
Comparative Influence Evaluation of Middleware Features on Choreography DSL

Nebojša Taušan, Pasi Kuvaja, Jouni Markkula,

Markku Oivo

Department of Information Processing Sciences

University of Oulu

Oulu, Finland

{nebojsa.tausan, pasi.kuvaja, jouni.markkula,

markku.oivo}@oulu.fi

Jari Lehto

Department for Process Improvement

Nokia Siemens Networks

Espoo, Finland

jari.lehto@nsn.com

Abstract—Domain-Specific Languages for service interaction

modeling in the embedded systems domain are generally

considered insufficiently expressive. To fully represent what is

relevant for the developers, service interactions are commonly

modeled from two viewpoints: orchestration, which is the

individual, and choreography, which is the global viewpoint. In

the embedded systems domain, proposed modeling languages

are focused on orchestrations, while choreography modeling is

neglected. For this reason, we compared two middleware

products, one from the automotive and the other from the

telecom industry sector, and analyzed variations in the

implementation of choreography relevant features. Our

analysis shows the influences of implementation variations on

language for choreography modeling. Our findings can be

useful in developing a domain-specific language that will allow

the full representation of choreographies in the embedded

systems domain.

Keywords-choreography; DSL;middleware; SOA; MDE

I. INTRODUCTION

Service-Oriented Architecture (SOA) is an architectural
style that is commonly used in the development of large
enterprise systems [1]. Recently, SOA has found its
application in industrial sectors such as the automotive and
telecom where it is used in the development of embedded
systems [2] [3] [4]. This has opened an opportunity to
transfer knowledge and technology from one domain to
another, but also to extend existing knowledge and
technology, so it can meet new challenges that are specific
to the embedded systems domain.

Systems built based on the SOA style can be described
as collections of autonomous applications, called services,
which interact to fulfill the stakeholder’s needs. Therefore,
explicit representation of how services interact becomes an
important aspect of SOA systems. According to Dijkman
and Dumas [5] and Peltz [6], modeling of the service
interaction aspect should comprise two viewpoints,
orchestration and choreography. In short, orchestration
shows service interactions from a single participant’s point
of view, while choreography shows a global, peer-to-peer
interaction between participants. These viewpoints overlap
in the sense that both illustrate how underlying services
interact, but differ in the perspective, or in the viewpoint,
from which they show the interaction aspect.

One approach to how service interaction aspect can be
analyzed and specified is to use Domain-Specific Languages
(DSL). DSLs, unlike general purpose languages are focused
on one particular aspect or one particular domain of a
software system. The main idea behind DSL usage is to
shorten the development time, reduce errors, and improve
the communication by enabling language support for
concepts that are specific to the aspect of interest [7].

Modeling of service interaction aspects in the enterprise
system domain is supported with several DSLs; examples
are [8] [9] [10] [11] [12] for orchestration and [13] [14] [15]
[16] for choreography. These languages, however, are not
sufficiently expressive to represent interactions that may
occur in embedded systems [17] [18] [19]. Therefore, new
DSLs, or supplements to existing DSLs, have been
developed for embedded systems.

In the telecom domain, Call Control eXtensible Markup
Language (CCXML) [20] is used to controls the invocation
order of telephony services. The drawback of CCXML is
that it can invoke only services developed in telephony
specific technologies. To overcome this limitation, a State
Chart eXtensible Markup Language (SCXML) [21] was
proposed. SCXML is a generic language for describing
complex state machines. It complements CCXML by
providing a generic state-machine framework and by
enabling it to invoke services developed in telephony and
non-telephony-specific technologies.

Vandikas and Niemoeller proposed SCALE [22] as a
modeling language whose main goal is to enable modeling
of telecom specific interactions, but also to allow
convergence of telecom services and services developed in
different domains and technologies. Similarly, SPATEL
[23] language targets the same problem, and offers
technology-independent primitives that can be used for the
development of telecom services where large numbers of
resources needs to interact over different protocols.

The described DSLs enable service interaction
modeling; however, they support only the modeling of
individual participant point of view, or orchestration. Global
view on interactions, or choreography, is not natively
supported with their language entities.

Service interactions can be modeled with domain-
agnostic languages or by modifying languages from
different domains. A case in the automotive domain is
reported by Fiadeiro et al. [24] where SENSORIA

184Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Reference Modeling Language (SRML) is used. SRML [25]
is designed to be a domain-agnostic language, with strong
expressiveness for SOA, and to be easy for formalization.

Business Process Execution Language (BPEL), which is
used for modeling enterprise service interactions, is
modified by Iwai et al. [18] to represent the complex
interactions of services in automotive domain. As in the
case of telecom DSLs, these approaches target only the
orchestration point of view. With the exception of the work
by Tsai et al. [26], the current state-of-the-art in service
interaction modeling led us to conclude that less focus is put
on modeling choreography aspects in service-oriented
embedded systems development.

To bridge this gap, part of the work done during the
AMALTHEA [27] research project was to develop a DSL
suitable for choreography modeling in the embedded
systems domain. The language is one of the several tools in
the tool-chain platform that is implemented within the
project. During implementation tasks, we adopted the
guidance for DSL development proposed by Merink et al.
[28]. This guidance is organized according to DSL
development phases, and in this article, we will present our
findings from the analysis phase. During this phase, together
with industry partners, we analyzed middleware products
that are used in the automotive and telecom industry. There
are two main reasons why middleware analysis is relevant
for the development of DSL.

The first reason originates from the DSL development
guidance [28], according to which the input to the DSL
analysis phase can be technical documentation, knowledge
provided by experts, customer surveys, and the existing
source code base. Accordingly, for our analysis, we used
expert’s knowledge, and technical documentation of two
middleware products. Middleware, and its documentation, is
an unavoidable part of any large software system, and its
main responsibility is to enable seamless interaction
between system parts [29]. Accordingly, it is a valuable
source of service interaction-related knowledge, which is
the key result of the DSL analysis phase.

