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Abstract—The widespread adoption of Model Driven Engi-
neering approaches has made of models to be cornerstone com-
ponents in the software development process. This fact requires
verifying such models’ correctness to ensure the quality of the
final product. In this context, the Unified Modeling Language
(UML) and the Object Constraint Language (OCL) constitute
two of the most commonly used modeling languages. We propose
an overall framework to reason about UML/OCL models based
on Constraint Logic programming (CLP). We use Formula as
model finding and design space exploration tool. We show how
to translate a UML model into a CLP program following a Meta—
Object Facility (MOF) like framework. We enhance our proposal
by identifying an expressive fragment of OCL, which guarantees
finite satisfiability and we show its translation to Formula. We
complete our approach by providing a Model Driven Architecture
(MDA) based implementation of the UML to Formula translation.
Our proposal can be used for software model design reasoning by
verifying correctness properties and generating model instances
of the modeled designs, using Formula.
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I. INTRODUCTION

The widespread adoption of Model Driven Engineering
(MDE) approaches has made of models to be cornerstone
components in the software development process. This fact
requires verifying both the completeness and correctness of
such models to ensure the quality of the final product, reducing
time to market and decreasing development costs. In this
context, UML and OCL constitute two of the most commonly
used modeling languages. The Unified Modeling Language
(UML) [11] has been widely accepted as the de—facto standard
for building object-oriented software. The Object Constraint
Language (OCL) [10], on the other hand, has been introduced
into UML as a logic-based sublanguage to express integrity
constraints that UML diagrams cannot convey by themselves.

Unfortunately, in some occasions, possible design flaws
are not detected until the later implementation stages, thus
increasing the cost of the development process [4]. This
situation requires a wide adoption of formal methods within the
software engineering community. In this line, there have been
remarkable efforts to formalize UML semantics to solve am-
biguity and under specification detected in UML’s semantics.
The formalization and analysis of the specific UML modeled
artifacts can be done by carrying out a semantic—preserving
translation to another language [4]. The resulted translation
can be used to reason about the software design by checking
predefined correctness properties about the original model [4].
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In this paper, we advocate for using the Constraint Logic
programming (CLP) paradigm as a complementary method for
UML modeling foundations, including models’ satisfiability
and inspection. More specifically, we focus on UML class
diagrams (CD), annotated with OCL constraints, which are
considered to be the mainstay of Object-Oriented analysis and
design for representing the static structure of a system. Consid-
ering CD/OCL models as model representation, we propose an
overall framework to reason about such models based on CLP.
In particular, as model finding and design space exploration
tool we use Formula [6], which stands on algebraic data
types (ADT) and CLP, and which has been proved to provide
several advantages, including more expressivity, over using
other tools [7]. The defined framework is two—fold. Firstly,
we have conceptually defined a proposal for the translation of
CD/OCL models to Formula. Secondly, we have used a Model
Driven Development (MDA) based approach [9] to automati-
cally generate the Formula specification from a CD. As for the
first contribution, we give a proposal for the translation of a
UML model into a Constraint Satisfaction Problem following
a multilevel Meta—Object Facility (MOF) like framework. We
enhance our proposal by identifying a fragment of OCL which
guarantees finite satisfiability, while being, at the same time,
considerably expressive. We also show how to translate such
OCL fragment to Formula, by giving, as an intermediate step,
a representation of the OCL constraints as First-Order Logic
(FOL) expressions. As for the second contribution, we use a
model-to-text transformation tool to automatically transform
a CD to Formula. Our framework can be used for software
model design reasoning by checking correctness properties and
generating model instances automatically using Formula, thus
contributing to software designs’ validation and verification.

The paper is structured as follows. Section II gives a brief
introduction to Formula. An overview of our framework is
presented in Section III. Section IV presents the translation of
a CD to Formula, while Section V describes the chosen OCL
fragment and its representation into Formula. The automatic
MDA-based translation of a CD to Formula is presented in
Section VI. Section VII summarizes the strengths and weak-
nesses of our approach and discusses related work. Finally,
Section VIII covers our main conclusions and future work.

