
Data Lifecycle Verification Method for

Requirements Specifications Using a Model Checking Technique

Yoshitaka Aoki, Hirotaka Okuda, Saeko Matsuura
Graduate School of Engineering and Science, Shibaura

Institute of Technology,
 Saitama-City, Japan

{nb12101, ma11043, matsuura}@shibaura-it.ac.jp

Shinpei Ogata
Department of Computing, Shinshu University

Nagano-City, Japan
ogata@cs.shinshu-u.ac.jp

Abstract—A key to success in developing high quality software
is to define valid and feasible requirements specifications to
enable the production of high quality source code with minimal
extra development rework. To provide invariable services to
all users at any time, the data lifecycle functions of create, read,
update, and delete (CRUD) are essential for handling
persistent data. These important operations should, therefore,
be verified at the start of development. In UML2UPPAAL, a
support tool that verifies such functions, requirements
specifications written in UML are transformed into finite-state
automata in UPPAAL. UML2UPPAAL enables developers
with knowledge of UML to benefit from the UPPAAL model
checking tool without requiring UPPAAL knowledge. This
paper proposes a data lifecycle verification method that uses
the UPPAAL model checking tool and focuses on CRUD
operations in the requirements analysis phase.

Keywords—Verification; Model Checking; Requirements
Specifications; UML; CRUD

I. INTRODUCTION

A key to success in developing high quality software is to
define valid and feasible requirements specifications to
enable the production of high quality source code with
minimal extra development rework. Requirements
specifications should have a verifiable form to guarantee
their adequateness and completeness in the early stages of
development. However, uncertain and ambiguous software
requirements often make it difficult for developers to
describe requirements specifications in verifiable form
during their analysis. Although it offers insufficient
verification formalization, the Unified Modeling Language
(UML) [1] is a useful, common tool for formalizing
requirements specifications while enabling their description
in natural language. We propose a method of model-driven
requirements analysis [2][3] using UML. Our method
automatically generates a web user-interface prototype from
a UML requirements analysis model written in activity
diagrams and class diagrams. This method enables
developers to confirm the validity of input and output data
for each page and page transition on the system by directly
operating the prototype.

Model checking has been a favored technique for
improving reliability in the early stages of software
development. We therefore propose a verification method in
which the requirements analysis model written in UML

meets essential properties that any system should meet by
using the UPPAAL model checking tool [4].

Enterprise systems typically must provide invariable
services to many users at a given time; therefore, the data
lifecycle functions of create, read, update, and delete
(CRUD) are essential for handling persistent data. These
important operations should be verified at the start of
development. This paper proposes a method of verifying
these essential CRUD functions by using the UPPAAL
model checking tool.

In UML2UPPAAL, a support tool that verifies such
functions, requirements specifications written in UML are
transformed into finite-state automata in UPPAAL.
UML2UPPAAL enables developers with knowledge of
UML to benefit from the UPPAAL model checking tool
without requiring UPPAAL knowledge. This paper proposes
a data lifecycle verification method that uses the UPPAAL
model checking tool and focuses on CRUD operations in the
requirements analysis phase.

The rest of the paper is organized as follows. Section II
discusses the problems of verifying requirements
specifications in terms of formalization and the applicability
of model checking techniques. Section III outlines our
verification method. Section IV explains UML2UPPAAL,
which can be used to implement our method and support
developers who have insufficient knowledge of model
checking techniques. Section V describes case studies and
the effectiveness of our method.

II. REQUIREMENTS SPECIFICATIONS VERIFICATION

PROBLEMS

A. Problems of Writing Requirements Specifications

The primary cause of the failure of IT projects is often
attributed to inadequate and incomplete requirements
analysis [5]. IEEE Std 830 [6] has been recognized as a
standard of requirements specifications construction.
Although developers may create requirements specifications
according to the standard, it is often difficult for them to
fully address the interrelationship among all document
components to achieve adequateness and completeness. This
is because the initial requirements are written in a natural
language and screen images, which are not related to the
other documents in a verifiable way. Formal specification

194Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

techniques, such as the Vienna Development Method (VDM)
[7] and the B-method [8], provide promising approaches to
formalizing requirements specifications. However, uncertain
and ambiguous requirements often make it difficult for
developers to describe requirements specifications in a
verifiable form at the start of analysis.