The second reason is related to Model-Driven
Engineering (MDE) [30], which is the engineering approach
in companies that participated in this project. In the MDE
approach, relevant system aspects are modeled using DSLs.
Unlike in traditional, document-driven approaches, the
developed models in MDE are executable or readable by
tools. This allows automatic analysis, transformation from
one system representation (one model) to another, and
automatic test and source code generation. Source code
generated from different models relies on, or executes on
top of, middleware. Middleware, however, imposes rules
and constraints to that code that must be understood and
followed during modeling [31]. One way to enable this is to
include and enforce those rules and constraints with DSLs.
This way, DSLs and their models become tightly coupled to
the middleware on top of which the developed application
will execute.

Middleware products support developers by providing
them with features that hide complex low-level tasks [29].
Different middleware products, however, implement

features differently, which introduces variations in
implementation and in extent of support the feature
provides. If features, with the rules and constraints they
impose, are to be addressed with DSL, these variations must
be taken into account. To better understand the relationship
between variations and DSL development, in this study, we
will answer the following research question.

How do variations in the implementation of middleware
features influence the implementation of the DSL for
choreography modeling?

Answering this research question will help choreography
DSL developers by pointing out which language entities are
influenced by feature implementation variation and how. To
answer this research question, we identified choreography-
relevant features and their implementation variants (Section
II). Based on these features, we compared two middleware
products, identified influenced choreography language
entities, and described the influence in more detail (Section
III). Following is the discussion on benefits that can be
expected from DSL that includes implementation variations
(Section IV). Finally, we summarize the study findings and
describe the future work (Section V).

II. RESEARCH DESIGN

Analysis phase of DSL development is conducted by
adopting DESMET [32] approach for evaluation, and Goal
Question Metrics (GQM) method [33] for feature and scale
derivation. DESMET proposes nine methodological
approaches for evaluating methods, tools, and technologies
[34], and defines the criteria based on which an evaluator
can select the most appropriate one. Based on the evaluation
context, nature of the impact, nature of the evaluation
object, and maturity of the item criteria, we have selected
feature analysis in screening mode (FA) approach for this
study. The evaluation context criterion recommends FA in
cases where the object under evaluation will be sold as a
part of a larger product. Middleware, as the object under
evaluation, is a part of the overall system that resides
between the operating system and application. The nature of
the impact criterion recommends FA in cases when a study
produces qualitative results. This is in line with this study,
since we are aiming to show the influence of
implementation variations on DSL development. The nature
of evaluation object criterion recommends FA when tools
are in the focus of evaluation. Middleware is primarily a
technology, but it can also be approached as a tool for
supporting a developer’s work. The maturity of the item
criterion proposes FA when large amounts of information
about study object are available. This corresponds with the
middleware products evaluated in this study. The first is the
de facto standard in the automotive industry. The second is a
proprietary technology owned by the company that
participates in this research project.

A. Analysis Procedure

DESMET FA is a qualitative approach to evaluation. It
formulates features according to what users expect from the
method, tool, or technology, and derives corresponding
scales that measure the extent to which the candidate

185Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

method, tool, or technology conforms to the formulated
features. When FA is done in the screening mode, feature
derivation and evaluation is done by a single person based
on public documentation only. Accordingly, during this
study, middleware features that are seen as relevant for
choreography DSL are identified, their scales are derived,
and, based on those, two middleware products are evaluated.
Contrary, instead of one, four researchers and one industry
expert collaborated during feature derivation and evaluation.
Research collaboration consisted of face-to-face meetings,
teleconference meetings, and exchange of email messages.

DESMET FA evaluation consists of six steps, which we
followed during this study, and described in the text below.

Step 1: Identify the candidate method/tool/technology.
This research project, brought together researchers and
experts from automotive and telecom industry. In both
industries, different middleware products are used for
systems development and for this analysis, AUTOSAR [35]
and LISA were chosen. The reason for choosing
AUTOSAR, over other products such as OSGi, is that it
represents a de facto standard in automotive industry. It is a
result of a global partnership of automotive manufacturers
and suppliers, which aims to become the standardized
architecture for automotive software. AUTOSAR is also a
dominant middleware in automotive companies which
participated in this research project. LISA stands for Light
Intelligent Software Architecture and it is a proprietary
middleware solution for the development of telecom
systems. The reason for choosing LISA for this analysis is
that it is still a prototype and open for modifications. This
motivated telecom experts to compare LISA against more
mature AUTOSAR and to learn about similarities and
differences in the implementation of two products.

Regardless of differences in many aspects of automotive
and telecom systems, closer inspection of the middleware
products revealed a number of similarities. These
similarities form a basis for comparing AUTOSAR and
LISA. Figure 1, illustrates the similarities between the two
systems, and shows the position of middleware within them.
With reference to Figure 1, these similarities are: a) Systems
consist of heterogeneous hardware devices (Hardware A, B,
and C). b) Hardware devices are interconnected with
heterogeneous network technologies (labeled with 1 and 2).
c) Hardware devices can have different operating systems
(OS 1, 2, and 3). d) The middleware homogenizes hardware
devices, network and operating systems. e) The middleware
hides hardware, network, and OS complexities by offering
higher level application programing interface (API) to

application components. f) Application components (C1–5)
reside in hardware devices and run on top of middleware. g)
Applications are realized with one or more application
components. h) Hardware and application components may
or may not be under the control of a single authority
(Hardware A and B belong to D1 domain, Hardware C
belongs to D2 domain, while domain here denotes different
organization units or different companies). i) End-user
perceived functionality (Functionality 1 and 2) is realized
through application component interactions. j) Application
components that realize functionalities can reside on the
same or on different hardware devices. Described
similarities are the key argument why we consider
AUTOSAR and LISA comparable and therefore they will
be explained in more detail.