II. A BRIEF OVERVIEW OF FORMULA

Formula distinguishes three units for modeling the prob-
lem: domains, models and partial models. A Formula domain
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FD is the basic specification unit in Formula for an abstraction
and allows specifying ADTs and a logic program describing
properties of the abstraction. The logic programming paradigm
provides a formal and declarative approach for specifying
such abstractions [6], which in Formula are represented by
rules and queries. A Formula model FM is a finite set of
data type instances built from constructors of the associated
domain FD, and which satisfies all its constraints [6]. Formula
allows to specify individual concrete instances of the design-
space or parts thereof, in a specific Formula unit called partial
model [6]. A Formula partial model FPM is a set of instance-
specific facts placed along with some explicitly mentioned
unknowns, which correspond to the parts of the model FM
that must be solved. FPMs allow unknowns to be combined
with parts of the model that are already fixed [6].

1 domain MetalLevel extends UserDataTypes {

2 Star ::= {star}.

3 primitive Class ::= (name: String, isAbstract: Boolean).

4 primitive Association ::= (name:String,

srcType:Class, srcLower:Natural, srcUpper:UpperBound,
dstType:Class, dstLower:Natural, dstUpper:UpperBound).
5 Classifier ::= Class + Association.

6 errorBadMultinterval := Association(_,_, srcLower,srcUpper,_,_,_),
srcLower >srcUpper.

a2 is Association(name2,_, , , , , ),name1 = name2, a1l ‘!= a2.
8 ...
9 conforms:= lerrorBadMultinterval & !errorMetaDupAssoc & ...}.

Figure. 1: An extract of a Formula domain.

Basically, a Formula domain consists of abstract data
types, rules and queries. Firstly, abstract data types constitute
the key syntactic elements of Formula. Based on the defined
data types, a number of rules and queries are specified as logic
program expressions, ensuring the remaining constraints [6].
Roughly speaking, rules specify implications and gqueries
restrict the valid states by specifying forbidden states.

Abstract data types. They are defined by using the operator
::=, indicating in the right hand side their properties by means
of fields. A data type definition can be labeled with the
primitive keyword, denoting that it can be used for the
extension of other type definitions. Otherwise, the data type
results in a derived constructor. As a way of example, in line
3 of Figure 1 we define the Class data type representing
the UML Class meta—element constructor. The derived type
Classifier, on the other hand, is defined as the union of
the Class and Association types (see line 5 of Figure 1).

Around data types, Formula defines different categoriza-
tions of the structural elements as building blocks for defining
Formula expressions. These elements are mainly Formula
terms and predicates. As an example of a ferm, in line 7 of Fig-
ure 1 we show Association (namel,_, , ,_,_,_), which
represents all instances of the Association term, where the
first parameter is set to the namel property. The other fields
of this type are filled with a do not-care symbol (‘_’), so that
Formula will find valid assignments. Terms are the basis for
defining predicates, which constitute the basic units of data,
used for defining qgueries and rules. An example of a predicate
isal is Association(namel,_,_,_,_,_,_) (seeline 7),
where the variable al is bound to the Association type.

Rules. Rules are specified by the operator :—, indicating, in
the left hand, a simple term and, in the right hand, the list of
predicates specifying the rule. A rule behaves like a universally
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quantified implication; whenever the relations on the right hand
hold for some substitution of the variables, then the left hand
holds for that same substitution [7]. The intuition of rules is
production; they create new entries in the fact-base of Formula,
populating previous defined types with facts representing the
members in the collection presented in the rule.

Queries. Corresponding to rules where left hand side is a
nullary construction [7]. A query behaves like a propositional
variable that is true if and only if the right hand side of
the definition is true for some substitution [7]. Queries are
constructed by the operator :=, and can be also used like
propositional variables to construct other queries. In particular,
Formula defines in every domain the conforms standard
query, where all constraints come together and which defines
how a valid instance of the domain have to look like. Based
on the existential quantification semantics of queries, the uni-
versal quantification can be achieved by verifying the negation
of a query representing the opposite of the original predicate.
For example, to ensure that upper bounds of associations’
multiplicities are >= than lower bounds, we firstly need
to define a query representing the existence of associations
verifying the opposite (see line 6 of Figure 1). With this query,
we are considering such incoherent situation as a valid state.
Thus, to verify that such situation is invalid, we include the
negation (‘!”) of the query in the conforms query (line 9).

