
Using a New UML Profile for Modeling Software Tests

Andrew Diniz da Costa, Carlos José Pereira de Lucena, Ricardo Venieris, Gustavo Carvalho
Laboratory of Software Engineering

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, Brazil

{acosta, lucena}@inf.puc-rio.br, {rvenieris, guga}@les.inf.puc-rio.br

Abstract—The development of complex systems is becoming

extremely common; hence, is motivating the work on software

testing. When a large number of tests must be executed to

validate the release of a system, several data should be used to

correctly coordinate the execution of these tests, such as

knowing (i) if the current version of a particular test has been

updated, (ii) the interdependence between tests, (iii) the order

of execution to be followed, (iv) the priority, (v) the risks

associated with the tests, etc. Based on this concern for

providing and documenting useful data for the coordination of

test execution, this paper offers a new modeling language

called UML Testing Profile for Coordination (UTP-C). UTP-C

was created from testing experiences of several web and

desktop applications in the Software Engineering Lab, located

at the Pontifical Catholic University of Rio de Janeiro. In order

to illustrate the use of UTP-C, the paper presents tests modeled

for validating an e-commerce multi-agent system.

Keywords-UML testing profile; model based test; software

testing.

I. INTRODUCTION

Creating and executing software tests is an activity that is
extremely important in the development process. Depending
on the size and complexity of the system evaluated, System
Under Test (SUT), a large number of tests should be created
and maintained. The U.S. National Institute of Standards and
Technology (NIST) informs that systems without adequate
tests generate annual costs of up to US$ 59.5 billion [24].
This is almost 1% of the gross domestic product of the U.S.

In order to control software tests, it is necessary to apply
a process of management, which makes it possible to execute
these tests to evaluate if each one is behaving as expected.
Several concerns are identified in this process, such as high
costs to recruit or train people, the defining of documentation
standards, etc.

One approach that has gained prominence to document
and assist the activities of test creation, execution and
maintenance is the application of test modeling languages,
which provides a graphic view that facilitates the abstraction
of concepts and the communication between stakeholders. In
the literature, there are several approaches related to test
modeling, such as the UML Testing Profile [1], the AGEDIS
Modeling Language [2], and the Unified Testing Modeling
Language [3].

Over the past six years, the Software Engineering Lab
(LES) at the Pontifical Catholic University of Rio de Janeiro
has worked extensively on coordinating and carrying out
tests of large-scale software systems developed (for web and

desktop) for different domains (e.g., petroleum, e-commerce,
etc). Based on this experience and a request from a client,
who wanted to have all the tests modeled, we investigated
how UML could be used to model relevant test data and
hence to help the coordination of test execution. These data,
which could be modeled, were identified from different
sources: (i) test maturity models (TMM [14] and TMMi
[15]); (ii) continuous integration tools [16] (e.g., Hudson,
Continuum and Cruise Control); (iii) test management tools
(e.g., Rational Quality Manager [19] and Rational Test
Manager [20]); (iv) test modeling languages; and (v) IEEE
documents (such as, IEEE 829-2008 [21]). Some of the
identified data were described in [23].

From this work, a test group of the LES proposed a new
test modeling language called UML Testing Profile for
Coordination (UTP-C), which is presented in the paper.
UTP-C is an extension of the UML Testing Profile, which is
an OMG pattern for the UML language. This approach was
provided to allow the modeling of useful data that help the
coordination of software testing. According to Baker e al.
[1], a profile defines new stereotypes, attributes, and
methods to provide additional semantics for the UML.

When UTP-C was being created, we identified the
possibility of generating a set of useful artifacts from UTP-C
models. However, to conduct this generation, an appropriate
tool needed to be created and used. The artifacts identified
for automatic generation were: (i) javadoc commentaries in
test script source code; (ii) reports that provide important
data about modeled tests; and (iii) a set of XML files
considered as input data for multi-agent systems [22] that use
the Java Self-Adaptive Agent Framework for Self-Test
(JAAF+T) [5][6].

JAAF+T is a framework that aims to allow the creation
of self-adaptive software agents that perform a self-test
before executing self-adapted behaviors. We consider self-
test as the action of validating some adaptation before using
it. These validations are performed by a set of tests described
in XML files and that are explained in detail in [5] and [6].
Hence, from the JAAF+T, a self-adaptive agent can
coordinate the execution of tests, i.e., choosing and executing
which tests will validate some self-adaptation performed by
it.