Step 2: Devise the assessment criteria. FA is a
comprehensive approach to evaluation. Besides technical
issues, the method proposes to evaluate features from
economic, cultural, and different quality aspects such as
maintainability or portability. To narrow down the scope of
evaluation, we applied the GQM method during the
derivation of features and corresponding judgment scales.
The importance of the clear goal definition is highly stressed
in the GQM approach since it provides a converging point
for future scales and it reduces the number of possible
measurements [36]. It is important to note the misalignment
in terminology within DESMET and GQM. In DESMET,
judgment scales are used to estimate the derived features,
while in GQM, scales are used to estimate the
measurements. Therefore, in this study, the terms
measurements and features can be considered equivalent
since both are used for answering questions formulated
according to a specified goal. Goal specification is further
facilitated with a GQM template [33], which consists of five
key-value tuples. A study goal, based on this template, is
presented in Table I.

The first tuple in the template defines the object under
investigation. In this study, the object under investigation is
the middleware. The second tuple defines the purpose for
analyzing that object. In this article, the purpose is to learn
which middleware features should be considered during the
development of choreography language. Accordingly, the
choreography aspects of service interaction support in
middleware are the quality focus against which we analyzed
LISA and AUTOSAR. Viewpoint narrows the scope of
learning by focusing it on a specific role in the development
process. We selected the software architect role because it is
responsible for middleware-related decisions, and because
LISA and AUTOSAR can be easily compared in
architectural terms such as components, services, interface,
and message. Lastly, this international research project is

TABLE I. FEATURE ANALYSIS GOAL BASED ON GQM TEMPLATE

Key Value

Analyze the : Middleware
For the purpose of: Learning
With respect to (quality
focus) :

Service interaction aspects relevant for
choreography modeling

From the viewpoint of: Software architect
In the context of: Research project

Figure 1. Architectural similarities of two systems

186Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

the context in which the evaluation took place.
Specified in this way, the goal guided our collaboration

with the industry experts and our study of the literature. This
resulted with the definition of three questions whose
answers will contribute to the goal accomplishment.
Questions are broken into features relevant for the
choreography DSL, and for each feature, a corresponding
ordinal scale is derived. Here, we will emphasize that scales
are derived based on the extent of support the feature
provides to developers. A higher feature score corresponds
to higher flexibility, less effort, and less cognitive burden
for developers. Scales do not measure the variations in
technology that is used for feature implementation.

The first question, based on the defined goal, is: How
does middleware support the invocation of services offered
by different systems or system parts? To answer this, three
features are identified and explained in the following text.
Functionality access is the first. It concerns middleware
support for invoking services that use different interfacing
technologies, e.g., Web Service Description Language
(WSDL) and Interface Definition Language (IDL). Location
transparency is the second. It concerns middleware support
for binding service requesters and providers. Location
Transparency can be realized using requester’s criteria
based on which middleware selects the provider, logical
names based on which physical location of the provider is
resolved, or by plain routing. State information is third. It
concerns types of state information that middleware
monitors. State information types are classified into service,
session, and functions categories. Service indicates the state
of the application or component that implements the service.
Session indicates the state of the interaction between two
services. Function indicates the state of the composition of
services that fulfills a system-level task. Table II shows the
extent of support the middleware provides for identified
features.

The second question based on the defined goal is: How
does a middleware product supports issues related to
messages? Message is used in a broad meaning, and covers
both the format of the message and the type of data that is
carried. To answer this question, three features are identified
and explained. First is message format. It indicates which

message and data formats can be processed. Message format
examples can be Session Initiation Protocol (SIP) or Simple
Object Access Protocol (SOAP), while the data format can
range from streams of bits to documents written in plain text
or in eXtensible Markup Language (XML). Data format is
commonly defined by the message format that carries it.
Second is message transformation. It concerns middleware
support for transformation of messages from one format to
another. Third is interaction scenario. It shows the
middleware ability for processing predefined ordering of
message exchange occurrences. These features and extent of
support are given in Table III.

Lastly, a third question based on the defined goal is:
How is a message transmitted from its origin to its
destination? Two features are identified and explained.
Protocol support is the first, and it shows middleware
support for a variety of communication protocols. As is the
case with messages, the term protocol here is used to cover
all types of protocols, ranging from lower-level network
specific protocols, such as Controller Area Network (CAN),
to high level application protocols, such as Hypertext
Transfer Protocol (HTTP). Protocol translation is the
second identified feature, and it shows how middleware
supports the translation of one protocol to another. These
features and implementation variants are shown in Table IV.

Step 3: Compiling information about the study object.
To evaluate the candidate technologies, relevant

TABLE II. FEATURES FOR SERVICE INVOCATION SUPPORT

Feature Scale Scale description (implementation variants)

Functionality
access

2
Middleware supports standardized interfacing
technology specific for an industry sector

1 Middleware supports key interface technologies
0 Middleware imposes single interface technology

Location
transparency

2
Middleware selects service provider, resolves its
location and routs the request

1
Middleware resolves service provider’s location
and routes the request

0
Request contains details that are necessary for
binding (provider name, physical location, etc.).
Middleware only routs request to provider

State
information

2
Middleware provides state information on
function, session, and service level

1
Middleware provides state information on
session, and service level

0
Middleware provides state information on
service level

TABLE IV. FEATURES FOR MESSAGE TRANSMISSION SUPPORT

Feature Scale Scale description (implementation variants)

Protocol
support

2
Middleware supports different protocols by
providing protocol-independent communication
service

1
Middleware supports different protocols by
providing protocol-dependent services

0 Middleware imposes the protocol

Protocol
translation

2
Middleware communication services hide
protocol translations from services

1
Middleware provides distinct services for
protocol translation

0
Middleware does not provide translation
support. Services are responsible for translation

TABLE III. FEATURES FOR MESSAGING SUPPORT

Feature Scale Scale description (implementation variants)

Message
format

2
Middleware processes message format that is
standardized within an industry sector

1
Middleware processes key message formats
that are used in an industry sector

0 Middleware imposes message format

Message
transformation

2
Middleware transforms key message formats,
and allows developers to create custom
pluggable transformation additions

1
Middleware transforms key message formats;
middleware vendors supply additional
transformations through product updates.