Finally, to explore the design—space, Formula loads the
specification of the domains and the partial models defined
for the specific problem and executes the logic program. The
execution finds all intermediate facts that can be derived from
the given facts in the partial model, and tries to find valid
assignments for the unknowns. This step is carried out by the
Formula solver, which, in case it finds a solution that satisfies
all encoded constraints, will reconstruct a complete instance
model from this information made of known facts [6][7].

III. ENCODING UML/OCL MODELS INTO FORMULA

As described previously, our proposal follows a MOF-like
metamodeling approach, based on the framework the develop-
ers of the Formula tool give in [7]. Their framework provides
a representation in Formula of part of the key concepts defined
both at the MOF meta—level [11], representing the M2 level,
and at the instance-level [11], representing the M1 level for
the object diagram. The resulted Formula expressions are
grouped in an only Formula domain, which is used by the
Formula solver to find, if it exists, a valid set of instances
of arbitrary class diagrams at the M1 level (conforming with
their MOF meta—level representation) and its corresponding
instances at the MO level (conforming with their instance—level
representation). We note that the authors in [7] do not give a
specific approach for the translation of OCL constraints.

Based on this proposal, we have extended and modified it
giving weight to four main aspects. Firstly, we have mainly
focused on obtaining a more faithful representation of the
MOF structural distribution, specifying a richer metamodeling
framework. Our extended proposal is materialized into four
different Formula units distributed along the MOF meta levels,
which ease the application and the understandability of our
approach, while promoting units reutilization. Secondly, we
provide an approach based on the CLP paradigm for analyzing
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Figure. 2: Case study.

model instances of specific CDs, and not arbitrary ones as
authors in [7] do, which we consider not enough when needed
to reason about specific CDs. Thirdly, in contrast to [7], we
give an approach for translating OCL constraints to Formula
by; (1) identifying a significantly expressive fragment of OCL,
and (2) providing its translation into Formula. Finally, we have
implemented part of our translation approach based on MDA.

Each Formula unit defined in our approach contains two
blocks of Formula expressions, related to the translation of the
CD structural aspects (see Section IV) and its OCL constraints
(see Section V), respectively. Our approach is illustrated with
the case study of Figure 2, designed for explanation purposes
covering basic aspects. It describes both the contractual rela-
tionship between a “Company” and a “Person”, and the family
recursive relationship connecting the class “Person”.

IV. TRANSLATION OF A CD’S STRUCTURAL ELEMENTS

This section presents a brief introduction of the rules we
have defined to transform a class diagram (CD), conforming
with the UML metamodel [11] (M), into Formula. Due to
space reasons, in this paper we focus on a set of basic struc-
tural UML CD features (UML class, attribute, association)
for being frequently used for modeling structural aspects of
systems. Next, we briefly explain their translation classifying
the generated Formula instructions into the different MOF
levels. For the explanation, we lean on Table I.

Level M2. For each meta model element Class, Association
or Property ¢ M, we define a primitive Formula data type
with the same name and with specific fields (see level M2 in
Table I). For example, in the case of classes, we define the data
type Class(;) € CPS, with two String fields (name and
isAbstract). The definition of these data types allows For-
mula to create Formula instances representing specific UML
classes, associations and types of properties, respectively, at the
M1 level. In the case of the Property element ¢ M, we define
a type for each build-in type, called typeNameProperty,
with specific fields (see Table I). In addition to Integer,
String and Boolean, included in [7], we also give support
to Real, LiteralNull and UnlimitedNatural types. The
data type HasProperty (;)e CPS is also defined to represent
the possession of a property by a classifier.