Since different LES projects use the Rational Software
Architecture (RSA) tool to model UML diagrams, we
decided to create a new plug-in for the tool called “RSA
applying Model-Based Test” (RSA-MBT). The main focus
of this plug-in is to generate test artifacts from UTP-C
models.

169Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Thus, the paper is organized as follows. In Section II, the
new UML profile is explained. In Section III, a case study is
presented that illustrates examples of UTP-C diagrams at an
e-commerce multi-agent system developed for the web.
These diagrams are modeled using the Astah tool [13]. In
Section IV, the main idea of the RSA-MBT plug-in is
presented, and the diagrams modeled from the Astah (in
Section III) are modeled in the RSA tool. Thus, it is possible
to see the modeling based on UTP-C in two different tools.
In Section V, conclusion and future works are presented.

II. UML TESTING PROFILE FOR COORDINATION

In this section, the UML Testing Profile for Coordination
(UTP-C), which was created to model useful data to test
coordination, is presented. As stated previously, UTP-C is an
extension of the UTP, a standard test profile of the OMG for
the UML language. UTP-C uses UML class and activity
diagrams for modeling a set of test data. These diagrams
were chosen because they allow the modeling of structural
and dynamic information that helps the coordination of tests.

The meta-class diagram illustrated in Figure 1 presents a
set of stereotypes defined by the UTP-C profile, as well as
where they can be used in UML elements. Some of these
stereotypes are new, while others are provided by the UTP,
but had constraints and properties included. In spite of these
inclusions in the UTP-C, they do not challenge the
compatibility to the ones that use UTP. Due the limited space
of the paper, we will not be able to present in detail these
constraints and properties that are described in [6]. However,
the example presented in Section III illustrates how UTP-C
diagrams can be modeled.

Below, the description of each stereotype used by the
UTP-C is presented.

• <<TestCase>>: It states a test case of a system
under test (SUT). Each test case is composed of a
set of data: test type (e.g., white box, functional,
non-function, regression, etc), priority of
execution, version of the SUT that it is currently
updated, type of obligatoriness, i.e., if execution is
mandatory or optional, and the related risk of the
system when the test case fails (e.g., to stop the
system, data inconsistency, etc.). This set of data
related to each test case was not considered by the
UTP.

• <<TestContext>>: It states that a set of test cases is
responsible for testing some artifacts of the SUT. A
test context is composed for: 1 to N test cases, it
informs the version of the SUT that their test cases
should be updated (desired version), test tool used
for executing it, test level related (e.g., unit,
integration, system or acceptance), and if it is
executed automatically or manually. All these data,
except the definition that a test context is
composed for 1 to N test cases, were not
considered by the UTP.

• <<OrderedSuite>>: It is used to represent a test
suite, i.e., an entity that executes a set of test
contexts and test cases upon a specific order. UTP
considers that a test context is a suite. However, to
allow a better identification of a suite class that
does not have developed test cases, in comparison
to a class that has test cases (test context), we
decided to offer the <<OrderedSuite>> stereotype.

• <<TestCriterion>>: It defines a criterion of
selection to execute tests of the SUT. An example
of a criterion is to execute all the regression and
unit tests with high priority and mandatory.

• <<ArtifactUnderTest>>: This stereotype is
responsible for representing a set of data related to
some artifacts under test (AUT) that are provided
in a comment entity. Examples of provided data are
the following: path where the results of the tests
executed to validate the AUT are stored (result’s
log), name of the AUT, and type of artifact tested
(e.g., class, agent of software, web-service, etc.).

• <<TestClassification>>: It represents a test
classification. Test classification is any information
that allows grouping and relating test contexts and
ordered suites. Its focus is to help the visualization
of test entities and their conceptual relations.

• <<Development>>: It represents the real package
that stores a given created and modeled class. This
is different than the stereotype
<<TestClassification>>, which represents
conceptual views.

In Figure 1, the Element meta-class is a superclass of the
Classifier meta-class, which is a superclass of the Class
(used in class diagrams) and Activity meta-classes (used in
activity diagrams) [4]. Thus, the TestContext, OrderedSuite,
and TestCriterion stereotypes can be used in any sub meta-
class of Classifier, while the TestCase stereotype is related to
the Behavior meta-class to allow the modeling at behavioral
entities, such as Activity.

Figure 1. UTP-C meta-model.

170Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 1 also illustrates that the Classifier meta-class is
related to StructuralFeature and BehavioralFeature meta-
classes. A structural characteristic is a characteristic of a
classifier that specifies the structure of instances of the
StructuralFeature meta-class, whereas a behavioral
characteristic is a characteristic that specifies an aspect of
behavior of theirs instances. Thus, the StructuralFeatures
meta-class is a generalization of Property meta-class
(attributes of a class are represented as instances of
Property), and the BehavioralFeatures meta-class is a
generalization of the Operation meta-class, according to the
definition of the UML [4]. The original UTP considers that a
test case also can be represented as an operation. Hence, the
TestCase stereotype can be used in the Operation meta-class.

The Comment meta-class is a subclass of the Element
meta-class and it can receive the ArtifactUnderTest
stereotype. As stated previously, this stereotype informs that
data which compose a Comment instance are related to an
artifact of the SUT.

TestClassification and Development stereotypes are used
in packages (represented by the Package meta-class) that
allow, respectively, test classifications or development
packages to group test contexts and/or suites.

Figure 2. Meta-model of relationships.

Another important data for test coordination is to
understand which dependences exist between tests. In order
to represent additional semantics on relationships of
dependency, a set of stereotypes were proposed by the UTP-
C to the UML. These stereotypes were proposed from
situations identified in test projects of the Software
Engineering Lab. Although this is a limited set, other
stereotypes can be included depending on the needs of each
project, such as proposals that express more situations of
security in SUTs (e.g., <<permissionRevoked>>).

These stereotypes are presented in Figure 2 and described
below.

• <<artifactCreated>>: It is used when a test case
depends on the creation of some artifact (e.g., file,
component, entity, etc.) performed by another test
case.

• <<artifactUpdated>>: It states that a test case
depends on the updating of an artifact (e.g.,
changing the name, path, etc.).

• <<artifactRemoved>>: It indicates that the test case
depends on the exclusion of another system
artifact.

• <<environmentChanges>>: The test case depends
on changes in the environment where it is being
executed, such as changes to the operating system,
environment variables, etc.

• <<permissionGranted>>: It is used when a test
case depends on a permission granted from another
test case.

• <<loginAccess>>: It states that a test case depends
on a login performed in the SUT from another test
case.

• <<executionSuite>>: It informs which test contexts
an OrderedSuite executes.

• <<artifactIsAvailable>>>: It is used when a test
case needs to use an artifact provided by another
test case.

III. CASE STUDY: VIRTUAL MARKET PLACE SYSTEM

This section presents the test modeling of the Virtual
Marketplace (VMP) application, an e-commerce system
where software agents represent users (buyers) and markets
(sellers) that sell new and used books. Each buyer agent
executes a set of tests to decide which seller will be used to
buy his desired books. In order to show how the UTP-C
approach can be used a subset of tests created and executed
by the buyer agents are modeled. Thus, this section is
organized as follows. In Section A, the idea of the VMP
system is presented in more detail, and in Section B, UTP-C
diagrams are presented and described.

A. Main Idea

Aiming to exemplify the use of the UTP-C, we decided
to use the VMP system that provides markets responsible for
selling new and used books for users. As stated previously,
each user is represented by a buyer software agent, which
negotiates with seller agents that represent markets (e.g.,
Amazon, Ebay, etc.).

Initially, a buyer user should register with the system
providing: (i) its preferred market; (ii) the minimum
reputation a seller (market agent) must have; and (iii) if he
prefers to buy either new or used books. These data are used
by the buyer agent to negotiate with seller agents that satisfy
the requests made by the user.

171Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

After registering, the user can request the purchase
desired. However, a set of data must be provided: (i) title(s)
of book(s) desired, (ii) name(s) of author(s), and/or (iii) the
maximum price he is willing to pay for book. From these
data, the buyer agent (representative of the user) verifies if
the seller agent (representative of his preferred market) can
meet the request that has been made.

If a seller cannot satisfy the request, the buyer agent tries
to meet another seller agent that can sell the desired books.
In order to meet another seller, three verifications are
performed: (i) if the prices of the desired books provided by
the seller are lower than the maximum price informed by the
buyer, (ii) if the type of book (used or new) informed by the
buyer is respected, and (iii) if the seller agent’s reputation is
higher than or equal to the minimum reputation of the buyer.

