
An Ontology-based System to Support Distributed Software Development

Rodrigo G. C. Rocha,
Ryan Azevedo,

Eduardo Tavares,
Daniel Figueredo

UFRPE
Garanhuns – PE, Brazil

rodrigo,
ryan@uag.ufrpe.br,eteduard
otavares,jdanielll3593@gm

ail.com

Catarina Costa
Department of Statistics and

Mathematics
Federal University of Acre
Rio Branco – AC, Brazil

catarina@ufac.br

Marcos Duarte
Information Systems

Course
Paraíso College of Ceará
Juazeiro do Norte – CE,

Brazil
marcos.duarte@fapce.edu.br

João Paulo Fechine
UNIPETECH

UNIPE
João Pessoa – PB, Brazil

fechine@gmail.com

Fred Freitas, Silvio
Meira

Federal University of
Pernambuco – CIn
Recife – PE, Brazil

fred,srlm@cin.ufpe.br

Abstract— Distributed Software Development has become an
option for software companies to expand their horizons and
work with geographically dispersed teams, exploiting the
advantages brought by this approach. However, this way of
developing software enables new challenges to arise, such as
the inexistence of a formal, normalized model of a project’s
data and artifacts accessible to all the individuals involved,
which makes it harder for them to communicate, understand
each other and what is specified on the project’s artifacts. With
that being said, this paper proposes a knowledge management
tool that utilizes a domain-specific ontology for distributed
development environments, aiming to help distributed teams
overcome the challenges brought by this modality of software
development proposing techniques and best practices. Thus,
the main output of this work is Ontology-based System to
Support the software development process with distributed
teams.

Keywords-Distributed Software Development; Ontologies;
Knowledge.

I. INTRODUCTION

Motivated by opportunities like the availability of experts
worldwide, cost reduction, local government incentives and
employee turnover reduction, several software development
companies have been starting to work with geographically
distributed development teams, adopting the Distributed
Software Development approach.

The aforementioned distribution of teams brings along
with it new challenges to the software development scenario.
Carmel [1] and Komi-Sirvo and Tihinen [2] reiterate the
existence of these challenges by presenting some factors that
are likely to lead distributed software development projects
into failure: inefficient communication between distributed
team members, diverging cultures and high complexity or
lack of project management.

In this context, the nonexistence of a formal, normalized
project data model accessible by the entirety of the team
makes the communication between them and the
understanding of the project artifacts harder, which can be
aggravated when each member’s culture and customs is
barely or even not known by the rest of the team.

In order to mitigate these problems, the utilization of
ontologies can be useful because they enable the creation of
a common vocabulary. Wongthongtham et al. [3] mention
that the use of ontologies represent a paradigm shift in
Software Engineering and can be used especially to provide
semantics for support tools, strong, knowledge-based
communication, centralization and information availability.

This paper proposes DKDOnto, a domain-specific
ontology for distributed software development projects,
whose purpose is to aid those projects by defining a common
vocabulary for distributed teams. Besides, this work
proposes a tool that enables both handling and searching the
information in the knowledge base, in order to get more
useful information as to mitigate and avoid future problems
inside the project.

The main goal of this work is the proposal of both the
ontology and the tool, which together will compose a
mechanism to ease the distributed software development
process, from sharing of common knowledge between
distributed team members or smart agents to the decision-
making process effectuated by the project managers.

This paper is organized as follows: Ontology concepts
are presented in Section II; Section III contains the
knowledge-based system proposal; Related works are
presented in Section IV, where a succinct analysis and
comparison of related work and this paper is made; and,
finally, Section V brings the final considerations.

II. ONTOLOGIES

Various definitions are given as to determine a meaning
to ontologies in the Computer Science context, the most
popular and best-known definition being “a formal, explicit
specification of a shared conceptualization”, given by Gruber
[4]. By ‘formal’, he means that it is declaratively defined so
that it can be comprehended by smart agents; by ‘explicit’,
he means that the elements and their restrictions are clearly
defined; by ‘conceptualization’, he means an abstract model
of a field of knowledge or a limited universe of discourse; by
‘shared’, he indicates it is consensual knowledge, a common
terminology of the modeled field. Thus, ontologies set an
unambiguous, common higher abstraction level for several
knowledge domains.

178Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Ontologies, according to Guizzardi [5], are composed by
concept, relations, function, axioms and instances. In short,
concept can be ‘anything’ about ‘something’ that is going to
be explained. The interaction between a domain’s concepts
and attributes is called relation, whose type is called
function. Axioms model sentences that are always true and
instances represent elements from the domain associated
with specific concepts.

The use of ontologies has been made popular by many
other Computer Science subfields, such as: Software
Engineering, Artificial Intelligence, Database Design, and
Information Systems. One of the principal persons
responsible behind this phenomenon is Web Semantics’
creator [6], Sir. Tim Berners Lee.

Many reasons instigate the development of ontologies,
according to [7] [8]. Some of these reasons are:

• Sharing common understanding of how information is
structured between humans and smart agents;

• Reusing knowledge of a domain. In case there is an
ontology that adequately models certain knowledge of a
domain, it can be shared and used by engineers and
ontology developers, as well as teams that develop
semantic and cognitive applications;

• Making explicit assumptions of a domain. Ontologies
provide vocabulary to represent knowledge and its use
prevents misinterpretations;

• Possibility of translation from and to various languages
and knowledge representation formalisms. The
translation concretizes an ideal pursued for generations
by researchers in Artificial Intelligence. It makes it easier
to reuse knowledge, and may allow for communication
between agents in different formalisms, since this service
is available in an increasing number of knowledge
representation formalisms. Another way to reach this
intent is to use ontology editors in which it is possible to
choose in which language of representation the generated
code is going to be written.

• The mapping between two knowledge representation
formalisms, that, inspired in the connectivity component
for Open Database Connectivity (ODBC) management
systems, links two formalisms creating an common
access interoperable interface for them, allowing an
agent to access the other agent’s knowledge.
Furthermore, ontologies help solve some of DSD project

problems; for example, how to establish better
communication, allow a homogenous comprehension of
project information, make the project management a less
laborious task, prevent task interpretation errors and
synchronize the enrolled, distributed team’s efforts and
facilitate the knowledge sharing and standardization.

III. KNOWLEDGE-BASED SYSTEM PROPOSAL

In this work, we present the DKDOnto, a domain-
ontology according to classification adopted by [9], which
classifies the types of ontologies in: i) generic, ii) domain,
iii) task and iv) application.

The ontology proposed intends to be the basis for
possible solutions of knowledge-based systems in the context

of global software development, in order to assist all the
professionals (client too) involved in the software
development process with distributed teams. The DKDOnto
emerges, thus, as a common knowledge base for this context,
leveraging the challenges deals, best practices and possible
solutions, as well a road map with all the actors and their
assignments.

This proposal takes a step beyond, discussing also an
inference engine called DKDs, extremely flexible,
customizable for each environment and giving support for
the professional in real time. The general flow, operating
means and features of the proposed system and the
DKDOnto, as well as a systematic mapping study
(methodology) are presented in the following subsections.

A. Systematic Mapping Study

In this research, a Systematic Mapping Study was
conducted to identify ontologies supporting the DSD. And
indirectly to identify tools, techniques, best practices, and
models that use ontologies to support this area.

An important issue in this process was to search for
reviews and accurate analyses on the field, looking for
current researches and open challenges related to the use of
ontological resources in Distributed Software Development
processes. Thus, the following research question were
intended to be answered: “Which ontologies have been
proposed or adopted in the context of DSD?”

The searches for the primary studies were conducted
according to the research plans defined in the protocol. The
search process retrieved 1588 studies from the chosen
scientific databases.

This question aims to find out which are the ontologies
normalized on the DSD context. In order to answer this
research question, four ontologies have been found. Table 1
presents the proposed ontologies in the distributed context.
The first column presents the name and identifier of each
ontology. The second column shows a description of each
one.