0
Middleware does not provide message
transformation services

Interaction
scenario

2
Middleware processes custom definitions of
message interaction scenarios

1
Middleware service supports generic
interaction scenarios

0
Middleware does not support the processing of
interaction scenarios

187Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

documentation needs to be collected and studied. This
research project provided a context that allowed us to collect
high-quality, company-specific documents, and to capture
the knowledge of company experts in meeting notes, email
discussions, and workshop summaries.

Step 4: Scoring of features. Based on the gathered
information, middleware products are evaluated against
derived features. The process of scoring consisted of the
initial score proposals and discussion. During score
proposal, each team member proposed a score for each
feature. During the discussion, the differences in score
proposals are aligned.

Step 5: Analysis of the score. To decide which method,
tool, or technology best fits the needs of the most target
users, feature scores are analyzed. The goal of this
evaluation, however, is not to select between middleware
products. Our goal is to learn about middleware features and
to show how their variants can have an influence on the
language for choreography modeling. For this purpose, we
used the meta-model for choreography language defined in
[37]. This model defines what is necessary for the
development of global interactions, and represents a
foundation for the development of choreography modeling
languages. It consists of attributes enclosed in entities that
are interconnected and grouped into model subsets. We used
this model to identify how, and which of its entities are
influenced by the variations in middleware’s feature
implementation.

Step 6: Presenting a report on the evaluation. The
research findings are summarized in a technical report.

III. RESEARCH FINDINGS

The research findings are divided into two groups. The
first group consists of feature scores and the rationale
behind scoring. In the second, we explain how variations in
feature implementation have an influence on DSL for
choreography modeling.

A. Features Scores

The rationale behind scoring is based on an in-depth
analysis of the technological solutions and concepts that are
used for feature implementation and on industry expert’s
evaluation of the extent of support the feature provides. The
implementation details used in AUTOSAR and LISA for an
identified feature are described below.

Functionality access: To describe what a service can
provide, what other services it uses, and how to invoke the
service, AUTOSAR developed the AUTOSAR Interface
[38]. This interface has a formal structure that describes all
aspects required for the invocation of functionality. LISA, in
contrast, has no structured description of a service. LISA
facilitates access to service functionalities by offering a
proprietary API through which applications (services)
register and publish their functionalities. Through this,
potential clients are able to invoke the functionalities they
need. Other than function names, no additional details are
provided.

Location transparency: Both middleware products
studied in this evaluation provide support for binding by

hiding the location details of services. A service can invoke
another services’ functionality using only its logical names,
while the middleware pairs logical names with the services’
functionality and its physical location. This allows services
to be moved to different hardware devices, and if there is a
need, to change its implementation details. Since the
functionality is invoked using logical names, flow of service
interactions is not affected.

State information: Both AUTOSAR and LISA provide
state information on the service and session levels. On the
service level, AUTOSAR monitors the state of the runnable
concept [38], while LISA allows for monitoring of each
service that implements the proprietary LISA-specific
addresses. On the session level, AUTOSAR’s inter-runnable
communication state information is provided with global
variables and/or shared memory monitoring [38], while
LISA provides session-level information by monitoring its
implementation of message queues.

Message format: AUTOSAR services exchange
information using three standardized variable groups: data
element, mode declaration, and application error [38]. The
data element is the piece of information transmitted between
services. This information is sent to, and received from, the
service’s operations, and it can be any primitive type, such
as integer or float, or a collection of primitive types referred
to as the complex type. Mode declarations define data for
the service mode configuration, while application errors
carry the information about error occurrences within a
service or during communication. In AUTOSAR, variables
are exchanged by passing them to functions directly, and no
additional messaging technology is used.

Messages in LISA are exchanged using proprietary
messaging technology. Before a message of any type is sent,
it is wrapped up in a LISA-specific message format and
routed to the destination. On arriving at the destination, it is
unwrapped and parsed by the receiver.

Message transformation: In AUTOSAR, the object of
transformation is the data element variable group, and this
task is appointed to the runtime environment (RTE).
Transformation definitions are provided by developers, and,
based on them, RTE can perform several types of
transformations. Examples are transformations to/from
different linear-scaled data representations, different text-
table data representations, and transformation of composite
data representations [39]. LISA does not provide any
features for transforming messages. Instead, it is the
responsibility of the sending or receiving service to
preprocess the message so that it can be used by the
receiving application.

Interaction scenarios: There are two generic scenarios
that describe a message exchange in AUTOSAR, Client-
Server and Sender-Receiver [39]. Client-server involves the
client, who requires the functionality and server that
provides that functionality. The client initiates the
communication by requesting the server to perform the
functionality and if necessary it provides one or more
parameters. The server performs the required function, and
dispatches a response to the client. Invoking a function is
performed by RTE, and these invocations can be either

188Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

asynchronous or synchronous. The sender-receiver involves
the sender of the message and one or more receivers. This is
one way, the asynchronous interaction scenario, and any
reply sent by receiver is seen as a separate sender–receiver
communication. The same scenarios exist in LISA. The
difference is that in the case of AUTOSAR these patterns
are explicitly defined within the interface, while in LISA, no
such definition exists. The client-server scenario occurs
when one service invokes the operation of other service,
while that of the sender-receiver is realized through
multicast message delivery. No custom definition of
interaction scenarios is possible in either product.

Protocol Support: Both products under evaluation
provide unique services that hide the transport protocol and
networking technologies and allow the inclusion of
additional ones without modifications at the application
level. In AUTOSAR, this is realized with a group of
modules called communication services, and an Interface-
Protocol Data Unit (I-PDU protocol) [40]. These concepts
provide an interface to the communication network, API for
network management and diagnostics, and hide protocol and
network-level details from applications. Similarly, LISA has
developed a proprietary module called the Media Module.
This module abstracts different protocols and network types,
such as Ethernet, Socket, and W-LAN, and enables uniform
transmission of messages over a heterogeneous network
environment.