The idea of reputation used on the VMP system is based
on the interaction and witness reputations proposed by the
Fire model [7]. The interaction reputation is related to the
provision of reputations from the negotiation between two
agents. In this case, a buyer agent can define a reputation of
the seller agent involved in the interaction performed. This
reputation is stored in a private buyer agent database. On
other hand, the witness reputation allows an agent A to
request the reputation (opinion) for an agent B about an
agent C. Thus, a buyer agent can request opinions about a
seller agent for other buyer agents.

When a seller agent is able to meet the request provided
by a buyer, the VMP system presents details of the purchase
for the user and it expects confirmation to conclude the
negotiation between the agents.

B. Modeling VMP

Figure 3 illustrates a class diagram, created from the
Astah tool [13]. This diagram has two test contexts created
for the VMP system: TestAvailableItem and

TestVerifyWitnessReputationSeller. TestAvailableItem has a
test case named testAvailableItem, while
TestVerifyWitnessReputationSeller has the test case
testWitness. These test contexts execute automatic (use of
the attribute isAutomatic) test cases for the version 7.0 of the
SUT (represented by the attribute desiredSystemVersion).
Furthermore, they use the JAT tool (represented by the
attribute tool) [8], which allows the development of unit tests
(use of the attribute testLevel) for multi-agent systems.

The main goal of the TestAvailableItem test context is to
verify if a seller agent can sell a given book requested by the
buyer agent while the TestVerifyWitnessReputationSeller
test context verifies if the seller agent has a reputation higher
than the reputation informed by the buyer. This conclusion is
achieved from the average generated by the reputations
provided for other buyer agents of the system about the
analyzed seller agent.

Figure 3 shows that each test case of the system contains
five more pieces of important associated information: (i) the
system version with which the current test case is associated
and updated (described by using the attribute
currentVersion); (ii) its type of test (e.g., functional, non-
functional, regression, etc.); (iii) the priority of the execution
(e.g., high, medium, low); (iv) the type of obligatoriness
(e.g., mandatory or optional); and (v) the risk related to the
test when this test fails. The model allows a description of a
risk in detail (e.g., to stop the system) or only its severity
related to the SUT (e.g., high severity as illustrated in Figure
3) when a test case to fail. The works presented in [6] and
[23] describe in detail the relevance of modeling these test
data.

The SuiteVMP class is a test suite responsible for
executing the test contexts mentioned previously. If a suite
executes a subset of test cases developed through some test
context, the modeling can inform which are these test cases

Figure 3. Class Diagram based on UTP-C.

172Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

from the following structure: <<executionSuite>>
[name_test_case_1, …, name_test_case_N].

The entities modeled in Figure 3 are grouped in packages
that have the stereotype <<Development>>. This stereotype
represents the package where the classes of a given project
are stored. On the other hand, the stereotype
<<TestClassification>> can be used to group conceptually
test contexts and suites. Packages with this stereotype do not
store developed classes, different than packages with the
stereotype <<Development>>.

Figure 4. Example of activity diagram.

Finally, but not least important, Figure 4 shows an
activity diagram that illustrates the order of execution
considered by the SuiteVMP. In this diagram, the first test
context to be executed is TestAvailableItem followed by
TestVerifyWitnessReputationSeller. The diagram shows that
these test contexts are responsible for testing a given seller
agent, and the test results are stored at
“\\logs\logSellerAgent.txt”. These data are provided for a
commentary entity with stereotype <<ArtifactUnderTest>>
illustrated in Figure 4.

IV. RSA-MBT PLUG-IN

When UTP-C was being created, we identified the
possibility of generating a set of useful artifacts from UTP-C
models. Thus, the RSA-MBT was proposed. It is an open-
source plug-in, developed in Java, for the Rational Software
Architecture (RSA) tool, and it is available in [9].

From the RSA-MBT it is possible to generate test
artifacts based on UTP-C diagrams. The possible test
artifacts, which can be generated from it, are the following:
(i) test reports for test teams; (ii) javadoc commentaries; and
(iii) a set of XML files used in multi-agent systems that
instantiate the JAAF+T framework. Notice that currently the
plug-in is not creating test codes. However, we intend to
include this generation in the next releases of the plug-in.
Thus, the main idea of the RSA-MBT is to generate a set of
artifacts that can help the work of test teams, such as
understanding characteristics of each test case (e.g., from
javadoc commentaries), and knowing which tests are not
updated to a specific version of a system under test (e.g.,
using test reports generated).