Based on results, it is evident that the development
phases that are benefiting from the use of ontologies are:
process, management, requirements and design. On the other
hand, some important branches have not been fully
approached, for example, quality and tests, which involves
lots of information management activities, and may have a
considerable evolution with the utilization of ontologies as
means to standardize, manage and share knowledge.

By answering the research question from this mapping,
there have been found four works that propose some
ontologies, especially developed for distributed software
development, according to what was previously presented.

Since these ontologies have been designed specifically
for distributed teams, they bear the concepts and features
required to work in this environment. Noteworthy to mention
that two of the four ontologies were developed for open-
source software development communities. According to
Mirbel [10], the free dynamic nature of this environment
poses challenges to the coordination of activities and
knowledge sharing.

179Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Therefore, the use of ontologies as a support to open-
source software development simplifies the management of
knowledge resources in the communities. Noticeable that
several other works use ontologies to solve or mitigate
challenges and in DSD environments, however, these
ontologies are not specific for this environment.

Thus, four ontologies have been found, they are not
shared which does not allow further evaluation and
according to the literature, they have not correct modeling to
cover the entire software development process using
distributed teams. But they have a major limitation, they
have not resources to recommend best practices for possible
problems.

There are numerous tools that utilize nonspecific-to-DSD
ontologies only to mitigate challenges and limitations. These
tools are distributed and used as support in the various
project parts, from actual Software Engineering branches to
specific project activities.

TABLE I. ONTOLOGIES FOR DSD

Models Description

OFFLOSC[10]

This ontology is formalized in the context of open-
source software development communities. Its goal
is help coordinate activities, management of
resources and knowledge sharing. It is composed by
46 classes and describes the concepts related to
open-source communities such as actors, artifacts,
activities, operations, relationships and resources.

Knowledge
Management
Ontologies
[11]

A set of ontologies that formalize structural
concepts of DSD environments, directed to
knowledge management. It describes concepts of
software artifacts, environment problems,
interaction among the distributed development
teammates, infrastructure, business rules and
general information of the project.

Open Source
Communities
[12]

This ontology is also formalized in the context of
open-source software development and its main
purpose is to compose a project knowledge basis
having semantically related, categorized data, which
allows the execution of semantic searches and data
inferences by smart agents. It is composed of 6
classes that describe concepts of actor’s relations,
rules, activities, processes, artifacts and tools from
open-source communities’ projects.

OntoDISEN
[13]

This ontology is formalized in the DSD Project
scenario and is used to aid the establishment of
communication between distributed teams. It is
integrated to a textual information-spreading model,
enabling sharing information in distributed
environments to be comprehended by all the
software engineers in a clear, homogeneous way. It
describes concepts of elements that are represented
and shared in a DSD environment, such as users,
tools, other environments, activities and processes.

With these results, it is clear that there are a lot of
advantages in using ontologies to support DSD, especially to
generate solutions aiming at mitigating the communication,
collaboration, knowledge flow management, coordination of
project activities and knowledge, and process management
issues.

B. DKDOnto: Proposal Ontology

The DKDOnto ontology was developed using Ontology
Engineering, Methontology [14] and IEEE Standard [15] for
developing knowledge-based information systems
methodologies; also, Method 101, proposed by N. F. Noy
and D. L. Mcguinness's [7] was used a complement to
Methontology.

Thus, the language used to build the ontology was OWL,
which eases the publication and sharing of ontologies [16]
and it has also been proposed as a standard for the World
Wide Web Consortium (W3C), incorporating and taking
advantage of the strength of earlier languages. OWL is an
ontology language (Semantic Web [17]) with high-level
expressivity and great potential for knowledge inference. In
order to edit the ontology, the use of Protégé [18] was
employed. It is a free, extensible, Java-based, open-source
ontology editor and knowledge-based framework.

The DKDOnto has about 50 classes, but this paper
describes the following core classes.

• Project: the main class of this knowledge base. It is
responsible to store all the information about the settings of
projects, from allocated team members to phases to activities
to artifacts used.

