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Abstract—Advanced Driver Assistance Systems are hard real-
time control systems in the automotive domain. They consist
mainly of data acquisition, decision and action subsystems. The
action subsystem constitutes a complex system which is composed
of several embedded devices. The design of these systems is
considered to be a complex process, as all components and
real time constraints have to be considered during the design.
Failures in hard systems could result critical situations. To tackle
this problem, the design patterns present a reuse solution that
improves the quality of the development process and reduces the
complexity of systems design. However, the patterns which exist
in the literature are abstract and do not represent the advanced
driver assistance systems. In this paper, we focus on defining
a specific real-time design pattern for an action subsystem of
an advanced driver assistance system. This pattern captures
the structural and the behavioral aspects. The definition of this
pattern is based on a development process. To make this pattern
more flexible and understandable, we add some semantics to the
UML concepts using an UML-Profile, which expresses the real-
time elements of the pattern and its variability.

Keywords—Design pattern; Real-Time; UML-Profile; Actuator;
ADAS.

I. INTRODUCTION

In recent years, the number of vehicles on the road
has greatly increased. To reduce the risk of accidents, new
technologies in vehicles, called Advanced Driver Assistance
Systems (ADAS), have been appeared. Among these systems,
we can quote Adaptive Cruise Control (ACC) [1] and Lane
Departure Warning system [2]. Furthermore, ADAS systems
help drivers in their driving tasks. As a result, the use of
these systems improves road safety and reduces the risk of
accidents. An ADAS is a complex real-time (RT) embedded
system which consists of three subsystems:

1) The data acquisition subsystem: it includes a series
of sensors (e.g., radar and wheel speed sensors)
and a sensor data fusion unit that allows computing
appropriate sensors data to estimate the consistent
state of a vehicle and its environment [3].

2) The decision subsystem: it uses the data fusion unit
outputs to analyze the current situation and decide
the appropriate actions to be transmitted to actuators
[4].

3) The action subsystem: it reacts to the decision sub-
system by (i) providing automatic actions such as
braking, and/or (ii) delivering visual, acoustic or

haptic warning information to the driver [5]. This
subsystem is consisting of several technologies (e.g.,
automatic actuators and Human Machine Interface),
which serve more sophisticated functions.

The design of ADAS is highly complex; it is difficult to model
the components, their interactions and the time constraints
related to both data and transactions. Most often the accidents
that are caused by failing developed systems, due the errors
in the design phase. Moreover, the interaction with a human
driver introduces even more complexity, since a driver can
behave unpredictably to warnings or automatic action. This
problem adds a level of complexity to the design of these sys-
tems. In addition, ADAS may be implementing with different
platforms, but implementation details and design methods are
absent. For these reasons, it is essential to capture the design
into appropriate methods that can be analyzed and applied to
each system.

A way to design these systems may be to exploit reusable
components like design patterns. These patterns provide ab-
stract components that aim to facilitate systems design, lead-
ing to efficient and reuse solutions. Design patterns can be
classified into general or domain-specific. General patterns are
intended for several domains; so, they are often too abstract
[6]. The problem with this category of patterns is to determine
in which context or in which part of the system they can be
applied. On the other side, domain specific design patterns
often provide an optimal solution for a particular domain. In
fact, they provide to the designers some well-defined concepts
(e.g., attributes and methods) of the domain. For these reasons,
several works [7][8][9][10] have proposed domain specific
design patterns applied to the RT domain.

In this paper, we are interested to define a real-time
design pattern that models the ADAS action subsystem, which
is one of the complex subsystems composing an ADAS.
This pattern models the structural and behavioral aspects in
common way of an ADAS action subsystem which may be
implemented with different languages and tools. The proposed
pattern omits sufficient description of device characteristics,
control algorithms, user interface and mechanical actuators
design and alerts generation to construct an ADAS correctly.
Moreover, this pattern allows designers to build an ADAS
system without starting from scratch since the pattern models
the common concepts of ADSA systems. To define this pattern,
we apply a development process composed of three steps:
(i) The study and the modeling of several representative real
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ADAS in order to highlight their similarities and differences.
(ii) The identification of the concepts of these systems, their
similarities and differences to define our pattern. (iii) The
application of a set of rules defined by Rekhis et al. [11],
with some adaptations. Indeed, we have adapted some of them
to ADAS systems and we have added some others for class
and sequence diagrams. In addition, we have added some
semantics to some basic UML concepts to make this pattern
more flexible. This semantics consists of applying the UML-
RTDB2 profile [9] that contains a set of stereotypes which
express timing constraints, non functional properties and the
variability of the pattern.