Protocol translation: AUTOSAR and LISA provide
middleware-specific, communication protocols to services,
and, during message exchange, this is the only protocol
services are aware of. Internally, middleware translates this,
into a protocol specific to, e.g., a physical network through
which the message is transported. In the case of AUTOSAR,
the Communication Services pack and unpack messages to
and from the I-PDU, which are then passed to network
specific modules for transmission over the physical
network. Likewise, LISA uses Media Module and its
protocol at communication endpoints, but translates it to the
network specific protocols used during transmission.

Based on analysis, extent of support the feature provides
to developers is evaluated and summarized in Table V.

B. Language Entities Influenced by Variants

To understand the influence of variations in feature
implementation on DSL for choreography modeling, we
studied a meta-model proposed in [37]. This resulted in the
identification of language entities whose implementation
varies depending on the extent of the support feature
provides to developers. To express variations in language

entity implementation, we used language constructs such as
sub-entity, attribute, and relationship multiplicity. Identified
entities are as follows:

Participant: an entity that represents any logical
encirclement within the system that has a degree of
autonomy, and provides functionality for other Participants
in the system. An example can be an accounting unit within
an enterprise, a braking subsystem in the car, or a home
subscriber server in telecom network. From implementation
point of view, a Participant can encompass a component,
collection of components, or an entire application.

To access a Participant’s functionality different
interfacing technologies are offered and these should be
supported by middleware so that Participants can seamlessly
interact. In Table II, we proposed implementation variants
for a functionality access feature that can influence how a
Participant, as a language entity, is implemented.

In the case of AUTOSAR, due to the use of unique and
standardized interface across industry sector, Participant
entity should define the attributes that are needed to describe
the AUTOSAR interface only. In LISA, no structured
description for accessing functionality is defined. IN this
case, a Participant should include attributes that describe
proprietary, LISA-specific invocation methods. In the case
that a middleware product supports different interfacing
technologies, a Participant entity should implement distinct
sub-entity types with attributes specific to each of the
supported technologies. The relationship between the
Paritcipant and sub-entity should be constrained to a one-to-
one relationship.

Implementation of a Participant entity is also dependent
on the location transparency feature. In Table II, we
proposed variations for this feature, which we see as
influential for an entity implementation. Since AUTOSAR
and LISA use logical names for accessing the service
functionality, in both cases, a participant should provide
attributes where these names will be recorded.

Role: an entity that represents the responsibility of the
Participant in the scenario, and as a choreography language
entity, it is a part of the participant. One Participant can
have different Roles in different interaction scenarios. An
example can be a Role of the organization unit that
participates in choreography as “buyer” in one and “seller”
in another scenario or a Role of the car engine control,
which can be a “manager” in one, and a “data provider” in
another scenario.

From an implementation point of view, a Role can be
identified with one or more functionalities offered by
Participant. Therefore, a Role must implement sub-entities
for describing each of the functionalities that are included in
it. Since a Participant can use different interface
technologies, a set of dedicated sub-entity types should be
defined, where each type would specify attributes for
describing functionalities according to each of the supported
technologies. In case of AUTOSAR, a Role entity should
consist of functional descriptions defined according to the
AUTOSAR interface. In the case of LISA, a Role should
describe the functionalities based on LISA’s proprietary
technology for accessing applications.

TABLE V MIDDLEWARE EVALUATION RESULTS

Question Feature AUTOSAR LISA

Invocation
support

Functionality access 2 0

Location transparency 1 1

State information 1 1

Message
support

Message format 2 1
Message transformation 2 0

Interaction scenario 1 0
Message

transmission
Protocol support 2 2

Protocol translation 2 2

189Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Interaction: an entity that represents the exchange of
information between two Roles. Exchange of information
here is used to denote the ordering of one or more message
exchange occurrences that together realize the Interaction.
Call control application, for example, can have a Role of a
service provider and must interact with the verifier, which is
the Role of the subscriber information repository, to verify
that a certain subscriber can use the call service. This
Interaction can be realized with two message exchanges that
occur in a predefined order. First, a provider sends the
message with subscriber info to the verifier. Second, the
verifier processes the message and sends the response back
to the provider.

From an implementation point of view, an Interaction
describes the order of message exchange occurrences
between Roles. When implemented in language, Interaction
is expressed in terms of generic (or predefined) message
exchange scenarios. The idea behind this is that all message
exchange scenarios conform to a single, or a combination,
of generic exchange patterns. Therefore, Interaction entity
implementation depends on which patterns are identified
and used within an industry sector, and how they are
supported by middleware product. In Table III, variants for
Interaction scenarios are proposed.

AUTOSAR communication services recognize two
generic scenarios, client-server and sender-receiver. Here,
the Interaction entity should provide attributes for recording
the two identified patterns. LISA offers no support for
generic scenarios, an entity here can be implemented to
allow unstructured textual description of message exchange
ordering. These descriptions can be used to facilitate
communication and analysis tasks.

Interaction entity implementation depends also on the
implementation of message translation and protocol
translation features. Participants engaged in interaction may
require the translation of message content since the format
in which the information is sent, is not always the format
that the receiving Participant can process. An example can
be a Participant that sends a SOAP message to the
Participant that can receive only SIP messages. Middleware
can provide features for message transformation, and
implementation variants of this feature are proposed in
Table III. Depending on how middleware implements the
feature, Interaction will need to adopt accordingly.

AUTOSAR allows developers to define message
transformations. The language entity, in this case, should
include attributes for linking entities with defined
transformations. LISA offers no such facilities. Including
transformation-related data in an Interaction entity can only
be used for documenting purposes.

Similarly to message transformation, Participants can
use different communication protocols for message
transmission. How middleware implements the protocol
translation feature also influences implementation of the
Interaction entity, and in Table IV, implementation variants
are proposed.