• Member: it is a subclass of Resource. Member is an
individual who has access to the environment and are
allocated to Projects. A member has skills and works in a
place and participates directly in the project, reporting best
practices and challenges, using and creating artifacts.

• Best Practices: all the solutions and best practices used
to face any problem should be stored in this entity. This class
is responsible for helping avoid challenges and problems
found and reported by a member during the execution of
their activities. It also to solve these challenges and
problems.

• Challenges: all the challenges and problems found by
members should be stored in this class. A challenge can use
best practices to solve itself. This entity is fundamental
because the challenges has some solution or best practice
associated with some practice can be used and available to
another members with same problems.

• Skills: all members’ knowledge are stored in this entity.
The Member's skill enables to avoid challenges and solve it
too. This class allows too that activities be distributed for the
members according their skills.

• Place: it is a fundamental class to define exactly where
the envolved member are in Project. This entity estores all
information about member's localization, defining what is
dispersion level and temporal distance.

• Artifact: class that is used by almost all other main
classes. It supports members and their activities. Tools can
use artifacts in specific activities, too.

• Tool: class reponsible for all the tools envolved in
Project. It allows that all the users knows which tools are
used for another members and another projects. This way, is
possible to follow the patterns and find specific informations
and instructions for use this tools.

• Workspace: is a class that contains Artifacts and Tools
that Users can use and create in their activities. All the users

180Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

allocated in that Project can be access the workspace for
commit and checkout all the documents, artifacts or tools.
The main goal of this class is storable of Artifacts and the
Member uses the Workspace of that specific Project.

This ontology uses two fundamental classes for the
sucess of this proposal. These classes are responsibles for
storage all information about the problems and solutions
during the project. These classes are called of Challenges
and BestPractices. Thus, user's queries allows to view
responses of the challenges, the knowledge base returns the
best practices found for a certain team setting and can be
applied to support challenges, which can be useful for other
teams involved with the same project or other teams from
different projects.

Figure 1 shows some relations between classes defined in
DKDOnto. This diagram of generated from a plugin for
Protégé called Ontoviz. For space constraints, a restrict set
classes was chosen to be exhibited.

C. DKDs: Proposal Tool

DKDs was developed to aid in the transmission,
generation and distribution of knowledge. It is a support tool
for decision-making in DSD, which, based in resources and
information from the context of a project, the system
suggests possible solutions for the problems found to its
users. In this sense, the system accesses the knowledge base
having distributed projects experiences, their configurations,
challenges faced and solutions used to overcome those
challenges.

This tool’s main goal is to support the complete DSD
process, offering recommendations considering the project
setting and organization, technical and nontechnical
experiences.

In order to develop DKDs, the general platform adopted
was J2EE [19]; the web application frameworks utilized
were Grails [20] (High-productivity web framework based
on the Groovy language [21]) and Google Web Toolkit
(GWT) [22]; Hibernate (Java persistence framework project)
[23] was used for persistence; and to manipulate the
ontology, the Jena framework was employed, which is also
responsible for construction and manipulation of Resource
Description Framework (RDF) [24] graphics.

With the DKDs a member from a project can know who
are the another members envolved and have some
instructions to talk each other depending their cultural
characteristics. So, it helps to avoid any problems the

communication (email, talk, phone). Furthermore, any doubt
about some artifact or activity can be solved with the correct
member, that is indicated by the tool.

Among DKDs’ main features, the most important ones
are: DKDs uses the inference engine Pellet for inferring facts
based on the information that has been previously stored in
the knowledge base, thus, some outcomes that the system
can generate:

• Starting the project, request a guideline with
suggested best practices for similar contexts

• Starting the project, request a guideline with main
challenges for similar contexts

• Determines who are the most qualified members to
solve technical problems;

• Suggests possible practices, tools or techniques that
can be employed to avoid challenges

• Find possible solutions used previously to problems
encountered

• Evaluating the solutions proposed by the tool
• Suggest adaptations to the proposed solutions

The application is basically composed by four modules:
• Inference Module: allows for a precise deduction of

information about DKDOnto in RDF and OWL
code, using inference engine Pellet.