UML is a promising tool for formalizing requirements
specifications because of its popularity among development
teams. However, step-by-step formalization is insufficient
for verification. We therefore propose a verification method
in which our requirements analysis model written in UML is
specified as a formal description in stages by using a model
checking technique.

B. Problems with Applying a Model Checking Technique

Model checking is regarded as an effective technique for
improving reliability in the early stages of software
development. A model checking tool uses temporal logic to
model a system as a network of automata extended with
integer variables, structured data types, user defined
functions, and channel synchronization. Based on these
properties, a system model and query expressions can be
defined to specify properties to be checked. When the
specified properties are not satisfied, the tool provides
counterexamples that show how the properties can be
falsified. The simulator helps detect the cause of defects by
tracing the processes in which the counterexamples occur.

Model checking is a technique for automatically
verifying a model by exhaustively checking all paths to
detect properties that developers are often apt to overlook.
However, because the path and state formulas should be
defined by items that are used in the model, it is typically
difficult for developers to define an appropriate model and
formulas at all times.

Path formulas can define properties such as reachability,
safety, and liveness. Reachability means that the specified
state will be reached at some point in time. Safety means
that something bad will never happen. Liveness means that
something expected will eventually happen. State formulas
need defining by expressions related to several process IDs
or variables of the state.

In our requirements analysis model, a use case is defined
by an activity diagram comprised of several sequences of
user and system actions representing normal flows and
exceptional flows in the use case. Data used in the activity
diagram are classified by class diagrams for the system
input/output and entity data, as shown in Figure 1. Based on
a lifecycle of these entity data and actions related to them,
we specify a requirements analysis model in strict
descriptions to enable the automatic defining of query
expressions for the model to verify the specified safety
properties.

Figure 1. Verification Method using UML and a Model Checking Tool

Figure 1 shows an outline of our verification method
using a model checking tool. Semi-formal UML models are
automatically transformed into a network of finite automata
and query expressions; these are used for producing
counterexamples when the requirements analysis model has
defects relating to the data lifecycle of all classes.

III. DATA LIFECYCLE VERIFICATION METHOD

A. Requirements Specifications in UML

We have proposed a method of model-driven
requirements analysis using UML [2][3]. We analyze use
cases and functional requirements of services. In particular,
because end user needs obviously appear within the
interaction between a user and system, our method proposes
to clearly model the interaction.

More specifically, we identify business processes as use
cases from the following questions.
 Based on the specified business rules, what types of

input data and conditions are required to correctly
execute the use case?

 To observe the business rule, what types of conditions
should be required when the use case is not executed?
Moreover, how should the system handle these
exceptional cases?

 According to the above conditions, what types of
behaviors are required to execute the use case?

 What types of data are outputted by these behaviors?
Based on the above questions, both business flow and

business entity data, which are required for executing the
target business tasks, are defined in UML by activity
diagrams and a class diagram.

An activity diagram specifies not only normal and
exceptional action flows but also data flows that are related
to these actions. An action is defined by an action node; data
is defined by an object node being classified by a class that is
defined in a class diagram. Accordingly, these two kinds of
diagrams enable specifications of business flows in

195Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

connection with the data. This is one of the features of our
method on how to use activity diagrams and class diagrams.
In particular, the interaction between a user and system
includes requisite various flows and data on user input,
conditions, and output to correctly execute a use case.

The second feature of our method is an activity diagram
that has three types of partitions: user, interaction, and
system. These partitions enable ready identification of the
following activities: user input, interaction between a user
and system caused by the conditions for executing a use case,
and the resulting output.