II. RELATED WORK

RT design patterns are reusable components that can
be applied in the design phase in order to reduce the
complexity of the software design. For this reason, several
works [8][12][13][14][15][16] have defined RT design pat-
terns. Among these works, (i) Slutej et al. [14] have pro-
posed design patterns which model the real-time components
behavior of an industrial turntable system using state machine
diagrams, (ii) Konrad et al. have proposed in [16] patterns to
model structural and behavioral parts of embedded systems.
These patterns are applied to applications from automotive
domain. These patterns do not describe all specificities of
an action subsystem of an advanced driver assistance system;
the designer must add the specific components, attributes and
operations of ADAS action subsystem. Therefore, the system
can be developed with anomalies, and (iii) Armoush et al.
have defined in [7] a template of design patterns which aim
at modeling safety-critical embedded systems. This template
shows the implications of the patterns on the non-functional
requirements including safety, reliability, modifiability, cost
and execution time. These patterns do not represent the func-
tional aspects and the architecture of an embedded system.
These patterns do not take into account the time constraints
related to both data and transactions. For these reasons, we are
interested to model RT design patterns that take into account
these requirements.

Rekhis et al. [10][12] have proposed RT domain specific
design patterns which model RT data acquisition and decision
subsystems. These patterns allow modeling the structural and
behavioral aspects for these subsystems. In [10], we find a RT
design pattern which models the decision subsystem of RT
applications that need to be managed by database systems.
In addition, Rekhis et al. [12] have proposed RT design
patterns which model the RT data acquisition. They describe
how to model the requirements (real-time data and real-time
transactions) and non functional aspects of RT applications.
They have also defined another RT design pattern which
models the multi-versions RT data which allow maintaining
for each data item related to a measure type (e.g., velocity and
position) multiple versions in order to reduce data access con-
flicts between transactions [12]. In addition, they express the
variability of the patterns to facilitate and guide their reuse. We
agree that the expression of the non functional requirements
and the variability are very important for the design of RT
applications. In fact, the variability is an important criterion to
maximize pattern reuse, and the non functional aspects play an
important role in the quality of the development process. So,
we will take into account these aspects to model our pattern.

However, the patterns presented in [10] and [12] are at a high
abstraction level; they do not clearly differentiate between
some concepts of real-time applications, such as the sensor
and derived data. Thus, the patterns instantiation is complex
and the developed system cannot meet all its requirements; the
designer must identify and model the entities, their attributes,
their relationships and their operations, that are not showed in
the pattern according to a specific RT application. Moreover,
these patterns describe the RT domain in general. They do
not clearly represent some time constraints like the deadlines
of actions. Modeling time constraints is very important since
once these constraints are taken into account, they can help
to verify and understand the temporal behavior and aid in
the development of RT systems. When RT constraints are not
satisfied (e.g., missing of the transaction deadlines), it can
result in a system failure. For these reasons, we define our
RT design pattern which takes into account these constraints.

However, to the best of our knowledge, there are no
patterns exist in the literature to model the action subsystem
(actuators and HMI devices). For these reasons, we define
a new RT design pattern, named ADAS-Action Subsystem
(ADAS-AS), which takes into account the specific constraints
and requirements related to the action subsystem of ADAS.
This subsystem is responsible for handling the outputs from
all the different applications in order to carry out appropriate
intervention strategies (automatic actions and warnings) to
reduce critical situations.

III. UML-RTDB2 PROFILE STEREOTYPES

In this section, we describe the stereotypes of UML-
RTDB2 profile we have proposed in [9]. This profile is an
extension of UML 2.1.2 [17] to represent real-time character-
istics of ADAS systems. It provides features to express (a) the
variability of the patterns, (b) the real-time constraints and (c)
the non functional properties.