Level M1. Two groups of expressions are defined at this level.
[M1a.] Each specific class, association and property € CD, is
represented by a Formula instance of the corresponding con-
structor (Class, Association or Property e CPS defined
at level M2). By these Formula instances, we are explicitly
representing, in contrast to [7], not arbitrary classes in a
class diagram but specific ones. For example, the elements
ClassPerson and family defined in M1a of Table I corre-
spond to two Formula instances of the constructor Class and
Association, respectively, defined at M2. In particular, spe-
cific properties € CD are represented by a Formula instance of
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the corresponding Property constructor (e.g., namePersonP
is StrProperty(...) in Mla of Table I), and by an in-
stance of the data type HasProperty € CPS, representing the
property’s ownership (see Table I).

[M1b.] In order that Formula is able to generate instances of
specific class, association and property € CD to explore the
concrete design—space, we need to create specific Formula data
types representing each type of instance. For their definition,
we have based on the description of the Instances package [11],
in particular, on the InstanceSpecification element, for classes
and associations, and on the Slot element, for properties. On
the one hand, the definition of the UML InstanceSpecification
element includes the classifier of the represented instance and
the associated InstanceValue [11]. Taking this into account, for
each class ¢ € CD, we define a primitive Formula data type
called Instancec.name (; ) € CPS, with two fields, represent-
ing the associated classifier and instance value, respectively
(see level M1b in Table I). As a way of example, see the
primitive data type InstancePerson in Table I. When the
classifier is an association, the UML instance specification
describes a link [11], so in this situations we name the created
data types with the Link prefix. Since links connect class
instances [11], for each association a ¢ CD, we define a
primitive Formula data type called Linka.name (; ; ; ) € CPS,
which includes, additionally, the instance specifications of the
associated classes (see for example LinkFamily in Table I).
So that Formula can generate property’s specific values, we
define specific data types representing the property’s slots,
based on the specifications of the Slot element [11]. Taking
this into account, for each property e CD, we define a primitive
type called p.name+p.ownernameSlot (; ;) € CPS (e.g.,
namePersonSlot in Table I), which registers the owner, the
property type and its value.

Level MO. Finally, in order that Formula can reason and
search for valid instances of the specific classes, associations
and properties of the source class diagram, we include the
Introduce (f,n) command (used to add n terms of the
element type f) with the corresponding Instancec.name,
Linka.name or p.name+p.owner.nameSlot data type, as f,
and a specific number as n, to indicate the number of valid
instances of such data type we want Formula to generate as part
of the resulted object class diagram. For example, we define the
[Introduce (InstancePerson, 2) ] command, so that For-
mula searches two valid instances of InstancePerson (see
level MO in Table I).

Finally, the Formula expressions resulted from the trans-
lation of a CD are grouped in four different Formula units.
On the one hand, Formula expressions defined at the meta—
model level (M2) are included into a Formula domain called
MetaLevelrp. Since the representation of the meta—level M2
is the same whatever CD is considered, this Formula domain
is defined once and used for each CD. An excerpt of the
MetaLevelrp domain has been presented in Figure 1. On the
other hand, Formula expressions defined at the model level
(M1) are distributed into two different units; the CDModel
model, which is constituted by the Formula expressions defined
in M1la, conforming with the MetalLevelrp domain, and the
InstanceLevelp domain, constituted by the expressions de-
fined in M1b. Finally, the Formula expressions at the instance
level (MO) are included in the CDInstancer pjs partial model.
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TABLE I: Excerpt of the CD to Formula mapping.

Level

Class

Association

Property

M2

primitive Class ::= (name: String,

isAbstract: Boolean).

primitive Association ::= (name: String,
srcType: Class, srcLower: Natural, srcUpper: UpperBound,
dstType: Class, dstLower: Natural, dstUpper: UpperBound).

primitive StrProperty::=(name:String, def:String,
lower:Natural, upper:UpperBound).

primitive LiteralNullProperty::=(name: String, def: Null,...).

primitive Unlimi roperty::=(; String, def: UpperBound,.)
Property::= StrProperty + ...+ userDataTypeProperties.

primitive HasProperty ::= (owner: Classifier, prop: Property).

