
Architectural Elements of Ubiquitous Systems:

A Systematic Review

Carlos Machado

Informatics Department

UFPB

João Pessoa, Brazil

carlos@ccen.ufpb.br

 Eduardo Silva, Thais Batista, Jair Leite

Computer Science Department

UFRN

Natal, Brazil

eduardoafs@ppgsc.ufrn.br,

{thais,jair}@ufrnet.br

Elisa Yumi Nakagawa

Department of Computer Systems

USP

São Carlos, Brazil

elisa@icmc.usp.br

Abstract—Ubiquitous systems have become an important and

even essential part of our daily life. For instance, smart homes

are good examples where such systems can be found. However,

the design and implementation of ubiquitous systems are hard

tasks, as they involve several areas of computing, as software

engineering, artificial intelligence, and distributed systems.

This task is even harder as there is no general reference

architecture that could be used to guide the development of

such systems. As a consequence, each project solves the same

problem in a different way, some better than others. This

paper aims at exploring, organizing, and summarizing the

common, essential architectural elements of those systems. We

have also investigated reference architectures for this type of

systems, as these architectures are important artifacts for

providing such elements. For this, we conducted a systematic

review that is a technique that provides an overview of a

research area to assess the amount of existing evidences on a

topic of interest. As main results achieved, we have found a set

of eleven elements, which appears in most of the existing

systems and middlewares that can be used to define a general-

use software architecture. This work could certainly contribute

to a more systematized development of ubiquitous systems.

Keywords-ubiquitous computing; systematic review; software

architecture

I. INTRODUCTION

Ubiquitous computing is the term initially coined by
Mark Weiser [1] when referring to computer systems
available everywhere at any time. These systems are often
present in our lives, in form of smart TVs, smart cars, and
even whole smart homes. They are capable of automating
many usual tasks and support our daily live, using concepts
of artificial intelligence and distributed systems.

Lyytinen and Yoo [2] proposed a difference between
ubiquitous computing and pervasive computing by defining
pervasive computing as models with high coupling and low
mobility, while ubiquitous computing are computing models
with high coupling and high mobility. However, this
distinction was not widely accepted in the literature and
some works do not make distinction between these two
terms. It is important to highlight these differences, since
some advances in ubiquitous systems could not be applied in
pervasive computing, and vice versa.

An essential part of a ubiquitous project, as in any
software system, is the software architecture. This

architecture encompasses a set of decisions about the
software organization as its structure, interfaces, behavior,
and definitions of the structural elements [3]. A software
architecture is essential to guide the development of a robust
system, which can evolve and change through its lifetime. To
help the definition of such artifact, the concept of reference
architecture was proposed. A reference architecture is a
special type of software architecture that provides a common
understanding of a given domain, in the case of this work,
the ubiquitous systems domain [4][5].

Although a number of ubiquitous systems have been
proposed and impacted several sectors of the society, there is
no consensus on what are the common, essential elements of
a ubiquitous systems’ architecture. The understanding of
what are these elements is crucial for the systematic
development of new systems, as well as to the maintenance
and quality of existing ones.

In this context, this paper aims to identify the main
elements that constitute the architecture of ubiquitous
systems and whether there is any reference architecture for
this domain. To achieve this goal, we conducted a
systematic review that is a technique originated from the
Evidence-Based Software Engineering (EBSE) [6,7], which
allows to explore, organize, synthetize, and evaluate all the
contributions of a research area. A systematic review allows
us to identify a variety of studies that may involve theories
and concepts, technological development reports,
experimental research results and many others. As main
results, we have observed eleven common elements, which
are present in most of existing systems and middleware, and
that we identified as essential elements. These elements can
be used to define a general-use reference architecture,
aggregating common solutions for common problems in the
ubiquitous systems development.