AUTOSAR and LISA provide a feature for protocol
translation, and in both cases, translation is hidden from (or
transparent to) Participants that are interacting. This is

accomplished by the translation feature which is a part of
uniform communication service that is offered by both
middleware products, and used by the Participant for
communication. The Interaction entity therefore doesn’t
need to include attributes for describing translations of the
protocols.

In cases when middleware doesn’t support protocol
translation, this task should be implemented by applications
that realize the Participants. In cases when middleware
implements distinct translation services for each protocol,
the Interaction entity should include attributes for recording
the details necessary for linking the entity with translation
services.

Message Content Type: A message carries the
information that is exchanged between the Roles. The
format of those messages can be different, and each format
specifies the types of data it can carry. Thus, the purpose of
this entity is to describe those message formats.

This entity is part of the Interaction. How it is
implemented in language, depends on the message formats
it must be able to describe. For this reason, in Table III, we
proposed implementation variants for message format
support. In AUTOSAR, messages are standardized, and to
define them, an entity should include only attributes relevant
for the definition of AUTOSAR messages. In LISA,
different message formats are supported. Still, due to the
wrapping technology it uses, for entity implementation, only
attributes for wrapper description should be included.

State Variable: Roles engaged in interaction can have
different states based on the information that is exchanged.
The value of this entity is predefined, and its purpose is to
hold those values. An example of a State Variable can be
“Verification State”. Based on interaction condition, a
variable can hold one of two predefined values, “verification
sent” or “send error”.

As a language entity, the State Variable entity is a part
of the Role, and its implementation depends on state
information provided by the middleware product. In Table
II, we proposed implementation variants for the State
Information feature. These variants express different types
of state variables and influence the implementation of a
language entity. Both AUTOSAR and LISA provide state
information that is relevant for service- and session-level
state descriptions. The language entity should, therefore,
provide attributes with predefined values for capturing those
items of information.

Channel Variable: Its main purpose is to store the
information that is necessary for sending the message. Part
of this information is, for example, the protocol that defines
the rules that must be followed during message
transmission. Since participants involved in interaction can
use different protocols, middleware products should support
them, if seamless message exchange is to be achieved.

As a language entity, the Channel Variable entity is part
of an Interaction entity, and the protocol-related information
that it will include depends on variations in protocol support
of the middleware product. In Table IV, we proposed
implementation variants that are derived based on the
amount of protocol information middleware requires from

190Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

the Channel Variable. In both AUTOSAR and LISA’s case,
protocol details are hidden from (or transparent to) the
Channel Variable by providing uniform communication
services. To transmit a message, only functionality name
and message are required, while the protocol details are
handled by the middleware service.

In Table VI, we summarized how variations in feature
implementation influence on the implementation of the
identified choreography language entities. Depending on the
extent of support the middleware feature provides to
developers, language entity will implement different
combination of sub-entities, attributes, and relationship
multiplicity.

IV. DISCUSSION

Implementation variations of identified middleware
features can influence the implementation (or

supplementation) of a DSL for choreography modeling.
Accordingly, variations represent a valuable source of
information that needs to be considered during DSL
development. There are several reasons why the inclusion of
this information in language can be beneficial from the
software development point of view. The most important
reasons are described in the following text.

Broadening the scope of DSL in the development
process: Choreography DSL is an analytical tool that
specifies the contractual agreement between different sub-
systems. By including middleware-specific data into DSL,
besides being analytical artifacts, specified models become
implementation artifacts as well. A model’s role in
implementation is best visible in the MDE approach, where
a chain of model-to-model transformation events aims to
end with generated source code. To facilitate seamless
transformations, and be in compliance with middleware-

TABLE VI. EVALUATION SYNTHESIS SUMMARY

Identified
Entities

 Identified
Features

Scales
Influence of Feature Implementation Variations on Language Entities

Sub-Entity Attributes Relationship

P
ar

ti
ci

p
an

t Functionality
access

2 No influence Describing standardized interface technology No influence

1
Distinct Type of Sub-Entity
per supported interface
technology

Distinct attribute set per Sub-Entity type for
describing supported interface technology.

One Participant can
have one interface
technology

0 No influence Describing imposed interface technology No influence

Location
transparency

2 No influence Describing criteria for service selection No influence
1 No influence Data for resolving service invocation No influence
0 No influence Data for routing service request to provider No influence

R
o
le

Functionality
access

2
Sub-Entity per functionality
that is included in Role

Describing functionality according to
standardized interface technology

One Role can have one
or more functionalities

1
Sub-Entity per functionality
that is included in Role

Describing functionality according to
Participant’s interface technology

One Role can have one
or more functionalities

0 No influence
Describing functionality according to imposed
interface technology

No influence

In
te

ra
ct

io
n

Interaction
Scenario

2
Sub-Entity for custom
interaction scenario

Description of custom interaction scenario
One Interaction can
have one interaction
scenario

1 No influence
Attribute and predefined values for describing
supported scenario

One Interaction can
have one interaction
scenario

0 No influence No influence No influence

Message
transformation

2 No influence
Attributes for relating Interaction with
transformations elements in middleware

No influence

1 No influence
Attributes for relating Interaction with
transformations elements in middleware

No influence

0 No influence No influence No influence

Protocol
translation

2 No influence No influence No influence

1 No influence
Attributes for relating Interaction with
translation elements in middleware

No influence

0 No influence No influence No influence

M
sg

.
C

o
n

te
n
t

T
y
p

e

Message format

2 No influence Describing standardized message format No influence

1
Distinct Type of Sub-Entity
per supported msg. format

Distinct attribute set per Sub-Entity type for
describing supported msg. formats

Msg. Content Type
have one msg. format

0 No influence Description of imposed message format No influence

S
ta

te

V
ar

ia
b

le

State
information

2 No influence
Attributes and predefined values on functional,
session and service level

No influence

1 No influence
Attributes and predefined values on session
and service level

No influence

0
Attributes and predefined values on service
level

C
h
an

n
el

V

ar
ia

b
le

Protocol

2 No influence No influence No influence

1
Distinct Type of Sub-Entity
per supported protocol

Distinct attribute set per Sub-Entity type for
describing protocol dependent communication.
services

0 No influence No influence No influence

191Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

induced assumptions, choreography DSL should include
middleware-specific information as well.