The third feature is a prototype consisting of web pages
written in HTML that are automatically generated from the
above two diagram types. The prototype, a kind of model of
the final product, enables end users to clearly and easily
confirm the requisite business flows in connection with the
data. The generated prototype describes the required target
system, except for the user interface appearance and internal
business logic processing. Additionally, the prototype
enables developers to confirm and understand the
correspondence between their models and the final system.
Developers define two kinds of diagrams based on
requirements analysis from different viewpoints, such as
action flows, data flows, and structure. The automatically
generated prototype enables them to easily understand the
consistency between their models and the target system. To
facilitate a full understanding of the correspondence between
each diagram and the target system, a prototype can be
generated in the requirements analysis phase whenever the
developer needs it. The requirements analysis model is
defined using the modeling tool Astah [9].

When clients confirm that the prototype satisfactorily
represents their requirements, the confirmation represents
client validation that the specifications meet their
expectations from an actual usage perspective.

B. Data Lifecycle Model Definition in UML

It is important that developers can verify the
specifications to confirm their feasibility. To accomplish this
objective, developers must confirm that a sequence of
actions and data flows within the system partition of the
activity diagrams can produce the expected output data from
the specified input. The system-side prototype helps
developers confirm the following facts.
 Input data being defined by the user can be transformed

into entity data of the system.
 The existing entity data that should be generated via the

other use cases and above-mentioned entity data can
generate the target output data following the specified
action sequence.

As a result of these considerations, developers can
effectively define entity classes. During this confirmation
process, it is not difficult for developers to adjust actions in
the system partition in accordance with CRUD actions.

An object node has the role of a variable that stores an
instance being created by the create action in the activity

diagram. The object of the verb in the CRUD function
description usually relates to the object node. The verbs
shown in Table I represent CRUD functions in an activity
diagram. For example, CRUD functions can be represented
as “create an object,” “delete the object,” “update the
object,” and “get an object.” The target object node for
create and read is located at the next node of the action, as
shown in Figure 2.

TABLE I. VERBS FOR CRUD ACTIONS

Action Type Verbs

Create create, generate
Read read, get, search

Update update, add, insert, change
Delete delete

Figure 2. Relation between Object and Verb in Create and Read Actions

As a result of these adjustments, a sequence of actions in
the activity diagram represents the state of changes of system
entity data over the whole service by these CRUD actions.

 On the other hand, entity data itself should satisfy the
data lifecycle constraint of a class. For example, to update or
delete an object, the object node must be bound in advance to
some concrete instance object.

These essential properties of entity data are defined by
using a state machine diagram in UML, as shown in Figure 3.
A state machine diagram consists of several states that must
be distinguished and transitions among these states. Each
transition is executed by an event, if necessary, when some
guard conditions are satisfied.

In this paper, we intend to distinguish whether or not
each entity data is binding to an instance object, so that the
system defined by the whole of activity diagrams can
guarantee the correct execution of use cases in accordance
with the CRUD data lifecycle.

Figure 3. CRUD Data Lifecycle of a Class

196Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 3 shows a basic data lifecycle of a class. A state
machine is defined for each class and named by the class.
The initial state of each instance object in Class A is
“unbound.” After create, the state is changed to “bound.” If
the state is “bound,” the instance object can accept actions
such as update, read, and delete. If the state is “unbound”
and the instance object can be obtained by the read action,
the state is changed to “bound.” If it cannot be obtained, the
state remains “unbound.”

 However, classes do not always have the same data
lifecycle. The basic state machines are therefore modified to
meet the specified class. For example, if all instance objects
in a class have read-only status, the data lifecycle is modified,
as shown in Figure 4.

Figure 4. CRUD Data Lifecycle of a Read- Only Class

The states that should be distinguished within a class
must be specified by guard conditions on the flow in the
corresponding activity diagram. Figure 5 shows guard
descriptions when the read action is executed.

Figure 5. Guard Descriptions in an Activity Diagram

As a result, a type of CRUD action term in an activity
diagram equals an event in a state machine diagram of the
object in the action. A guard description equals a sentence of
“<<An object>> is <<a state>>” on the control flow in the
activity diagram, as shown in Tables II and III.