• Query Module: this is where all the queries made
by users occur. As it was mentioned earlier, queries
are made in SPARQL language and are transparent
to the users.

• Views Module: gives access to all the reports made
according to the users’ needs.

• Management Module: responsible for enabling
access to the ontology with insertion, removal and
editing of the data in the ontology permissions.

For example, an user can access the application and
insert, delete, edit and view all the data (instances contained
in DKDOnto) by the Management Module. The same user
can use View Module for the ask the system to inform what
is necessary, so, this module activates the Query Module that
use the Inference Module to bring appropriate responses for
the user.

The users have an access interface to execute the
abovementioned functions on one side, whereas on the other
side, there is the SPARQL (Query language for Resource
Description Framework) [25] inference engine to consult

Figure 1. The Core classes and relationships of DKDOnto

181Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

DKDOnto, and the interface component (OWL API [26]) in
the middle, which interacts with both sides. Integrating all
the demands from user using the inference module.

Figure 2 shows the tool’s general functioning as
described above.

IV. RELATED WORK

In this section, works having the same goal or theme of
this paper are described. Based on the amount of related
works found, it can be affirmed that relatively few works on
Software Engineering Ontologies have been carried out.

Wongthongtham et al. [27] present the project and
implementation of a social network approach as a mean to
support the sharing and evolution of a Software Engineering
ontology. A multi-agent recommender system that uses the
'Software Engineering Ontology' and 'SoftWare Engineering
Body of Knowledge (SWEBOK)' as sources of knowledge is
designed within multi-site communities of software
engineers and developers working on related projects as the
target audience. Though a big challenge faced by this
approach is ensuring that the knowledge bases of different
agents are coherent and consistent with one another, as stated
by Dilon and Simmons [28].

Ankolekar et al. [29] considers as one of the toughest
problems faced by online professional communities the fact
that the vast amount of data generated as a result of their
interactions is not well-linked on the basis of the meaning of
its content. With the assumption that a better semantic
support can bring improvements to these communities, a
prototype Semantic Web system was developed.

Such task required a way of describing the semantic
content retrieved from the data obtained from these
communities, which was accomplished through the use of
ontologies. The large amount of data generated was a large
obstacle as the parsers used were unable to reason efficiently
for large amounts of data.

The ‘instance Store (iS)’ system was the solution for such
problem, for it stores assertions about individuals and their
types in a database, reducing reasoning over individuals to

terminological reasoning. But the version of iS used was
limited to role-free reasoning of individuals, what at first was
deemed to be a major limitation but was dismissed by the
authors since the primary use of ontologies in the system “is
for the description, annotation and retrieval of large number
of individuals” and it “does not make use of the open world
assumption nor does it make use of ontologies distributed
over multiple sites”.

In their work, Dillon and Simmons [28] reiterate the
growing importance of the use of ontologies in various
aspects of Software Engineering, showing examples ranging
from the support that offered to multi-site developers, to the
provision of semantics to different categories of software.
The ‘Software Engineering Ontology’ is described and used
for the creation of a software engineering knowledge
management system that is formed by a ‘safeguard system’,
‘ontology system’ and a ‘decision-maker system’. The
purpose behind this system is to facilitate knowledge
sharing, access, update and exchange.

The essential difference of this work is the proposal of
the use of best practices for the challenges found by any
member, thus, they can be use the DKDs to check or consult
all knowledge stored looking for possible best practices. It
also allows the creation of a list of possible problems during
the initial phases, so the manager or developers can avoid
some challenges. Other interesting resource is the creation of
a list of possible developers who may be able to help solve
technical problems through their skills.

V. CONCLUSION

As globalization took place, the distribution of software
development processes have become an increasingly
common fact. The DSD work environments are very
complex and there are no mature practices for this context
since it is relatively new. In this sense, ontologies can bring
benefits such as a shared understanding of information, ease
of communication among distributed teams and effectiveness
in information management.