M1

Translation pattern:

Classc.name is Class(‘c.name’, c.isAbstract)
Example:

ClassPersonis Class(“Person”, false)

Translation pattern:

a.name is Association(‘a.name”,

Class("a.memberEnd.at(1).type.name", a.memberEnd.at(1).type.isAbstract
a.memberEnd.at(1).lowerValue, a.memberEnd.at(1).upperValue,

Class("a.memberEnd.at(2).type.name", a.memberEnd.at(2).type.isAbstract
a.memberEnd.at(2).lowerValue, a.memberEnd.at(2).upperValue)

Example:

family is Association(“family”,Class(“Person” false), 0, 2,

Class(“Person” false), 0, star)

Translation pattern:
primitive Instancec.name ::= (id: Integer,

b | Example:
primitive InstancePerson::=(id: Integer,

type: Class).

type: Class).

Translation pattern:
p.name+p.owner.nameP is p.typeProperty(‘p.name’,p.default,
p.lowerValue,p.upperValue)
HasProperty(Class("p.owner,.name”, p.owner.isAbstract),
p.typeProperty(‘p.name’, p.default, p.lowerValue,p.upperValue))
Example:
namePersonP is StrProperty(“name”,“”,1,1)
HasProperty(Class(“Person” false),StrProperty(“name”,*”,1,1))

Translation pattern:
primitive Linka.name ::=(id: Integer, type: Association,
a.memberEnd.at(1).name: Instancea.memberEnd.at(1).type.name,
a.memberEnd.at(2).name: Instancea.memberEnd.at(2).type.name).
Example:
primitive LinkFamily::=(id:Integer,type:A
chil Person, parent

rson).

Translation pattern:
primitive p.name+p.owner.nameSlot ::= (owner:Element,
prop:p.typeProperty, value: valueType)

Example:
primitive namePersonSlot::= (owner: Element, prop: StrProperty, value:String).

Formula instructions pattern:
[Introduce(Instancec.name, number)]
Example:

[Introduce(InstancePerson,2)]

Example of the Formula generated instances:
InstancePerson(93,Class(“Person” false))

MO InstancePerson(96,Class(“Person” false))

Formula instructions pattern:

[Introduce(Linka.name, number )]

Example:

[Introduce(LinkFamily,2)]

Example of the Formula generated instances:

LinkFamily(5,
Association(“family”,Class(“Person” false),0,2,

Class(“Person”,false),0,star),

InstancePerson(93, Class(*‘Person” false)),
InstancePerson(96, Class(“Person” false)))

Formula instructions pattern:

[Introduce(p.name+p.owner.nameSlot, number )]

Example:

Ir di P lot,2)]

Example of the Formula generated instances:

namePer P 3,Class(“Person” false)),
StrProperty(“name”,*”,1,1),202)

nameP (96,Class(“Person” false)),
StrProperty(“name”,“”,1,1),201)

Starting from these units, Formula can reason about the valid
object class diagram, represented as instances of the elements
of the InstanceLevelpp domain, conforming the given CD,
represented by means of the CDModelr s model.

V. TRANSLATION OF CLASS DIAGRAM’S CONSTRAINTS

OCL integrity constraints undecidability has been tackled
in the literature by defining methods that allow UML/OCL
reasoning at some level. Examples of such methods are [4],
[13]; (1) those which allow only specific kinds of constraints,
(2) those which consider restricted models, (3) methods which
do not support automatic reasoning, or (4) those which ensure
only semi—decidable models. Our approach, which would fit
within the first type, identifies a significantly expressive frag-
ment of OCL and provides its translation to Formula for OCL
constraints’ decidable reasoning. In this section, we show that
our OCL fragment can be formally encoded in Formula, thus,
we guarantee finite reasoning for every OCL CD’s constraint
expressed using the constructors of our OCL fragment. Next,
we introduce the chosen OCL fragment and give the main idea
of its translation to Formula. Due to space reasons, we translate
a simple OCL constraint, which will serve as a reference
explanation for the remainder elements of our OCL fragment.