The RSA tool allows several transformations, such as
from UML diagrams to Java. When this transformation is
requested, the RSA-MBT is executed.

Figure 5 illustrates the same classes modeled in Figure 3,
but modeled from the RSA tool. Data of the test cases
(methods) are presented in the Documentation tab, when a
test case method is selected, as illustrated in Figure 6. This
approach was considered, because RSA tool does not allow
modeling these data of the test cases as the Astah tool.
Besides, we informed that the current version of the
testWitness is v6_00, which is different from the one in
Figure 3. This was performed in order to show better some
data generated from the plugin proposed and explained more
in the following.

Figure 5. Example of class diagram based on UTP-C.

Figure 6. Documentation tab of the RSA tool.

From modeling of diagrams based on the UTP-C

approach, the user should request the UML to Java
transformation. With this request the main screen of the
RSA-MBT is presented (see Figure 7). Such a screen allows
choosing which test artifacts will be generated and which
language must be considered. Nowadays, the plug-in allows
generating artifacts in six different languages: English,
Portuguese, Italian, French, Spanish, and German.

173Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 7. RSA-MBT screen.

Figure 8 illustrates an example of javadoc commentaries
generated in English. In this example, commentaries are
provided to the class (test context)
TestVerifyWitnessReputationSeller and to its test case
(testWitness method) modeled in the class diagram presented
in Figure 5.

The commentaries generated to the class TestWitness
are based on the data provided in the modeled attributes:
desiredSystemVersion, testLevel, tool and isAutomatic.
Hence, it is informed that such test context uses the JAT tool,
is an automatic and unit test context, and should be updated
to the version “v7_00” of the SUT. On other hand, the
commentaries generated by the “testWitness” method are

based on the data provided in the “Documentation” tab
presented in Figure 6. Thus, RSA-MBT informs that it is a
mandatory and a white-box test case currently updated to
version v6_00 of the SUT. Besides, it has priority and risk 0
(zero), i.e., high priority and risk, respectively.

Figure 8. Example of javadoc commentaries.

Figure 9. Summary tab – test report generated.

174Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

In order to provide an overview of which test contexts
and test cases are updated to a specific version informed by
the user (by using the text field “Desired System Version”
illustrated in Figure 4), a test report (“.xls” extension) is
created. This report has three tabs, which are explained in
detail as follows.

• Summary tab (see Figure 9): It presents two
graphics that inform the number of test contexts and
test cases updated to the version provided by the
user (we are considering that the desired version is
v7_00).

• Details tab (see Figure 10): It lists the test contexts
(test classes) updated and not updated to the version
desired.

• ReportData tab (Figure 11): It presents an
overview of the current state of these updates.

Figure 10. Details tab – test report generated.

Figure 11. ReportData tab – test report generated.

Also, RSA-MBT generates XML files as input data to the
JAAF+T framework. As stated previously, JAAF+T is a

framework that allows creating self-adaptive agents that
perform self-tests based on a set of XML files.

Three XML files can be generated by the plug-in:
TF.xml, CFF.xml and CEF.xml. Test File (TF.xml) is
responsible for describing all the tests that can be executed in
self-adaptations (see Figure 12). Control Flow File
(CFF.xml) presents the order of execution that tests must be
executed to validate some artifact of the SUT (see Figure
13). While Criterion of Execution File (CEF.xml) describes
the criterions that define which tests, present in the TF.xml
file, will be executed (see Figure 14).

Figure 12. Example of a TF.xml file.

Figure 13. Example of a CFF.xml file.

The main idea of using UTP-C models was to make
creation and maintenance of these XML files easier since,
depending on the size of an XML file, the editing work can
be difficult. Thus, as all the data considered by the XML
files can be modeled in UTP-C diagrams, it is often easier to
edit diagrams than to work with XML files. Details of these
files are presented in [5].

175Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

V. DISCUSSION

One of the most relevant work related to test modeling is
the UML Testing Profile [1] that defines a profile for
designing, visualizing, and documenting the artifacts of test
systems. Such an approach extends UML 2.x [4] with test
specific concepts, such as test components, verdicts, defaults,
etc. These data are grouped in test architecture, test data, test
behavior and time. Being a profile, the UML testing profile
seamlessly integrates into UML: it is based on the UML
meta-model and reuses UML syntax. Although the approach
proposes interesting concepts for modeling test systems, it
does not support the modeling of important test data
represented by our test modeling language, such as the
identification of (i) the system version that each test is able
to test, (ii) the mandatory and optional tests, (iii) the test
types created, (iv) the types of dependences that exist
between the tests (such as data dependence), and (v) the
automated and manual tests. On the other hand, the UTP-C
approach provides support to represent these test data.