TABLE II. CORRESPONDENCE BETWEEN ACTION AND EVENT

Verbs of Action for an Object in
Activity diagram

Event in State Machine Diagram of all
Objects in a Class

create, generate Create
read, get, search Read
update add insert change Update
delete Delete

TABLE III. CORRESPONDENCE BETWEEN GUARD AND STATE

Guard description for an

<<Object >>in Activity diagram
State in State Machine of all
<<Objects>> in a Class

<Object> is unbound Unbound
<<Object>>t is bound Bound

As mentioned earlier, verifiable forms can be

incrementally introduced to the requirements specifications
in UML. At this point, it can be verified whether or not
there are contradictions between all service flows defined in
all activity diagrams and the data lifecycles of all entity
objects appearing in the system partition of the activity
diagram.

C. Verification Method

This section explains how to transform the requirements
analysis model and specified data lifecycle models from
UML to UPPAAL, and how to generate the query
expressions.

The UPPAAL model consists of several locations and
transition arrows among them, as shown in Figure 6. A
location expresses a state of the system, and the transition
arrow indicates several conditions named Guard and a
sequential processing event during it named Update. In
Figure 6, START, LOC1, and LOC2 are names of each
location. “i1==0” and “i1>0” are Guard expressions and
“flg=true” and “flg=false” represent Update expressions.

Figure 6. Basic Components of the UPPAAL Model

The requirements analysis model includes all use cases of
a target system and a navigation model to integrate them.
Figure 7 shows the entire structure of transforming UML
models into UPPAAL models and query expressions.

197Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 7. Transformation of UML to UPPAAL

Firstly, each activity diagram corresponding to a use case
is transformed into one system model in UPPAAL. In this
model, a CRUD action is transformed into a transition of
three locations with channel synchronization.

Figure 8 shows the correspondence between a flow in an
activity diagram and a transition in a UPPAAL system model.
All nodes, such as action, object, decision, merge, start, end,
and so on, are transformed into locations in UPPAAL. The
control flow and data flow are each transformed into
transitions, except for CRUD actions.

For example, the create action is transformed into a
transaction sequence of three locations. The first location
represents a pre-state of calling the create action, and the
second location represents a state of creating. The third
location represents a post-state of creating. The first
transition flow has a synchronization channel named “c_C!”
and the second transition flow has a synchronization channel
named “r_C?” “c” denotes “call” and “r” denotes “return,”
respectively.

These synchronization channels synchronize with other
channels in a system being transformed from a state machine
diagram of the corresponding object class. In this case, the
corresponding object means that it is an objective word of
the create action.

Figure 8. Activity Diagram and the Corresponding UPPAAL Model

A state machine diagram in Figure 3 is transformed into
the UPPAAL model in Figure 9.

Two states are transformed into the locations named
“Unbound” and “Bound,” respectively. Each transition is
transformed into a transition sequence of three locations, in
the same way that CRUD actions are transformed. However,
the channel in this model fires by calling from the system
relating to the activity diagram. In this case, the first
transition is fired by the corresponding object channel
“c_C!” After creating, the channel “r_C!” synchronizes the
channel “r_C?” in the caller system.

Figure 9. Transformed Data Lifecycle

A state machine diagram defines the data lifecycle of a
class by using restricted actions, such as CRUD. It specifies
all behaviors that all objects in the class can perform. That is,
it specifies negative properties that should never happen. The
state machine diagram in Figure 3 specifies that the update
and delete operations should not be applied to it if an object
is unbound.

The state that will never happen is then designated in the
transformed UPPAAL model, as shown in Figure 9.
Error_D_U, Error_U_U, and Error_C_B denote the
impossible states. These states are defined for every object
appearing in all activity diagrams.

As a result, we can automatically define query
expressions on safety property in accordance with these
models as follows.

A[] not Error_D_U_<<Object>>
A[] not Error_U_U_ <<Object>>
A[] not Error_C_B_<<Object>>

Because all names of locations in the UPPAAL model

are defined by the original nodes in the activity diagrams,
query expressions for the reachability property can also be
automatically generated.

A navigation model integrates all activity diagrams
according to the pre-conditions and post-conditions, which
are a combination of several labels being added to the start or
end nodes in each activity diagram. According to these
conditions, all system models transformed from the activity
diagrams are integrated as a UPPAAL model.

198Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

IV. UML2UPPAAL

UML2UPPAAL is a support tool that implements the
above-mentioned verification method. Figure 10 shows the
architecture of UML2UPPAAL, which is implemented as a
plugin of the UML modeling tool Astah.

Figure 10. UML2UPPAAL Architecture

Figure 11. UML2 UPPAAL

After defining a requirements analysis model using
Astah, a developer can verify it with the same tool
environment. As shown in Figure 11, the result of the
verification is presented by highlighting the defective items
in the model. The results of executing the query expressions
are shown in the lower part of the screen. During this work,
developers are not required to have knowledge of UPPAAL;
they only need knowledge of UML to use UML2UPPAAL
and obtain the benefits of the UPPAAL model checking tool.

V. CASE STUDIES

A. Outline of Case Studies

We conducted a case study to evaluate the effectiveness
of our method. First, five graduate students modified their
UML models of the following four systems. The
modifications were performed to maintain the rule of the
descriptions of CRUD actions in an activity diagram. The
first two systems are the currently running systems in our
university. Table IV shows the scale of each model.
 Group work support system for project-based learning

(PBL): GWSS
 Learning Management System: LUMINOUS
 University co-op text book sales system: COOP
 Laboratory library management system (two types):

Library1, 2

TABLE IV. SCALE OF MODELS

B. Verification Results

Next, the experimenters defined data lifecycle models for
the specified entity data by using state machine diagrams.
Having minimal knowledge of UPPAAL, they could find 83
defects in their models. The main defects found by this
experiment were:
 Ten omissions of defining proper guard conditions

against the nondeterministic property on the Read
action.

 Two mistakes involving the impossible actions of
Update and Delete being applied to unbounded objects.

 One mistake caused by complicated flows in which
some objects could not create during the service
because the position of the Create action was incorrect.

A navigation model is typically useful for generating a

prototype system so that a user can operate it simultaneously
with the final product. However, there were some cases in
our experiment in which the pre-conditions and post-
conditions affected the state of the object. As a result, at
times there were objects of the same class but from a
different data lifecycle in the activity diagram. A data
lifecycle was defined for each class; however, it was
necessary to adjust the state machine for the effects of the
pre-conditions on the target object.

Moreover, there were instances when a complicated use
case caused defects in the data lifecycle because loops
occurred in an activity diagram at least two times.

It therefore must be considered that the association
between classes affects the data lifecycle.

VI. RELATED WORK

Several researchers have proposed respective formal
approaches to verifying specified features in the early stages
of software development. Yatake [10] verified that all object
states satisfy the invariant conditions between collaborative

Model COOP GWSS LUMINOUS Library1 Library2

Number of Classes 110 162 58 33 45
Number of Attributes 387 157 112 91 125

Number of Use case 7 8 8 5 6

Number of Actions 391 315 183 119 138

Average of Cyclomatic
Numbers

22.9 28.2 14.9 15 12.3

Average of Number of
Flows and Actions

106.5 85.7 56.1 64.3 58

Average of Number of
Model elements

65.5 60.5 39.5 43.5 39.57

199Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

object behaviors by using a theorem-proving system.
However, it requires a large quantity of strict definitions to
clarify all the actions and data relating to the invariant. It is
generally difficult to perform such strict work during a
changeable phase, such as requirements analysis.

It is important to conduct stepwise specifications
refinement by checking several verifiable features in the
early stage of software development. Choi [11] proposed a
verification method of the consistency between the page
transition specification on a web-based system and the flow
chart defining the process streams. We have also proposed a
common verifiable feature in enterprise systems, such as the
conditions for CRUD of entity data. Moreover, we can
automatically generate the query expressions.

Achenbach [12] compared the abstraction techniques in
various model checking tools and applied these tools to real-
world problems. For example, the open/close behavior of the
file I/O stream was modeled using the transition between
states such as open, close, and error. This approach is very
similar to ours. However, unlike our approach, this paper did
not discuss the method on the assumption that the
requirements specifications have been validated by the
clients.

Several researchers have proposed support methods to
effectively use model checking tools [13][14][15].