This paper is organized as follows: Section II presents the
systematic review, from its planning to the analysis of
results, focusing on the architectural elements that
characterize systems for ubiquitous computing. Section III
contains a discussion of the collected data. Section IV
presents the threats to validity of this systematic review.
Finally, Section V presents final remarks and future work.

208Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

II. SYSTEMATIC REVIEW

This systematic review was conducted in the context of
software architectures for ubiquitous computing, aiming at
evaluating relevant studies until March 2013. To conduct this
systematic review, the process was divided into three steps,
as illustrated in Figure 1: Planning, Execution, and
Evaluation. In the first step, we defined the search criteria
and the inclusion and exclusion criteria that were used to
collect related works for ubiquitous or pervasive computing.
This step was also responsible for defining what we expect to
extract from the found studies. The second step consisted in
the execution of the systematic review, in which was
performed the search for the primary studies (i.e., conference
publications, periodicals, thesis, etc.), using the planning
from the first step. The second step also applied the inclusion
and exclusion criteria, in order to filter the results that were
relevant to this review. Finally, in the third step, the results
were evaluated to extract data to formulate the answer for the
research questions.

Figure 1: Systematic Review Steps

A. Planning

This step of the systematic review defines: (i) research

questions, (ii) search strategies and (iii) inclusion and

exclusion criteria.

1) Research Questions

In order to identify the primary studies that present

common, essential architectural elements for ubiquitous

systems, the following Research Questions (RQ) were

defined:

• RQ1: Which are the reference architectures for ubiquitous

systems? Note: This question was formulated in order to

find reference architectures for ubiquitous systems. These

architectures could provide common, essential elements

of ubiquitous systems.

• RQ2: What are the common architectural elements for

ubiquitous systems? Note: This question was defined as a

complement for RQ1, and also intends to identify the

common elements for ubiquitous systems.

2) Search Strategy

To establish the search strategy for the primary studies,

from RQ1 and RQ2, the following keywords were chosen:

“Reference Architecture” and “Ubiquitous Computing”. We

also identified synonyms for these keywords, or similar

contexts: “Reference Architecture” may be referred as

“Reference Model” and it is directly related to “Software

Architecture” or “Architectural Model”. In addition,

“Ubiquitous Computing” is related to “Pervasive

Computing”, as we explained in Section 1. Middleware for

ubiquitous computing were also considered, through the

keywords “ubiquitous middleware architecture” and

“pervasive middleware architecture”. This inclusion had two

goals: (i) to obtain an overview of existing systems, since

middleware are designed to meet a wide variety of

ubiquitous/pervasive applications, and (ii) the identification

of the elements of these middlewares that consist in

important components for ubiquitous systems. Thus, it was

established the following search string: (("Reference

Architecture" OR "Reference Model" OR "Software

Architecture" OR "Architecture Model") AND ("Ubiquitous

Computing" OR "Pervasive Computing" OR "ubiquitous

middleware" OR “pervasive middleware”)). This string was

used in the following publications databases: IEEEXplorer,

ACM Digital Library, Web of Knowledge and

ScienceDirect. The search string was adapted for each

database in order to perform a directed search on title,

abstract, and keywords. Only publications in English were

considered.

The review process was designed as follows: The search

must be performed in digital libraries, which include the

main vehicles where the literature can be published. After

that, the reviewers may read the title, abstract, and keywords

of the found studies, in order to define which studies are

worth reading the full text. After reading them, the answers

of the research questions might be formulated.

3) Inclusion and Exclusion Criteria

To evaluate and select relevant studies, we defined a set

of inclusion and exclusion criteria. These criteria were

applied after each search, to define the relevance of a given

study. The Inclusion Criteria (CI) was used to include

relevant studies in this systematic review, namely:

• IC1: The study proposes, uses or evaluates a

reference architecture for ubiquitous systems; and

• IC2: The study presents a middleware for ubiquitous

computing, explicitly exhibiting its architecture.