Introduction to the chosen OCL fragment. We consider
the OCL invariant context C inv: expr(self), where C
is the class ¢ CD to which the invariant is applied and
expr (self)is an OCL expression resulting in a Boolean value
for each se1f ¢ c. An OCL expression can be defined as a
combination of navigation paths with OCL operations, which
specify restrictions on those paths. A navigation path can
be defined as a sequence of roles’ names in associations
(such as p.children, being p a Person instance in Figure 2),
attributes’ names (such as c.name, being ¢ a company instance
in Figure 2), or operations (for example, c.hireEmployee (p)).
Taking this into account, in Figure 3 we represent the syntax of
our specific fragment, where ocLExpr is defined in a recursive
manner. For example, an ocLExpr can be the result of applying
relational operations to addexpr expressions. Additionally, an
ocLExpr can be the result of applying a boolean operation
BoolOper tO a Path, Or a Path to which a SelectExpr is
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OCLEXpr =RelExpr |Path BoolOper |Path SelectExpr
not OCLExpr | OCLExprl and OCLExpr2
OCLExprl or OCLExpr2

Path =PathItem | PathItem.Path

PathItem =role | classAttr | operation
roleName.role | roleName.classAttr
roleName.oper | roleName.transClosuOper

RelExpr = AddExpr <,<=,>,>=,=,!= AddExpr

AddExpr =MulExpr | AddExpr +/- AddExpr

MulExpr =Path | MulExpr * Path | MulExpr/Path

SelectExpr = -> select ( OCLExpr) BoolOp |
-> select ( OCLExpr) SelectExpr

BoolOper = -> size()| -> forAll (OCLExpr)

Figure. 3: Syntax of the OCL fragment.

applied. An ocrExpr can be also constituted by boolean
combinations of these OCL expressions (not, and and or).
A path expression represents the structural way of defining
navigation paths, starting from a pathItem, by combining
roles’ names, attributes’ names or operations, with the dot
operator. For an explanation of OCL, we refer to [10].

Our Translation Approach. Formula does not have a concept
similar to that of OCL invariants but gives the possibility of
defining queries, which provide a way to represent invariant se-
mantics. As way of example of our approach, in this section we
introduce the basic rule for translating OCL invariants where
the ocrExpr corresponds to a simple relational expression
RelExpr. We explain this rule by applying it to the invariant
context Person inv: self.age >=18, which formalizes the
constraint “The people working on a company must be older
than 18 years old” (see Table II).

First-step. This step is carried out by means of an interpre-
tation function FOL(), which translates each OCL expression
expr (self) defined in an instance self € ¢, into a First—-Order
Logic (FOL) formula defined in the variable se1£ (see label (1)
in the first step of Table II). Basis in first order logic states that
the universal quantifier corresponds to a negated existential,
so the previous expression is equivalent to the one label (1°),
where FOL (not expr (self)), corresponds to the mapping of
not expr (self) into First-Order Logic (FOL).

Second-step. Each constraint logic program P can be trans-
lated into FOL according to its Clark Completion P* [8].
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TABLE II: Translation of an invariant and example of use.

TABLE III: Translation of part of our OCL fragment.

Translation of a RelExpr invariant

OCL expression Translation approach

OCL Invariant: context Person inv: self.age >=18
Vself € Person age(self)>=18. (1)

- (dself € Person age (self)<18). (1)
—(d ageSlot (self,def,val) val<ls8) .(2)
query:=ageSlot (self, _,val), val<1ls.
conforms := ! query. (3)

First—step:

Second—step:
Third—step:

Roughly speaking, the Clark Completion of an atom or
predicate symbol can be represented as a combination of
term expressions and rules, evaluated in variables, giving a
true result. The inverse translation, that is, from the FOL
representation of P (P*) to P, can be carried out by apply-
ing inverse versions of the Clark Completion algorithm [3],
which compile specifications into the logic program it directly
specifies. Taking this into account, the second step is devoted
to represent the semantics given by the affirmative evalua-
tion of FOL (not expr(self)) in the collection of instances
self € ¢, by means of Formula expressions. Since paths in
OCL are defined in terms of instances of the class diagram,
and in our approach such instances are defined by means
of the data types defined in the CDlInstancerpys partial
model, such Formula expressions are written in terms of
the InstanceclassName, LinkassociationName and/or proper-
tyName+ownerNameslot data types. Based on this premise,
in this second step we rewrite the FOL expression FOL (not
expr (self)) in terms of Formula expressions by applying a
second function called FOL*(). This function FOL*() basi-
cally represents the predicate FoL (not expr (self)) by using
the corresponding Formula terms and predicate symbols €
InstanceLevel pp, and Formula constraints, in such a way that
the resulted expression is evaluated to true (see step labeled
(2) in Table II). In particular, the application of this step to
our constraint consists of representing age (self)<18 in terms
of the ageslot whose val property is less than 18.