The variability of patterns is an important criterion to
obtain a flexible pattern. To specify the variability of patterns,
we have used the following stereotypes [18] to extend the
class diagram of our pattern: (a) << mandatory >> which
specifies the fundamental classes and relations that must be
instantiated when the model is applied to a specific application,
(b) << optional >> which is used to express optional
features (e.g., classes, attributes, operations and relations). The
optional element can be omitted in a pattern instance and (c)
<< extensible >> which indicates that a concerned class
in a model may be extended by adding new attributes and/or
methods during pattern reuse. This stereotype has the following
tagged values: extensibleAttribute and extensibleMethod which
are boolean. With true value, they indicate that the model can
be extended by adding new attributes (if extensibleAttribute is
true) and new methods (if extensibleMethod is true) in a pattern
instance. We extend also our pattern sequence diagram using
the stereotypes << mandatory >> and << optional >>
which are applied to the interaction fragments, lifelines and
messages.

In order to model the RT features of ADAS, we have
also imported some stereotypes from UML-RTDB [19] and
from NFP (Non Functional Properties) sub-profile of MARTE
[20]. From UML-RTDB, we have imported the following
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stereotypes: (a) << sensor >> which is applied to a class
interface and indicates that the measurement is a sensor data,
(b) << derived >> which is applied to classes and is used to
express derived data that are calculated from sensor data, and
(c) << periodic >> and << sporadic >> which are applied
to express periodic and sporadic methods, respectively. The
<< periodic >> stereotype is characterized by a deadline and
a period. The << sporadic >> stereotype is characterized
by a deadline and a triggered time. From NFP sub-profile
of MARTE, we have imported the following stereotypes: (a)
<< nfp >> that declares non functional requirements and
(b) << nfptype >> that extends the DataType metaclass.
It is used to specify NFP values such as NFP Duration and
NFP Frequency. In addition, we have expressed real-time
constraints with OCL (Object Constraint Language) [21].

IV. DEVELOPMENT PROCESS FOR THE RT DESIGN
PATTERN

In this section, we propose a development process to define
a RT design pattern in order to facilitate the design of ADAS
applications. To be able to define this pattern, we study and
model several ADAS systems in order to determine each
application model (i.e., class and sequence diagrams). These
models allow extracting the similarities and differences which
are represented using class diagram and sequence diagram. The
identification of similarities is based on a semantic comparison
between different concepts through a domain dictionary. This
dictionary holds for each term the synonyms, the variations and
the hyponyms. The common concepts are added to the pattern
as fundamental elements whereas the different concepts are
added as optional elements. The defined patterns are applied
to model each ADAS system in order to validate them. The
quality of these patterns is evaluated through amount of reuse
metrics [22].

In order to derive the pattern class diagram, firstly, we adopt
and adapt a set of rules defined in [11]. It is proposed in [11] to
represent a fundamental class with a highlighted border and an
optional class with a simple border. These representations have
not added semantics to the model. For this, we propose to use
the following stereotypes to add semantics and make the pat-
tern more flexible and understandable: (i) << mandatory >>
for fundamental classes and (ii) << optional >> for the
optional classes.

Then, we add some rules, which are not defined in [11].
These rules are expressed through the following relations [23]:

◦ N var(CA1,...,CAn) means that the names of the
classes are a variation of a concept such as propri-
oceptive sensor and exteroceptive sensor.

◦ Att equiv(CA1,...,CAn) and Op equiv(CA1,...,CAn)
means that the names of attributes and the names of
operations respectively of classes are either identical
or synonym.

The added rules are defined as follows:

• RC-1: If a class is present with variation
names (N var(CA1,...,CAn)), but has equivalent
attributes (Att equiv (CA1,...,CAn)) and operations
(Op equiv(CA1,...,CAn)), then it is added as a

fundamental class. The relations N var(CA1,...,CAn),
Att equiv(CA1,...,CAn) and Op equiv(CA1,...,CAn)
are defined in [23]. We propose to use the stereotype
<< mandatory >> for this class.

• RC-2: If attributes (respectively operations) of a class,
which is present in all applications, are present in
several applications (in more than a fixed threshold
(e.g., 50%) fixed by the designer), then they are
added in the pattern as optional elements. We use the
stereotype << optional >> for these elements.