The Exclusion criteria (EC) were defined to exclude

studies with no relevance for this review, i.e., studies that do

not contribute to answer RQ1 or RC2. The ECs are:

• EC1: The study is not related to ubiquitous or

pervasive systems;

• EC2: The study is not in English;

• EC3: The study does not have abstract or the full text

is not available;

• EC4: The study consists of a compilation of studies

from conferences or workshops, for example; and

• EC5: The study defines a low-level architecture,

describing hardware or operational elements.

It is worth saying that a relevant study to this systematic

review is defined as a study that does not satisfy any of the

exclusion criteria, satisfying at least one of the inclusion

criteria.

B. Execution Results

Upon concluding the searches, we obtained the results

summarized in Figure 2. This figure shows the number of

papers found by the searching process and the selected

209Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

papers. In the figure, the found papers represent the number

of papers returned by the automatic searching process and

evaluated, i.e., we read their titles, keywords, and abstract.

The selected papers represent papers whose abstracts and

keywords evidenced that they are interesting for our

systematic review and they were selected to be fully read.

Figure 2: Search Results

As illustrated in Figure 2: (i) from 56 results found by

the IEEExplorer search engine, 15 were filtered and 12 were

selected for the second stage; (ii) from 16 results found by

the ACM Digital Library engine, 10 were filtered and six

were selected for the second stage; (iii) from 93 results

found by the Web of Knowledge search engine, 20 were

filtered and eight were selected for the second stage; (iv)

from six results found by the ScienceDirect search engine,

five were filtered and four were selected. Additionally, eight

new studies were found from the evaluation of references of

the selected articles in the first instance, and seven of them

were selected. The total number of selected papers is 37.

After a full analysis of each work and the application of the

inclusion and exclusion criteria, 13 studies were considered

relevant for our study, as listed in Table I.

Among these studies, we highlight the E6, E8, and E11

studies that present surveys on middleware for ubiquitous

computing and cite, among others, precursor architectures,

such as Gaia [17] and Homeros [13]. However, because

these surveys have different goals we used them only as a

source for searching new middlewares. Besides that, E10

presents a systematic review about ubiquitous computing,

but it focuses on the characterization of ubiquitous

computing projects. Note that this study is also interesting

for our systematic review; however, it differs from ours,

because we aim to identify the architectural elements

commonly found in ubiquitous systems, as well as existing

reference architectures.

TABLE I: SELECTED PAPERS LIST

Study Author Year

E1 Jiehan Zhou et al [9] 2009

E2 Yi Liu, Freng Li [10] 2006

E3 Tao Xu, Bertrand David, René Chalon, Yun Zhou [11] 2011

E4 Shriram. R , Vijayan Sugumaran [12] 2007

E5 Seung Wok Han, Yeo Bong Yoon and Hee Yong Youn

[13]

2004

E6 Saeed, A. and Waheed, T. [14] 2010

E7 Chang-Woo Song et al [15] 2013

E8 Eugster, Patrick Th.; Garbinato, Benoît; Holzer, Adrian

[16]

2009

E9 Román, M. et al [17] 2002

E10 Spínola, R. and Travassos, G [8] 2012

E11 Raychoudhury, V., Cão, J., Kumar, M., Zhaung, D. [18] 2013

E12 DA, K., Dalmau, M., Roose, P. [19] 2012

E13 Fernandez-Montes, A., Ortega, J. A., Alvarez, J.A [20] 2009

C. Evaluation Results

We found four studies (E1, E2, E11 and E13) that

present reference architectures for ubiquitous or pervasive

systems: [9], [10] [18], and [20]. The architecture proposed

by Zhou [9] is focused on service composition in pervasive

systems, while the architecture presented by Liu [10] was

defined in a more generic way. Although the authors state

that the work is about pervasive computing, the architecture

of Liu [10] introduces an element of mobility, which is a

typical feature of ubiquitous systems. The architecture

proposed by Raychoudhury [18] was defined to support

comparisons between existing pervasive systems. Thus, it

does not support mobility, and it describes a multi-level

structure, which blends elements of high level of

abstraction, as reasoners, with elements of low abstraction,

such as network protocols. Finally, the architecture

proposed by Fernandez-Montes [20] is focused on building

applications for smart environments, focusing on

requirements for architectural elements.