Trcka [13] proposed a method to verify the nine
predefined query expressions using a Petri net, which can
specify behaviors such as read, write, and delete. This study
may be similar to our method. However, because query
expressions depend on the properties specified by state
machine diagrams, our method can be extended to verify the
other properties.

Several studies [14][15] have proposed a method to
transform UML models into process or protocol meta
language (PROMELA) for using the model checking tool
SPIN. However, because developers need to directly operate
the model checking tool, they are required to have
knowledge of both UML and SPIN. It is convenient that
UML2UPPAAL can be used only with knowledge of UML.

VII. CONCLUSION

This paper proposed a verification method of
requirements specifications in UML in the beginning phase
of development using a model checking technique.
UML2UPPAAL is a support tool for verifying the entity data
lifecycle by transforming requirements specifications written
in UML into finite automata in UPPAAL. A key attribute of
UML2UPPAAL is that developers with knowledge of UML
can benefit from the UPPAAL model checking tool without
having UPPAAL knowledge. We are planning to apply our

method to verify a security policy for requirements
specifications [16] based on the Common Criteria [17] for
Information Technology Security Evaluation, which is an
international standard (ISO/IEC 15408) for computer
security certification.

ACKNOWLEDGMENT

This work has been conducted as a part of the “Research
Initiative on Advanced Software Engineering in 2012”
supported by the Software Reliability Enhancement Center
(SEC), Information Technology Promotion Agency (IPA),
Japan.

REFERENCES
[1] UML, http://www.uml.org/,[retrieved: July, 2013].

[2] S. Ogata, and S. Matsuura, “A UML-based Requirements Analysis
with Automatic Prototype System Generation,” Communication of
SIWN, Vol.3, Jun. 2008, pp.166-172.

[3] S. Ogata. and S. Matsuura, “A Method of Automatic Integration Test
Case Generation from UML-based Scenario,” WSEAS
TRANSACTIONS on INFORMATION SCIENCE and
APPLICATIONS, Issue 4, Vol.7, Apr 2010, pp.598-607 .

[4] UPPAAL, http://www.uppaal.com/, [retrieved: July, 2013]..

[5] Standish Chaos Report, http://blog.standishgroup.com/

[6] IEEE Computer Society, IEEE Recommended Practice for Software
Requirements Specifications, IEEE Std 830 (1998).

[7] VDMTools, http://www.vdmtools.jp/ , [retrieved: July, 2013].

[8] K. Lano and H. Haughton, “Specification in B: An Introduction
Using the B Toolkit”, Imperial College Press, 1996

[9] astah*, http://www.change-vision.com/,[retrieved: July, 2013].

[10] K. Yatake, T. Aoki and T. Katayama, “Collaboration-based
verification of Object-Oriented Models”, Computer Software, Vol.22,
No.1, 2005, pp.58-76. (in japanese)

[11] E. Choi, T. Kawamoto, and H. Watanabe, “Model Checking of Page
Flow Specification”, Computer Software, Vol.22, No.3, 2005,
pp.146-153. (in japanese)

[12] M. Achenbach and K. Ostermann, ”Engineering Abstractions in
Model Checking and Testing”, Source Code Analysis and
Manipulation, Proc. of .SCAM ’09.,2009, pp.137-146

[13] N. Trcka, Wil M.Aalst, and N.Sidorova., “Data-Flow Anti-Patterns:
Discovering Dataflow Errors in Workflows,” Proc. of the CAiSE
2009, 2009, pp.425-439.

[14] P. Bose, “Automated translation of UML models of architectures for
verification and simulation using SPIN,” Proc. of the ASE, 1999,
pp.102-109.

[15] L. Jing, L. Jinhua, and Z. Fangning, “Model Checking UML Activity
Diagrams with SPIN,” Proc. of the CiSE 2009, 2009, pp.1-4.

[16] A. Noro and S. Matsuura, “UML based Security Function Policy
Verification Method for Requirements Specification”, Proc of 2013
IEEE 37th International Conference on Computer Software and
Applications, 2013, pp.832-833.

[17] Common Criteria, “CC/CEM v3.1 Release4”,
http://www.commoncriteriaportal.org/cc/,[retrieved: July, 2013].

200Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