• RC-3: If a relation exists between two mandatory
classes, then it is added to the pattern as a fundamental
relation and it is stereotyped << mandatory >>.
However, if the relation exists between two classes
which one of them is optional, it is added to the
pattern as an optional relation and it is stereotyped
<< optional >>.

Rekhis et al. have defined in [11] some rules to derive the
class diagram of the pattern, but they do not represent rules
for sequence diagram. For this, we have proposed the rules to
design the sequence diagram of the pattern. These rules are
expressed using the following relations:

◦ N equiv(OA1,...,OAn) means that the lifelines have
identical or synonym names.

◦ N dist(OA1,...,OAn) means that none of the above
relations holds.

◦ N equiv(MA1,...,MAn) means that the names of mes-
sages are either identical or synonym.

The proposed rules for sequence diagram are defined as
follows:

• RS-1: If a lifeline is present in all applications with
identical or synonym names (N equiv(OA1,...,OAn)
[23]), then it is added to the pattern as a fundamental
lifeline and it is stereotyped << mandatory >>.

• RS-2: If a lifeline is present in several applications i.e.,
in more than a fixed threshold (e.g., 50%) fixed by the
designer, then it is added to the pattern as an optional
lifeline and it is stereotyped << optional >>.

• RS-3: If a lifeline is too specific for an application
(N dist(OA1,...,OAn) [23]), then it is not added to the
pattern.

• RS-4: If the sender and the receiver are mandatory
lifelines, and the message between them is present
in all applications with identical or synonym names
(N equiv(MA1,...,MAn) [23]), then it is added to the
pattern as a fundamental message and it is stereotyped
<< mandatory >>.

• RS-5: If the sender and the receiver are mandatory
lifelines, and the message between them is present
in several applications, then it is added to the pat-
tern as an optional message and it is stereotyped
<< optional >>.

• RS-6: If a message exists between two lifelines which
one of them is optional, then it is added as an optional
message and it is stereotyped << optional >>.
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• RS-7: If a combined fragment is present in all appli-
cations with synonym or identical names, it is added
to the pattern as a fundamental fragment and it is
stereotyped << mandatory >>.

V. BUILDING OF AN ACTION SUBSYSTEM PATTERN

In this section, we define a new specific real-time de-
sign pattern, entitled ADAS Action Subsystem (ADAS-AS),
designed to model the architecture of ADAS actuators and
HMI elements. The definition of the appropriate solution, in
terms of static and dynamic views, is based on the process
development described in the Section IV. In order to describe
common and variable parts that must be present in the pattern,
we begin to study and model three commercial ADAS systems
among the systems which we have modeled. These systems
are: Lateral Safe (LS) system that is representative of lateral
control systems, Adaptive Cruise Control (ACC) system that
is representative of longitudinal control systems and Saferider
system that is representative of longitudinal and lateral control
systems. These applications are designed by professors who
have an experience in UML based on the study several
documents provided by the automotive companies [5][1][24].

A. Description of ADAS systems

1) Lateral Safe system (LS): LS [5] is a system that reduces
the risk of collisions in lateral and rear area of the vehicles.
In addition, this system assists the driver in adverse or low
visibility conditions. LS system warns the driver by using an
effective HMI. This HMI has been evaluated and demonstrated
in VOLVO cars [5]. LS system consists of several HMI
elements: (i) The side and rear view mirrors HMI with leds
which are activated in different colors and number, related to
the danger level (e.g., cautionary and imminent warnings),
(ii) the a-pillar with a symbol light, activated to warn the
driver of the risk of a critical lateral collision and (iii) the car
speaker, providing directional acoustical warnings in the case
of imminent lateral collisions. The time warning depends on
speed and driver reaction time and is presented to driver few
times before the hazard using two warning levels (imminent
danger and cautionary danger). The warnings are provided for
a period with priority during each critical situation in order
to reduce the number of false alarms. The HMI devices are
activated via the HMI manager for each received action signals.

