constraints (soft-
RT) task, while the other was non-periodic and without timing
requirements (GPtask). For the soft-RT task, a marker API
was also added to get the events for the cases in which the
application may miss any deadline. Both of these applications
were scheduled on separate cores (core affinity). At the same
time with the help of LTTng, kernel events (system calls,
interrupts and scheduling) were recorded.

The OTF streams generated by the applications were then
fed as an input to the VAMPIR [24] visualization tool to
visualize the program execution flow. Fig. 3 shows a time slice
of soft-RT and GP application events.

9.3585 s 9.3590 s 9.3595 s 9.3600 s 9.3605 s

GP_compute GP_transmit

Soft-RT Task

GP Task

missed deadline

Figure 3: VAMPIR screen-shot: Visualization of application traces for real-time
and general-purpose tasks.

The two different colors in soft-RT task’s timeline represent
different functions being executed, whereas the periodic nature
of the task can be seen from invocations of these two functions
at distant time intervals. Also, there is a triangle on top of one
of the invocations, indicating a missed deadline. The lower
time line indicates two different phases of the GP task. With
this view in the visualization tool, it is difficult to speculate
about any reason for the missed deadline.

For our prototype framework implementation, we used a
modular approach in mapping sources, transformations, and
sinks. Since the trace data in this use case comes from different
sources with different trace formats, we chose OTF as an
internal format for the framework. For this reason, the kernel
trace which is stored in the CTF format is converted into the
OTF format.

The input module provides CTF traces depicting the
execution flow of both applications to the transformation
module. It then performs the necessary processing to reduce the
Scope of the trace to application specific kernel events. This
module also correlates the kernel and application traces with
the help of timing information, and converts the kernel trace
from CTF to OTF. After the conversion, another independent
transformation module merges the application trace (input
module) with the transformed kernel trace, in order to prepare
it for the output module (VAMPIR tool).

Fig. 4 shows a screen shot from the tool with integrated
kernel tracing using the transformed trace information, as shown
previously in Fig. 2a. The additional two time lines indicated
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Figure 4: VAMPIR screen-shot: Combined application and kernel scope with
zoom-in view for missed deadline.

by Core 1 and Core 0 represent the actual mapping of tasks
onto the hardware. In this specific case, the soft-RT task was
scheduled on core 1 and the GP task on core 0. Moreover,
it can be seen that now the timeline shows extra events like
hardware/software interrupts and scheduling events, e.g., thread
switch in/out during the same execution period. In other words,
the correct notion of function execution time is being depicted
using kernel trace data.

Finally, by looking into the integrated view, the user can
now identify the actual reason behind the soft-RT task missing
its deadline, which in this case is caused by a hardware interrupt
being serviced by Core 1.

VI. CONCLUSION AND FUTURE WORK

The methodology introduced in this paper can be used
to systematically describe complex analysis workflows. The
possibility of constructing methods for complex workflows,
which can utilize trace data from multiple sources, can be
used to develop flexible tools for trace-based debugging and
optimization. Our goal is to encourage the use of existing
sources of trace data.

With the help of provided modeling notations, one can
document the new processes and workflows in an abstract way.
By modeling a workflow, the dependencies between different
trace data involved and the interfaces between tools become
transparent for the implementation. Our methodology can be
used not only for modeling purposes, but also for providing
a basis for mapping the modeled workflow to a flexible and
extensible framework. We have shown this by translating one
of the use cases to a modular framework in our prototype
implementation.

As part of our future work, we intend to extend the
framework with an internal format other than the OTF. Also,
the trace features and transformations that are modeled using
simple graphical notations will be described formally with
the help of a machine-readable language. Furthermore, the
details about the trace data (events and their semantics) will
be represented using our model. These additions will help
in automation of the trace processing. Finally, the modeled
workflows will support automatic generation of “glue code” for
a framework implementation.
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[1] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber,
H. Mickler, M. S. Müller, and W. E. Nagel, “The vampir
performance analysis tool-set,” in Tools for High Performance
Computing. Springer, 2008, pp. 139–155.

[2] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool
to visualize and analyze parallel code,” WoTUG-18, pp. 17–31,
1995.

[3] F. Wolf, B. J. Wylie, E. Abrahám, D. Becker, W. Frings,
K. Fürlinger, M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore
et al., “Usage of the scalasca toolset for scalable performance
analysis of large-scale parallel applications,” in Tools for High
Performance Computing. Springer, 2008, pp. 157–167.

[4] M. Auguston, “Building program behavior models,” Engineering
Automation for Reliable Software, p. 35, 2000.

[5] S. Boroday, H. Hallal, A. Petrenko, and A. Ulrich, “Formal
modeling of communication traces.” in ISTA. Citeseer, 2003,
pp. 97–108.

[6] C. Sadowski and J. Yi, “Tiddle: a trace description language for
generating concurrent benchmarks to test dynamic analyses,” in
Proceedings of the Seventh International Workshop on Dynamic
Analysis. ACM, 2009, pp. 15–21.

[7] M. McGavin, T. Wright, and S. Marshall, “Visualisations of
execution traces (vet): an interactive plugin-based visualisation
tool,” in Proceedings of the 7th Australasian User interface
conference-Volume 50. Australian Computer Society, Inc., 2006,
pp. 153–160.

[8] A. Hamou-Lhadj and T. C. Lethbridge, “A survey of trace
exploration tools and techniques,” in Proceedings of the 2004
conference of the Centre for Advanced Studies on Collaborative
research. IBM Press, 2004, pp. 42–55.

[9] M. Desnoyers and M. R. Dagenais, “The lttng tracer: A low
impact performance and behavior monitor for gnu/linux,” in OLS
(Ottawa Linux Symposium). Citeseer, 2006, pp. 209–224.

[10] I. Park and R. Buch, “Event tracing- improve debugging and
performance tuning with etw,” MSDN magazine, p. 81, 2007.

[11] T. Beauchamp and D. Weston, “Dtrace: The reverse engineer’s
unexpected swiss army knife,” Blackhat Europe, 2008.

[12] N. Merriam, P. Gliwa, and I. Broster, “Measurement and tracing
methods for timing analysis,” International Journal on Software
Tools for Technology Transfer, vol. 15, no. 1, pp. 9–28, 2013.

[13] M. Williams, “Low pin-count debug interfaces for multi-device
systems,” 2009.

[14] (2013, August) LAUTERBACH Development Tools. [Online].
Available: http://www.lauterbach.com/

[15] (2013, August) PLS Development Tools. [Online]. Available:
http://www.pls-mc.com/

[16] (2013, August) iSYSTEM. [Online]. Available: http://www.
isystem.com/

[17] W. Orme, “Debug and trace for multicore socs,” ARM Limited,
White Paper, 2008.

[18] “CoresightTM components technical reference manual,” ARM
Limited, Tech. Rep., 2009.

[19] N. Stollon, “Infineon multicore debug solution,” in On-Chip
Instrumentation. Springer, 2011, pp. 219–230.

[20] “Amba ahb trace macrocell (htm) technical reference manual,”
ARM Ltd., San Jose, CA, Tech. Rep. ARM DDI 0328E.

[21] “Usb event tracign for windows,” Microsoft, White Paper, March
2010.
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