Facilitation of communication: DSL for choreography
modeling offers concepts and semantics that are needed for
system analysts to agree on global service interactions.
When DSL includes middleware-related information,
completing models requires additional, technical-related,
expertise. This way choreography modeling pulls together
experts from different development areas who are
cooperating on the same model and communicating using
concepts and semantics that are imposed by the DSL.

Easier introduction of new developers: To develop
applications on top of middleware, developers must learn
and follow middleware-induced assumptions. This
represents a cognitive burden for new developers, and
makes modeling error-prone. When middleware concepts,
rules, and constraints are built in DSL, following them
comes naturally since the language itself guides the work
with concepts and prevents the developer from breaking the
middleware imposed rules and constraints.

A. Validity threats

As an approach, the FA-Screening mode has medium
costs in time and resources, but carries a high risk for the
confidence in findings. This is understandable, since the
entire evaluation represents the subjective stance of a single
evaluator, based only on public documentation analysis. To
decrease the risk, several measures were applied during the
research design. The first measure is related to the number
of evaluators. Instead of one, our analysis procedure
included five evaluators. Joint work ensured that the
findings are based, not only on a single person’s stance, but
encompass the opinions of five persons with different
backgrounds and expertise. The second measure is related to
sources of data. Instead of consulting only publically
available documents such as standards or vendor material, in
Step 3 we used company-specific material and an industry
expert’s knowledge.

The authors of this article believe that applying these
measures during study design increased the study
objectivity, and decreased the confidence risk related to
findings. Additionally, researchers worked under NDAs to
assure the confidentiality of company documentation, and
the industry expert was familiar with the issues being
researched and the way company-specific data will be
treated. According to Miles and Huberman [41], described
measures and practices should reduce the validity threats.

Additional drawback is that, during the score analysis
step, we used the meta-model that assumes the usage of
Web-Services. Web Services are only one of several
component technologies that can be used for telecom and
automotive systems development. Still, the model leaves
enough space for customization, and therefore we found it
to be generic enough for discussing choreographies in the
context of other component technologies as well.

V. CONCLUSION AND FUTURE WORK

The application of SOA in an embedded systems domain
appears to continue to grow, and with it the need to model

service interaction aspects is increasing. Using DSLs for
modeling different system aspects has proven to be a good
practice, and, with the growing adoption of MDE, their
significance in development process will continue to grow.
The research presented in this article supports this trend by
focusing on the relations between the development of a DSL
for choreography modeling and the underlying middleware.

Our findings suggest that the implementations of
identified choreography language entities can differ
depending on how middleware features are implemented. In
Table VI, we describe an explanation of how this can be
done. The same table can be used to answer the research
question stated at the beginning. In short, based on feature
implementation variations, identified language entities,
which are Participant, Role, Interaction, Message Content
Type, State and Channel Variable, will be implemented
using different combinations of language constructs such as
sub-entities, attributes, relationships, and value constraints.
Concrete instances of sub-entities, attributes, and values are
specific to industry sector, underlying middleware, and
feature implementation technology and therefore not
discussed in this article.

Future Work: The derived list of middleware features is
certainly not complete. Additional features that are relevant
for choreography modeling can be proposed, for example
the feature for security issues. Furthermore, middleware
analysis is not sufficient for DSL specification. Other
problems and solution space artifacts should be analyzed to
provide the needed expressiveness of the DSL. Lastly, a
case study to collect broader opinions and suggestions from
industry experts regarding Choreography DSL should be
conducted. Future work will, therefore, continue in the
above mentioned directions.

ACKNOWLEDGEMENT

This research has been supported by ITEA2 and TEKES.
The authors are grateful to AMALTHEA partners for their
cooperation and to Sanja Aaramaa, Markus Kelanti, and
Jarkko Hyysalo for their comments and suggestions.

REFERENCES

[1] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA:

Service-Oriented Architecture Best Practices. Prentice Hall

Profesionall, 2005.

[2] A. Scholz, et al. “∈ SOA-Service Oriented Architectures

adapted for embedded networks,” 7th IEEE International

Conference on Industrial Informatics, IEEE, June 2009, pp.

599-605.

[3] L. Bocchi , J. L. Fiadeiro, and A. Lopes, “Service-oriented

modelling of automotive systems,” 32nd Annual IEEE

International Computer Software and Applications

Conference, IEEE, July 2008, pp. 1059-1064.

[4] T. Blum, N. Dutkowski, and S. Magedanz, “Evolution of

SOA concepts in telecommunications,” Computer, vol. 40,

no. 11, Nov. 2007, pp. 46-50.

[5] R. Dijkman and M. Dumas, “Service-oriented design: A

multi-viewpoint approach,” International journal of

cooperative information systems, vol. 13, no. 4, Dec. 2004,

192Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

pp. 337-368.

[6] C. Peltz, “Web services orchestration and choreography,”

Computer, vol. 36, no. 10, Oct. 2003, pp. 46-52.

[7] M. Fowler, Domain-specific languages. Addison-Wesley

Professional, 2010.

[8] F. Leymann, “Web Services Flow Language (wsfl 1.0),”

IBM Software Group, May 2001, [Online]. Available:
http://cin.ufpe.br/~redis/intranet/bibliography/standards/ley

mann-wsfl01.pdf, [Retrieved: Jun, 2013]

[9] WfMC, “Process Definition Interface - XML Process

Definition Language,” Ver. 2.2, WfMC Standard, Doc.

Number WfMC-TC-1025, Aug. 2012.

[10] OASIS, “Web Services Business Process Execution

Language Ver. 2.0,” OASIS Specification Draft, Aug. 2006

[11] OASIS “ebXML Business Process Specification Schema

Technical Specification v2.0.4,” OASIS Standard, Dec. 2006

[12] OMG, “Business Process Model and Notation”, Ver. 2,

Object Management Group specification, Jan. 2011.