This work presents evidences from collected papers and a
briew analysis of the results reached. The results support the
foundation for proposing and developing a feature based on
ontologies to support the DSD. The systematic mapping
aimed to identify ontologies formalized in DSD context,
provided that advance the state of art, highlighting the need
to use ontology in this field. Is possible to view all the
Systematic Mapping Results in Borge's work [30]. The
complete information about it is available at a specific
repository files [31].

DKDOnto and DKDs fulfill what has been proposed,
consisting of a computing tool that can be used for treatment,
analysis and utilization of information on distributed
software projects. In this sense, the ontology and the tool
allow that actors in this scenario obtain and access correct
information and artifacts, providing a high-level knowledge
model for the team members.

The results obtained to this date are expressive, in which,
for example, the project manager has actual consistent
knowledge of which cultures are involved in the distributed
teams and which are the implication of this, which enables

Figure 2. Tools General Functioning

182Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

them to handle each case effectively. Similarly, a technical
leader has access to the project participants’ technical
knowledge, making them able to require or assign specific
activities accordingly to the expertise of each team member.

Another important point is that the ontology, as presented
in Section 3, has two fundamental classes, namely
Challenges and Solutions that are directly utilized by the
query tool. That way, the knowledge base will return the
challenges found for a certain team setting and also which
solutions can be applied to such challenges, which can be
useful for other teams involved with the same project or
other teams from different projects.

The next step in this segment is to concretize the
acquisition of knowledge in a systematic way in order to fill
the ontology. In this case, it will be possible to make tests
and simulations with higher precision since all the inserted
data will be from real projects. Furthermore, other
techniques can be used for improves the support of
Challenges, for example, the use of natural procesing
language for retrieve better solutions or best practices based
in challenges cases.

ACKNOWLEDGMENT

Rodrigo was supported partially by CNPQ and Ryan are
supported by CNPq. This work is partially supported by the
National Institute of Science and Technology for Software
Engineering (INES), funded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08.

REFERENCES

[1] E. Carmel. “Global Software Teams: Collaboration Across Borders
and Time Zones”. Prentice-Hall, EUA. 1999.

[2] S. Komi-Sirvo and M. Tihinen. “Lessons Learned by Participants of
Distributed Software Development”. Journal Knowledge and Process
Management, vol. 12 no 2, 2005, pp. 108–122.

[3] P. Wongthongtham, E. Chang, T. Dillon, and I. Sommerville.
“Ontology-based Multi-site Software Development Methodology and
Tools”. J. of Systems Architecture. ACM, New York. 2006. 640–653.

[4] T. Gruber. “Toward Principles for the Design of Ontologies used for
Knowledge Sharing”. In formal Ontology in Conceptual Analysis and
Knowledge Representation. Kluwer Academic Publishers. 1995.

[5] G. Guizzardi. “A methodological approach to development and reuse,
based on formal domain ontologies” Master Degree. Federal
University of Espírito Santo. 2000.

[6] T. Berners-Lee, O. Lassila, and J. Hendler. “The semantic web.”
Scientific American, 2001, pp. 5:34–5:43.

[7] N. Noy and D. Mcguinness,. “Ontology development 101: A guide to
creating your first ontology,”.
[Online].Available:http://www.ksl.stanford.edu/people/dlm/papers/on
tology101/ontology101-noy-mcguinness.html. [retrieved: 06, 2013].
2001.

[8] F. Freitas. “Ontologies and the semantic web”. Proceedings of XXIII
Computer Sience Brazilian Society Symposium. Campinas: SBC. v.
8, 2003, pp. 1-52.

[9] N. Guarino, “Formal ontology and information systems,” in
Proceedings of FOIS98. Trento, Italia: IOS Press, pp. 3–15. 1998.

[10] I. Mirbel. “OFLOSSC, “An Ontology for Supporting Open Source
Development Communities”. In Proceedings of the International
Conference on Enterprise Information Systems (ICEIS). 2009.

[11] W. Maalej and H. Happel. “A Lightweight Approach for Knowledge
Sharing in Distributed Software Teams”. In Proceedings of the
Practical Aspects of Knowledge Management (PAKM). 2008.