Third-step. Taking into account the semantics of queries in
Formula, the FOL expression given in the second step is finally
represented by means of the definition of a query and the
verification of its negation in the conforms query (see step
labeled (3) in Table II). This step is materialized by means of
the application of the function CLP(), which basically rewrites
the terms resulted from (2), and joins them by °,.

Thus, the translation of an invariant is carried out by means
of the composition of the three defined functions. Next, we
make some remarks regarding the translation of the remainder
elements in our OCL fragment (see Table III). In particu-
lar, excluding the select and transitive closure elements,
whose translation requires extra attention, we consider that
the translation of the remainder OCL elements can be easily
understood by considering our previous explanations.

Select operation. Since this operation refers to obtaining a
subcollection from a set of elements, its translation consists
of defining a new Formula data type and populate it with
the facts representing the members in the collection we
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OCL Invariant: context C inv: expr (self) El and E2 CLP (FOL* (FOL(E1l))) &CLP (FOL* (FOL (E2)))

First—step: Vself € C FOL(expr (self)). (1) El or E2 CLP (FOL* (FOL(E1))) | CLP (FOL* (FOL (E2)) )
—(dself € C FOL(not expr (self)).(l’) not E CLP (FOL* (FOL (not E)))

Second—step: | — (FOL* (C) FOL* [FOL (not expr (self))]) (2) C—> size() count (CLP (FOL* (FOL(C)))) .

Third—step: query:=CLP (FOL* [FOL (not expr (self))]) C—> query:=CLP (FOL* (FOL(not exp(c)))).
conforms := ! query. (3) forAll (clexp(c) conforms:= ! query.

Example of application C—> SC,exprType: :=(self:Tserf, sele:Tsele)

select (clexp(c) ScexprType (self,sele) : -

CLP (FOL* (FOL (exp (c))))

want to select (see the first and second lines, respectively,
of the translation of the select operation in Table III).
As a way of example, if we want to collect the female
employees of a company, we define the type: FemaleEmp: :=
(self: InstanceCompany, sele:InstanceEmployee), and
populate it by means of the rule: FemaleEmp (self, sele) :-
LinkContract(_,_,sele,self),genderPSlot (sele,_,val),
val=female., Which gathers only female employees.

Transitive closure. Transitive closure is normally needed to
represent model properties which are defined in a recursively
fashion. The translation of closures is not straightforward since
they are not finitely axiomatizable in first order logic, and OCL
also does not support them natively [2]. Nevertheless, it is
possible to define the transitive closure of relations which are
known to be finite and acyclic. In particular, for its translation
we have based on both, the definition of transitive closure
provided in [2], and the representation in CLP of acyclicity
constraints provided in [7] (page 3), and proposed a translation
based on defining Formula rules, considering the fact that CLP
exposes fixpoint operators via recursive rules. Additionally, the
translation of this operation allows us to support aggregation.

Finally, the Formula model resulted from the translation of
a CD model annotated with OCL constraints (that is, the 4
Formula units including the Formula translation of the OCL
constraints), is used by Formula for reasoning about it. More
specifically, the tool inspects the Formula model looking for
a valid and non—-empty instantiation of the CD/OCL model
to proof its satisfiability. If the result is empty, the defined
CD/OCL model is not satisfiable. Otherwise, Formula proposes
a conforming instantiation model of the defined CD/OCL
model, according to the desired software system settings.