[13] J. Zaha, A. Barros, M. Dumas, and A. T. Hofstede, “Let’s

dance: A language for service behavior modeling,” On the

Move to Meaningful Internet Systems: CoopIS, DOA,

GADA, and ODBASESE, Springer, Nov. 2006, pp. 145-

162.

[14] W3C “Web services choreography description language Ver.

1.0,” W3C candidate recommendation, Nov. 2005.

[15] G. Decker, O. Kopp, F. Leymann, and M. Weske,

“BPEL4Chor: Extending BPEL for Modeling

Choreographies,” IEEE International Conference on Web

Service, IEEE, July 2007, pp. 296-303 .

[16] A. Barker, C.D. Walton, and D. Robertson,

“Choreographing web services,” IEEE Transactions on

Services Computing, vol. 2, no. 2, June 2009, pp. 152-166.

[17] G. Bond, E. Cheung, and I. Fikouras, “Unified telecom and

web services composition: problem definition and future

directions,” Proceedings of the 3rd International Conference

on Principles, Systems and Applications of IP

Telecommunications, ACM, July 2009, pp. 1-12.

[18] A. Iwai, N. Oohashi, and S. Kelly, “Experiences with

automotive service modeling,” Proceedings of the 10th

Workshop on Domain-Specific Modeling, ACM, Oct. 2010,

pp. 1-6.

[19] L. Lin and P. Lin, “Orchestration in Web Services and real-

time communications,” IEEE Communications Magazine,

vol. 45, no. 7, July 2007, pp. 44-50.

[20] W3C, “Voice Browser Call Control: CCXML Version 1.0,”

W3C recommendation, July 2011.

[21] W3C, “State Chart XML (SCXML): State machine notation

for control abstraction,” W3C working draft, Aug. 2013.

[22] K. Vandikas and J. Niemoeller, “SCALE - A language for

dynamic composition of heterogeneous services,” Ericsson

AB, Nov. 2010, [Online]. Available:

http://www1.ericsson.com/res/thecompany/docs/journal_con

ference_papers/service_layer/101215_scale.pdf, [Retrieved:

Jun, 2013]

[23] A. J. Paulo, A. Baravaglio, M. Belaunde, P. Falcarin, and E.

Kovacs, “Service Creation in the SPICE Service Platform,”

Proceedings of the 17th Wireless World Research Forum

Meeting, Heidelberg: Wireless World Research Forum, Nov.

2006, pp 1-7.

[24] J. Fiadeiro , A. Lopes, and L. Bocchi, “A formal approach to

service component architecture,” Web Services and Formal

Methods, Springer, Sept. 2006, pp. 193-213.

[25] J. Fiadeiro, A.Lopes, L.Bocchi, and J.Abreu, “The Sensoria

Reference Modelling Language,” Rigorous Software

Engineering for Service-Oriented Systems, Springer, 2011,

pp. 61-114.

[26] B. Tsai, W.T. Huang, Q. Chen, Y. Paul, and R. A. Xiao,

“SOA collaboration modeling, analysis, and simulation in

PSML-C,” IEEE International Conference on e-Business

Engineering, IEEE, Oct. 2006, pp. 639-646.

[27] The official website of AMALTHEA project, [Online].

Avaliable: itea2.org/project/index/view/?project=10015,

[Retrieved: Jun, 2013].

[28] M. Mernik, J. Heering, and A.M. Sloane,” When and How to

Develop Domain-Specific Languages,” ACM Computing

Surveys, vol. 37, Dec. 2005, pp. 316-344.

[29] S. Vinoski, “An overview of middleware,”Reliable Software

Technologies-Ada-Europe, Springer, June 2004, pp. 35-51.

[30] D. C. Schmidt, “Guest Editor’s Introduction: Model-driven

engineering,” Computer, vol. 39, no. 2, Feb.2006, pp. 25-31.

[31] E. Di Nitto and D. Rosenblum, “Exploiting ADLs to specify

architectural styles induced by middleware infrastructures,”

Proceedings of the 21st International Conference on Software

engineering, ACM, May 1999, pp. 13-22.

[32] B. Kitchenham, S. Linkman, and D. Law, “DESMET: a

methodology for evaluating software engineering methods

and tools,” Computing & Control Engineering Journal, vol.

8, no. 3, June 1997, pp. 120 - 126.

[33] V. R. Basili, G. Caldiera, and H.D. Rombach, “The

Goal/Question/Metric approach,” Encyclopedia of software

engineering, John Wiley & Sons, Inc, 1994, pp. 528-532.

[34] L. Aversano, G. Canfora, A. De Lucia, and G. Pierpaolo,

“Business process reengineering and workflow automation:

a technology transfer experience,” Journal of Systems and

Software, vol. 63, no. 1, July 2002, pp. 29-44.

[35] The official website of AUTOSAR, [Online]. Available:

http://www.autosar.org/, [Retrieved: March, 2013].

[36] P. Berander and P. Jonsson, “A goal question metric based

approach for efficient measurement framework definition,”

Proceedings of the 2006 ACM/IEEE international

symposium on Empirical software engineering, ACM, Sept.

2006, pp. 316-325.

[37] W3C, “WS choreography model overview,” W3C working

draft, Mar ch 2004.

[38] AUTOSAR GbR, “Software Component Template,” Ver.

4.2.0, R4.0 Rev 3, AUTOSAR Standard, 2011.

[39] AUTOSAR GbR, “Specification of RTE,” Ver. 3.2.0, R4.0

Rev 3, AUTOSAR Standard, 2011.

[40] AUTOSAR GbR, “Specification of Communication,” Ver.

2.0.1, AUTOSAR Specification, 2007.

[41] M.B. Miles and M.A. Huberman, Qualitative data analysis: a

sourcebook of new methods. Sage, 1984.

193Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