These works contributed to answer RQ1 about reference

architectures for ubiquitous systems. Using these four

architectures and other studies on middleware for ubiquitous

computing (i.e., studies E3, E4, E5, E7, E8, E9, and E12), it

is possible to identify common elements that are essential

for ubiquitous systems architectures, in order to find

answers to RQ2. Table II describes the elements identified

in the evaluated architectures.

210Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

TABLE II: COMMON ELEMENTS OF UBIQUITOUS SYSTEMS

Element Description Studies

Sensor Hardware element responsible for

providing context information.

E1, E3, E7, E8,

E9, E11, E12

Actuator Hardware element responsible for

changing the environment, giving

feedback to the user.

E3, E8

Context

Service

Service used to recover context

information from sensors. It may

aggregate many sensors.

E1, E3, E4, E7,

E8, E9, E11,

E12, E13

Actuation

Service

Service used to give feedback to

the user. It may aggregate many

actuators

E3, E8, E13

Context

Repository

Data repository for context

information and quality

parameters

E1, E2, E3, E4,

E5, E7, E9,

E11, E12, E13

Event Module Module to support asynchronous

monitoring

E1, E5, E7, E9,

E11, E13

Reasoning

Module

Module that allow the production

of new context information from

existing data

E1, E2, E3, E7,

E8, E9, E11,

E12, E13

Adaptation

Module

Module responsible for changing

the system behavior according to

a preset of rules.

E1, E5, E9,

E11, E12, E13

Coupling and

Mobility
Mechanism

Mechanism that abstracts the

notion of environment, making
the system functional in various

different environments. It uses
tracking mechanisms, service

search and mobile

communications

E2, E4

Aggregation

or
Composition

Module

Module for

composing/aggregating context
information from lower level

information.

E2, E3, E7, E8,

E9, E11, E12,
E13

Security

Module

Module responsible for

implementing protection rules,
such as authentication

mechanisms, access restrictions

and service validation.

E2, E5, E9,

E11, E13

In Table II, the first column names the element, the

second column contains a brief description of the element,

and the third column lists the primary studies that present a

concept similar or equal to the element in question.

Therefore, it can be stated that for the development of

ubiquitous systems, this set of eleven elements may be

included, since they are commonly found in those systems.

Moreover, we can conclude that they are essential elements

in ubiquitous systems architectures.

III. DISCUSSION

In the context of ubiquitous systems, a related work

presented a systematic review that characterized software

projects for ubiquitous systems and intended to understand

how this type of systems affects the life cycle of software

development [8]. This study also identified a list of 10 main

characteristics of ubiquitous systems, as presented in Table

III. In this table, we also observe that the set of the common

architectural elements found by our systematic review is

able to meet the main characteristics mentioned by this

previous systematic review. This table also lists the studies

that present some element that aggregates a given

characteristic.

It is worth highlighting that the establishment of the

relationship between the characteristics and architectural

elements was based on a careful analysis of this domain

literature, focusing on the characteristics and roles of each

element identified by our systematic review. In the next

paragraph, we discuss how each characteristic is associated

to the elements, as shown in Table III.