Figure 14. Example of a CEF.xml file.

AGEDIS modeling language (AML) [2], which is
another testing language, is based upon the UML (1.4) meta-
model and enables the specification of tests for structural
(static) and behavioral (dynamic) aspects of computational
UML models. AML comes as part of the AGEDIS
methodology and has been designed with two main goals in
mind: to create a test adequate abstraction of the SUT that
will be analyzed by the AGEDIS tools, which allows
generating automatically suite tests, and to set meaningful
test directives for the testing process. AML presents the same
problems mentioned for the UML Testing Profile.

The Testing and Test Control Notation (TTCN-3) [11] is
a modular language that has the similar look and feel of a
typical programming language. This language is widely
accepted as a standard for test system development in the
telecommunication and data communication area. The main
reason for such acceptance is that it comprises concepts
suitable to any type of distributed systems to be tested, such
as important features necessary to specify test procedures for
functional, conformance, interoperability, load and

scalability tests. Besides this, it defines mechanisms to
compare the reactions of the system under test with the
expected range of values, time handling, distributed test
components, ability to specify encoding information,
synchronous and asynchronous communication, and
monitoring. Similar to the UML Testing Profile, TTCN-3
also does not provide a set of useful concepts that the test
modeling language, presented in this paper, proposes. All the
concepts not included in the UML Testing Profile and
AGEDIS are also not considered in this work.

According to [3], the benefits of Model-Driven
Engineering (MDE) for product software development have
been demonstrated in numerous instances. Therefore, similar
benefits can also be achieved in applying MDE to test
software development. This form of Model-Based Testing
(MBT) is called Model-Driven Test Engineering (MDTE) or
simply Model-Driven Testing (MDT). However, to optimize
the efficiency of MDT, good-practices and patterns specific
to test development must be taken into account. Based on
this idea, Feudjio [12] proposes a Unified Test Modeling
Language (UTML) that is a test notation designed for
pattern-oriented MDT. It provides the means for designing
all aspects of a test system at a high level of abstraction and
independent of any specific lower-level test infrastructure.
Besides this, at the same time it provides guidance in
following test design patterns and avoids usual pitfalls of
MDT. Such an approach provides a tool called MDTester
that allows modeling the concepts proposed by UTML.
However, this tool does not allow to explicitly model the test
data provided by the UTP-C, such as, test type, test level,
risk, priority, etc.

VI. CONCLUSION AND FUTURE WORK

This paper presented a new test modeling approach
named UML Testing Profile for Coordination (UTP-C). This
approach extends the UML Testing Profile in order to model
useful data that helps test coordination. These data were
identified from tests created and executed for different
systems (web and desktop) in the Software Engineering Lab.
This work has been motivating research related to the test
area, especially the Model Based Test, such as the creation of
the RSA-MBT plugin, presented in the paper.

Considering that the plug-in was created for the Rational
Software Architecture (RSA), when a transformation is
requested in the RSA, files generated by the tool are replaced
(e.g., Java files created from UML diagrams). Due to this
behavior, we are currently developing a treatment that allows
applying a merge between Java files. Thus, important
contents of Java files already created will not be lost when a
UML to Java transformation is requested.

Besides, we are deciding how to automatically generate
codes for test scripts for the Rational Functional Tester
(RFT) [17] and for the Rational Performance Tester (RPT)
[18]. RFT and RTP are tools used in different test projects of
the LES that allow creating functional and performance test
scripts, respectively.

176Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

VII. ACKNOWLEDGMENTS

This work has been sponsored by the INCT on
WebScience through grants from CNPq and FAPERJ.

REFERENCES

[1] P. Baker, Z. Ru Dai, J. Grabowski, O. Haugen, I.
Schieferdecker, and C. Williams, “Model-Driven Testing:
Using the UML Testing Profile”, Springer, ed. 2008,
December, 2007.

[2] A. Hartman and K. Nagin, “The AGEDIS Tools for Model
Based Testing”, Book UML Modeling Languages and
Applications, vol. 3297, 2005, pp. 277-280, doi: 10.1007/978-
3-540-31797-5_33.