[12] T. Dillon and G. Simmons. “Semantic Web support for Open-source
Software Development”. In Proceedings of the International
Conference on Signal Image Technology and Internet Based Systems
(SITIS). 2008.

[13] A. Chaves, I. Steinmacher, C. Lapasini, E. Huzita, and A. Biasão.
“OntoDISEN: an Ontology to Support Global Software
Development”. CLEI Electronic Journal. 2011. v. 14, pp. 1-12.

[14] M. Fernandez, A. Gomez-Perez, and N. Juristo, “Methontology: from
ontological art towards ontological engineering,” in Proceedings of
the AAAI97 Spring Symposium Series on Ontological Engineering,
Stanford, USA, 1997, pp.33–40.

[15] IEEE, “Standard for developing software life cycle processes”. p. 96,
may 1997, eEE Computing Society. Available:
http://standards.ieee.org/catalog/olis/archse.html.[retrieved:06, 2013].
1997.

[16] OWL. Web ontology language overview. Available:
http://www.w3.org/TR/owl-features.[retrieved: 06, 2013]. 2009.

[17] J. Berners-Lee and O. Lassila, “The semantic web,” Scientific
American Magazine.[retrieved: 06, 2013]. 2001.

[18] Protégé. Protégé ontology editor. Online. [Online]. Available:
http://protege.stanford.edu/doc/users.html. [retrieved: 06, 2013].
2009.

[19] J2EE. JAVA Enterprise Edition. Available:
http://oracle.com/technetwork/java/javaee/overview/index.html,
[retrieved: 06, 2013]. 2013.

[20] Grails. Available: http://grails.org, [retrieved: 06, 2013]. 2013.
[21] Groovy. Available: http://groovy.codehaus.org, [retrieved: 06, 2013].

2013.
[22] Google Web Toolkit. Available: http://gwtproject.org, [retrieved: 06,

2013]. 2013.
[23] Hibernate. Available: http://hibernate.org, [retrieved: 06, 2013]. 2013.
[24] J. Carroll, D. Reynolds, I. Dickinson, A. Seaborne, C. Dollin, and K.

Wilkinson, “Jena: Implementing the semantic web recommendations”
. pp. 74–83. 2004.

[25] SPARQL Query Language for RDF. Available: http://w3.org/TR/rdf-
sparql-query, [retrieved: 06, 2013]. 2013.

[26] OWL API. Available: http://owlapi.sourceforge.net, [retrieved: 06,
2013]. 2013.

[27] P. Wongthongtham, E. Chang, and T. Dillon. “Ontology-based Multi-
agent System to Multi-site Software Development”. In Proceedings of
the Workshop on Quantitative Techniques for Software Agile
Process (QUTE-SWAP). (Newport Beach, USA). 2004.

[28] T. Dillon, G and Simmons, G. “Semantic Web support for Open-
source Software Development”. In Proceedings of the International
Conference on Signal Image Technology and Internet Based Systems
(SITIS). 2008.

[29] A. Ankolekar, K. Sycara, J. Herbsleb, and R. Kraut. Welty Chris.
Internactional Conference on World Wide Web. Pg 575-584. 2006.

[30] A. Borges, R. Rocha, C. Costa, H. Tomaz, S. Soares, and S. Meira.
“Ontologies Supporting the Distributed Software Development: a
Systematic Mapping Study”. In Proceedings of the International
Conference on Evaluation & Assessment in Software Engineering
(EASE). Porto de Galinhas, PE, Brasil. 2013.

[31] Files Repository of Mapping Study about Ontologies in Distributed
Software Development: http://www.rgcrocha.com/ms, [retrieved: 06,
2013]. 2013.

183Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noy-mcguinness.html
http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noy-mcguinness.html
http://owlapi.sourceforge.net/
http://www.w3.org/TR/owl-features

	I. Introduction
	II. Ontologies
	III. Knowledge-based System Proposal
	A. Systematic Mapping Study
	B. DKDOnto: Proposal Ontology
	C. DKDs: Proposal Tool

	IV. Related Work
	V. Conclusion