TABLE III: CHARACTERISTICS OF UBIQUITOUS PROJECTS

ASSOCIATED WITH THE COMMON ARCHITECTURAL ELEMENTS

OF UBIQUITOUS SYSTEMS

Characteristic Element Studies

Service

Omnipresence

Coupling and Mobility

Mechanism

E2, E4

Invisibility Sensor E1, E2, E7, E11,

E12

Actuator E3, E8

Context Service E1, E2, E7, E11,
E12

Actuation Service E3, E8

Context Sensitivity Sensor E1-E3, E7-E9,
E11, E12

Context Service E1, E2, E7, E11,
E12

Context Repository E1-E3, E7-E9,

E11, E13

Reasoning Module E2, E3, E8, E9,

E11-E13

Coupling and Mobility
Mechanism

E8, E9, E11, E13

Adaptable Behavior Context Service E1, E2, E7, E11,
E12

Event Module E5, E7, E9, E11

Adaptation Module E1, E5, E9, E13

Experience Capture Reasoning Module E4, E11, E12

Service Discovery Event Module E1, E9

Function
Composition

Reasoning Module E2, E3, E8, E9,
E11, E12

Coupling and Mobility
Mechanism

E8, E9, E11, E13

Spontaneous

Interoperability

Coupling and Mobility

Mechanism

E2, E4

Heterogeneity of

Devices

Sensor E8, E9

Event Module E5, E11

Fault Tolerance Coupling and Mobility
Mechanism

E4

Event Module E5, E9

Adaptation Module E1, E5, E9

Reasoning Module E12

Context Service E12

Security Module E11

The Service Omnipresence characteristic can be

supported by the Coupling Mechanism and Mobility

mechanism, since it uses mobile communication protocols

that allow access to services anywhere, anytime.

The Invisibility characteristic is related to: (i) the Sensor

element, which captures context information from the

211Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

environment, without any explicit order of the user; (ii) the

Actuator element, which forwards the system’s actions to

the environment; (iii) the Context Service and Actuation

Service, which are the architectural elements that enable

access to sensors and actuators.

Context Sensitivity is a key feature of any ubiquitous

system. Sensors and Context Services are directly related to

this characteristic, allowing the identification of the context

and the execution of operations according to the current

context. The Context Repository is responsible for storing

context information. The Reasoning Module performs

inferences about contextual information and can produce

new information. The Aggregation or Composition module

performs the context information composition.

Adaptable Behavior defines that the system must adapt

to the environment, offering services according to the

current context. The Context Service is essential for the

identification of the context, while the Event Module is

responsible for triggering an event for context changing.

After that, the adaptation can be performed. This

characteristic may also be attributed to the Context

Repository, as in E5. Finally, the Adaptation Mechanism

performs the required adaptation for the new context. The

Experience Capture characteristic consists of capturing

and storing information for future use. It is typically related

to the Reasoning Module, which uses machine learning and

other artificial intelligence techniques. This module has a

role similar to the Aggregation or Composition Module

found in some studies, such as E8. The existing difference

between these modules lies in the fact that the Reasoning

Module is able of generating new context information, while

the Aggregation or Composition Module only groups or

composes the context information. In most studies;

however, these modules are integrated.

Service Discovery is supported, in most studies, by the

Event Module, which is proactive in relation of services,

monitoring and discovering available services, making them

available through a publish-subscribe mechanism. However,

this behavior may be aggregated to the Context Repository,

as in E5.

Service Composition determines the system ability of

providing new services to the final user, based on existing

services. The Reasoning Module is related to this

characteristic, since this module must be able of identifying

the basic services (E2, E3, E8, E9, and E12) and compose

them according to some business rule. The Aggregation or

Composition Module, in some studies (E8, E9, E11), is used

to perform the composition. In addition, the Reasoning

Module can infer new contextual information to provide it

as a new service. However, the new services that may be

offered vary between applications.

Spontaneous Interoperability is the system ability of

using many elements without the need of external

intervention. This characteristic is supported by the

Coupling and Mobility Mechanism, since this element is

responsible for mobile computing protocols and for

handling, in a high abstraction level, environment changes

(E2 and E4).

The Heterogeneity of Devices characteristic defines that

the distinct elements must be uniformly accessed. The E8

and E9 studies discuss the role of sensors in providing

information from heterogeneous sources, as well as the role

of the Event Module to monitor different services in a

transparent way to users.