[3] UTML - The Unified Test Modeling Language for Pattern-
Oriented Test Design,
<http://www.fokus.fraunhofer.de/distrib/motion/utml/>,
retrieved: August, 2013.

[4] UML 2 Specification, <http://www.omg.org/spec/UML/2.3/>,
retrieved: August, 2013.

[5] A. D. Costa, C. Nunes, V. T. Silva, C. J. P. Lucena, and B.
Fonseca, “JAAF+T: A Framework to Implement Self-
Adaptive Agents that Apply Self-Test”, in proceedings of the
25th Symposium On Applied Computing, Sierre, Switzerland,
2010, pp. 928-935.

[6] A. D Costa, “Automation of the Management Process of the
Test of Software”, Thesis at Portuguese, Pontifical Catholic
University of Rio de Janeiro, August, 2012.

[7] T. D. Huynh, N. Jennings, and N. Shadbolt, “FIRE: an
Integrated Trust and Reputation Model for Open Multi-agent
Systems. In Proceedings of the 16th European Conference on
Artificial Intelligence”, Valencia, Spain, 200, pp.18-22.

[8] R. Coelho, E. Cirilo, U. Kulesza, A. Staa, A. Rashid, and C. J.
P. Lucena, “JAT: A Test Automation Framework for Multi-
Agent Systems”, in Proceeding of the International
Conference on Software Maintenance, France, 2007, pp. 425-
434.

[9] RSA-MBT: Web site for downloading,
<http://www.les.inf.puc-
rio.br/escritorioqualidade/index.php?option=com_content&vi
ew=article&id=57&Itemid=58>.

[10] Rational Software Architect,
<http://www.ibm.com/developerworks/rational/products/rsa/>
, retrieved: August, 2013.

[11] TTCN-3 web site, <http://www.ttcn-3.org/>, retrieved:
August, 2013.

[12] A. V. Feudjio, “MDTester User Guide”,
<http://www.fokus.fraunhofer.de/distrib/motion/utml/>,
retrieved: August, 2013.

[13] Astah tool, <http://astah.net/>, retrieved: August, 2013.

[14] I. Burnstein, A. Homyen, R. Grom, and C.R. Carlson, “A
Model to Assess Testing Process Maturity”, Crosstalk 1998,
Software Technology Support Center, Hill Air Force Base,
Utah, <http://www.crosstalkonline.org/storage/issue-
archives/1998/199811/199811-Burnstein.pdf>, retrieved:
August, 2013.

[15] TMMi: The Test Maturity Model Integration,
<http://www.tmmifoundation.org/html/tmmiref.html>,
retrieved: August, 2013.

[16] P. M. Duvall, S. Matyas, and A. Glover, Continuous
Integration: Improving Software Quality and Reducing Risk,
Publisher: Addison-Wesley Professional, 2007.

[17] Rational Functional Tester, <http://www-
03.ibm.com/software/products/us/en/functional/>, retrieved:
August, 2013.

[18] Rational Performance Tester, <http://www-
03.ibm.com/software/products/us/en/performance/>,
retrieved: August, 2013.

[19] Rational Quality Manager tool, <http://www-
03.ibm.com/software/products/us/en/ratiqualmana/>,
retrieved: August, 2013.

[20] Rational TestManager tool, <http://www-
01.ibm.com/software/awdtools/test/manager/>.

[21] IEEE 829-2008 – IEEE Standard for Software and System
Test Documentation,
<http://standards.ieee.org/findstds/standard/829-2008.html>,
retrieved: August, 2013.

[22] M. Wooldridge and N. R. Jennings, “Pitfalls of agent-oriented
development”, in Proceedings of the Second International
Conference on Autonomous Agents (Agents'98), ACM Press,
Minneapolis, USA, 1998, pp. 385-391.

[23] A. D. Costa, V. T. Silva, A. Garcia, and C. J. P. Lucena,
"Improving Test Models for Large Scale Industrial Systems:
An Inquisitive Study", in Proceedings of the ACM/IEEE 13th
International Conference on Model Driven Engineering
Languages and Systems, Part I, LNCS Springer 6394, Oslo,
Norway, 2010, pp. 301-315.

[24] NIST: National Institute of Standards and Tecnology,
Software Errors Cost U.S. Economy $59,5 Billion Annually –
NIST Planning Report 02-3, 2002.

177Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