VI. AUTOMATIC TRANSLATION

In order to manually transform a CD into the Formula
language, a professional with both UML and Formula skills
may be required. Also, such an encoding process may entail
a big effort depending on the CD used. The challenge is to
perform such a transformation in a viable and cost—effective
way. The complexity of some software designed models to-
gether with their possibility of change over time, make the
manual transformation of every CD into the input language
of a model finder tool a cumbersome and costly endeavor. To
overcome these challenges, we use an MDA tool-approach,
which allows us to automatically carry out the transformation
from the CD to Formula. Among the large amount of MDA-
based tools in the literature, we are interested in those with
support for customizable model-to—text transformations. The
idea is to define only one set of transformations for all CDs.
Finally, we have chosen the MOFScript Eclipse plug-in [5],
which we have already used in previous works [12]. In our
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particular case, we use the UML 2.0 metamodel and the
specific CD as the model, defined using the UML2 Eclipse
plug-in [5]. As far as the Formula program generation is
concerned, we have defined several MOFScript transformation
scripts that generate the different Formula units with the
translation of the structural CD elements. In particular, we
have defined a set of MOFScript transformation rules, grouped
into different MOFScript files, employed to produce the print
Formula structures that constitute the three Formula units in
our approach, which depend on the specific CD.

VII. DISCUSSION AND RELATED WORK

As described previously, the formalization and analysis of
UML CDs can be done by means of translating the model to
other language that preserves its semantics, and finally, using
the resulted translation to reason about the design. Taking into
account that there is not an only language for materializing
such translation, and that several translation approaches can
be established using a same language, a discussion about the
semantic support of the language, together with the strengths
and weaknesses of the particular translation approach, is
worthwhile. Our work bets on using Formula for the semantics
preserving translation of the models to be verified. As for
the use of Formula instead of other analyzers, in particular,
Formula authors present in [7] a comparison with other tools,
both SAT (Boolean Satisfiability) solvers and alternatives such
as ECLiPSE and UMLtoCSP, focusing mainly on Alloy [1],
for being the closest tool to Formula. Although the Formula
authors provide a careful comparison with Alloy in [7], it
is worth noting the strengths of Formula, such as a more
expressive language or its model finding problems, which are
in general undecidable.

Our approach follows a multilevel MOF-like framework
based on the one proposed in [7]. On the one hand, we propose
a more faithful representation of the basic UML metamodel
and instance domain elements [11]. We consider that providing
a translation which captures the structural distribution of the
MOF architecture can contribute to ease the application and
understandability of the representation of a CD/OCL model
into Formula. We also give support for the translation of more
metamodel elements (such as full support to generalization,
property types other than Integer, String and Boolean, includ-
ing user defined data types, property’s multiplicities, etc.), thus
providing a richer framework. Additionally, we enhance the
proposal given in [7] by identifying an expressive fragment
of OCL, which guarantees finite satisfiability and providing a
formalization of the transformations from such OCL fragment
to Formula. At this respect, several related works can be cited,
being one of the most complete proposals the one given in [13].
In [13] the authors define a fragment of OCL called OCL-lite,
and prove the encoding of such a fragment in the description
logic ALCZ, so that Description Logic techniques and tools
can be used to reason about CD annotated with OCL-lite
constraints. A difference of this approach with ours is the
fact that, although the chosen fragment is quite similar than
ours, we have tried to identify a simplest fragment so that no
element included in it can be inferred from other constructors
in the fragment by applying direct OCL equivalences (such as
the implies operator). In our particular case, there are sev-
eral OCL operations and expressions whose representation in
Formula is straightforward by applying equivalences (such as
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the exists, isEmpty/notEmpty, xor, or reject). Finally,
there are other operations (such as oc1IsTypeOf, considered
in [13]) that can not be represented into Formula, but we
give support to other not straightforward operators, such as
transitive closure, not normally included in related works.

VIII.

We present an overall framework to reason about
UML/OCL models based on the CLP paradigm, using For-
mula. Our framework provides a way to translate a UML
model into Formula, following a MOF-like approach. We also
identify an expressive fragment of OCL, which guarantees
finite satisfiability and we provide an approach for translating
it to Formula. Our proposal can be used for model design
reasoning by verifying correctness properties and generating
model instances automatically using Formula. We provide an
implementation of our CD to Formula proposal, being the
implementation of the OCL fragment a remaining work.

CONCLUSION AND FUTURE WORK
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