Regarding the Fault Tolerance characteristic, the

Coupling and Mobility Mechanism is directly related to the

mobile devices used by the users to access the system.

Therefore, this mechanism must be able of handling the

most common problems related to mobile computing, as

connection instability and fluctuations in the data flow (as

shown in E4). The Event Module may trigger many events,

including faults or errors in any of the available services.

The faults can the handled by the Adaptation Mechanism. In

E12, the responsibility of fault tolerance is diffuse, whereas

several elements detect and treat its own inappropriate

behavior. The Security Module also supports this

characteristic, by providing authentication and access

control mechanisms.

In short, it is observed that the common architectural

elements identified by this study adequately meet all the

characteristics of ubiquitous systems stated by Spinola and

Travassos [8].

Note that although only two studies (studies E2 and E4)

explicitly presented the Coupling and Mobility Mechanism,

it was identified that this element type is essential for

ubiquitous systems, since these systems have essentially a

mobility element, to allow the system be accessible

anywhere. The E3 and E7 studies presented a query

mechanism to recover context information from the Context

Repository. However, we chose not to explicitly insert this

element, since it was observed that this element is

commonly implemented as part of the Context Repository,

because it is highly dependent on the format of the stored

context information. Many low-level or very specialized

elements were not considered common architectural

elements. For example, the Operating System and Network

Protocol were not considered, since they were cited only by

studies about low level architecture.

IV. THREATS TO VALIDITY

A major threat to validity of this systematic review refers

to the completeness of this study, i.e., if in fact all the

related papers were included. This problem may have

occurred because relevant studies were not found by the

search mechanisms, for instance, by the technical limitations

of the search mechanisms. Another threat refers to the

results and conclusions presented in the evaluation step. We

tried to minimize those problems by adopting a dual

revision approach for each paper, performed by the different

reviewers of this work. This strategy contributes to reduce

possible bias or misinterpretation. The findings were also

validated by more than one reviewer. These strategies

212Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

ensured that the set of the found architectural elements

cover the essential requirements of an architecture for

ubiquitous systems.

V. CONCLUSION AND FUTURE WORK

The ubiquitous computing enables the use of contextual

information from any environment at any time. Ubiquitous

computing exploits technological advances in pervasive

computing and mobile computing, integrating mobility,

engagement, and distribution. Considering its relevance,

attention to the development of ubiquitous systems is

essential.

This work presented a literature review with the aim of

summarizing the knowledge about reference architectures

and common architectural elements for ubiquitous systems.

As main result, the common, essential elements of

ubiquitous systems were identified, analyzed, and

summarized. This paper also mapped these elements in the

main characteristics of ubiquitous systems. This mapping is

important to verify that the identified elements meet the

essential characteristics of ubiquitous systems. Furthermore,

this set of elements can be considered as basis of any

ubiquitous systems. Therefore, the identification of this set

can be considered an important contribution to systematize

the development of such systems. Moreover, we have

observed that the four reference architectures found in our

systematic review do not comprise all architectural elements

identified in this work. In this scenario, as a future work, we

intend to define a more complete, well-structured reference

architecture. Thus, it is intended that this architecture can

effectively contribute to the development of ubiquitous

systems that have become increasingly important to our

daily lives.

VI. ACKNOWLEDGEMENTS

This work is supported by Brazilian funding agencies

FAPESP, Capes, and CNPq.

VII. REFERENCES

[1] M. Weiser. “The Computer for Twenty-Frist Century”.

Scientific American, September 1991.

[2] K. Lyytinen and Y. Yoo, “Issues and Challenges in

Ubiquitous Computing”. Communications of the ACM. n. 12,

v. 45, 2002. pp. 63-65.

[3] L. Bass, P. Clements, and R. Kazman, Software Architecture

in Practice. Addison-Wesley, Boston, 1998.

[4] R. Cloutier et al, “The Concept of Reference Architectures”.

Systems Engineering, 13. V. 13, n.1, UK, 2010, pp. 14-27.

[5] E. Y. Nakagawa, P. O. Antonino, and M. Becker, “Reference

Architecture and Product Line Architecture: A Subtle but

Critical Difference”. Proc. 5th European Conference on

Software Architecture (ECSA'2011). Essen, Germany, 2011.

pp. 207-211.

[6] T. Dyba, B. Kitxenham, and M. Jorgensem, “Evidence-Based

software engineering for practitioners”. IEEE Software, v. 22,

n. 1, 2005. pp. 58-65.

[7] B. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-Based

Software Engineering”. Proc. 26th International Conference

on Software Engineering (ICSE). IEEE Computer Society.

Washington, DC, USA, 2004. pp. 273-28.

[8] R. Spínola and G. Travassos, “Towards a framework to

characterize ubiquitous software projects”. Information and

Software Technology. v. 54, 2012. pp. 759-785.

[9] J. Zhou et al., “PSC-RM: Reference Model for Pervasive

Service Composition”. Proc. Fourth International Conference

on Frontier of Computer Science and Technology. 2009. pp.

705-709

[10] Y. Liu and F. Li, “PCA: A Reference Architecture for

Pervasive Computing”. Proc. 1st International Symposium on

Pervasive Computing and Applications, 2006. pp. 99-103.

[11] T. Xu, B. David, R. Chalon, and Y. Zhou, “A context-aware

middleware for ambient intelligence”. Proc. Workshop on

Posters and Demos Track. ACM, NY, USA. 2011. pp. 10:1-

10:2

[12] R. Shriram and V. Sugumaran, “Adaptive middleware

architecture for information sharing on mobile phones”. Proc.

2007 ACM Symposium on Applied computing. ACM, New

York, NY, USA. 2007. pp. 800-804

[13] S. W. Han, Y. B. Yoon, H. Y. Youn, and W. Cho, “A new

middleware architecture for ubiquitous computing

environment”. Proc. 2nd IEEE Workshop on Software

Technologies for Future Embedded and Ubiquitous Systems.

2004. pp. 117-121

[14] A. Saeed and T. Waheed, “An extensive survey of context-

aware middleware architectures”. Proc. IEEE International

Conference on Electro/Information Technology (EIT), 2010.

pp. 1-6

[15] C. Song, D. A. Lee, K. Chung, K. Rim, and J. Lee,

“Interactive middleware architecture for lifelog based context

awareness”. Multimedia Tools and Applications. Springer,

US, 2013. pp. 1-14

[16] P. Eugster, B. Garbinato, and A. Holzer, “Middleware

Support for Context-Aware Applications”. Proc. Middleware

for Network Eccentric and Mobile Applications, Springer,

2009. pp. 305-322.

[17] M. Román, C.K. Hess, R. Cerqueira, A. Ranganathan, R.H.

Campbell, and K. Nahrstedt, “Gaia: A Middleware

Infrastructure to Enable Active Spaces”. Proc. IEEE

Pervasive Computing, 2002, v. 1, pp. 74-83

[18] V. Raychoudhury, J. Cão, M. Kumar, and D. Zhaung,

“Middleware for pervasive computing: A survey”. Pervasive

and Mobile Computing, April 2013, pp. 177–200,

[19] K. Da, M. Dalmau and P. Roose, “WaterCOM: An

Architecture Model of Context-Oriented Middleware”, Proc.

Workshops (WAINA), 2012 26th International Conference on

Advanced Information Networking and Applications, 26-29

March 2012. pp. 53-60.

[20] A. Fernandez-Montes, J. A. Ortega, J. A. Alvarez, and L.

Gonzalez-Abril, “Smart Environment Software Reference

Architecture”. Proc. NCM '09. Fifth International Joint

Conference on INC, IMS and IDC, 25-27 Aug. 2009, pp. 397-

403

213Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