Figure 1 shows the class diagram which represents the HMI
of LS system. This class diagram is resulted from the study of
several documents provided by the automotive companies [5].
This model represents the following classes: (a) HMIElement
class that contains the main properties of the HMI elements
included in the lateral safe system; (b) CarSpeaker and LED-
Device that represent the subclasses of HMIElement generic
class; (c) HMIManager class that activates the HMI warning
elements; (d) WarningSignalType class that represents the type
of warning provided by the HMI elements; (e) BeepSound and
LightSymbol that represent subclasses of WarningSignalType
class; (f) WarningSignal class that concerns the warnings
delivred to the driver in critical situations; (g) Driver class
that is associated with WarningSignal class to indicate that the
driver will be warned in critical situations; (h) Vehicle class that
is associated with Driver class to indicate that the driver has
changed the status of the controlled vehicle taking into account

the generated alert; (i) DriverAction class that represents the
driver’s reactions to the warning in order to avoid accidents.
Figure 2 shows the sequence diagram which represents the
dynamic aspect of the action subsystem of LS system.

2) Adaptive Cruise Control system (ACC): ACC system
is an automotive application that is integrated and tested in
modern luxury cars such as BMW [1]. ACC system aims at
reducing the risk of accidents and providing safety and comfort
to drivers and vehicles by adapting the vehicle’s speed to
the traffic environment. This system allows also keeping safe
distance between the ACC-vehicle and the forward vehicle.
The controller reads sensor data and calculates the desired ac-
celeration or deceleration to maintain the safe distance. Then,
it sends the corresponding values to the brake actuator or the
throttle actuator. If a preceding slower vehicle is detected, ACC
will decelerate the vehicle by applying the brakes (activate
brake actuator) without driver application of the brake pedal to
maintain a safe distance. In the absence of a preceding vehicle,
ACC will accelerate the vehicle back to its set cruise control
speed by activating the throttle actuator. In the case where
braking is insufficient to maintain the safety distance, ACC
will generate a light symbol and an audible distance alert if the
intervention by the driver is needed to keep the safe distance.

Figure 3 shows the class diagram of the action subsystem
of ACC system. This diagram represents the following classes:
(a) AutomaticActuator class that contains the main properties
of the automatic actuators of ACC system. AutomaticActuator
class concerns each device in a car that executes some kinds
of automated mechanical actions such as brake and throttle
devices, (b) DashboardDisplay that includes the main prop-
erties of the HMI element, (c) BrakeActuator and Throttle-
Actuator that represent the subclasses of AutomaticActuator
generic class, (d) AutomaticAction class that models the actions
triggered by automatic actuators; (e) InterfaceActuator class
that properly activates the HMI components or the mechani-
cal actuators; (f) WarningAlarm class; (g) WarningSignalType
class that constitutes the type of signals; (h) BeepAlert and
SymbolLight that represent subclasses of WarningSignalType
class; (i) Driver class and CorrectiveAction class; (j) Car class
that is associated with Driver and CorrectiveAction classes
to indicate that the driver modifies the status of the vehicle
taking into account the warning signal. Besides, Car class
is associated with AutomaticAction class to indicate that the
status of the vehicle can be updated by activating the brake or
the throttle actuators. Figure 4 presents the sequence diagram
of the actuators and the HMI elements of ACC system to
model the interactions between the components of the action
subsystem.

3) Saferider system: Saferider system (www.saferider-
eu.org) is an advanced telematics for enhancing the safety and
comfort of motorcycle riders [24].

It consists of the following functions: (a) speed alert that
alerts the rider when the speed exceeds the legal speed limits,
(b) curve speed warning that alerts the rider when his/her speed
is too high into a curve, (c) frontal collision warning that warns
the rider when an obstacle is detected in front of the motorcycle
and (d) intersection support that alerts the rider when a danger
is present in intersections.

These functions are based on the comparison between
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Fig. 1. Class diagram of the action subsystem of LS system.

Fig. 2. Sequence diagram of the action subsystem of LS system.

Fig. 3. Class diagram of the action subsystem of ACC system.

the actual rider manœuvre and the safe reference manœuvre
which is calculated based on both the motorcycle’s dynamics
and the road characteristics. Once a hazard is detected, the
warnings are generated through the following HMI elements
which are activated using the HMI manager: (i) Head Up
display integrated in the helmet, dashboard display and visual
attractor on rear mirror providing visual warnings, (ii) in-
helmet speakers providing audio warnings (e.g., acoustic and
speech messages), (iii) haptic seat, haptic throttle, haptic golve

and haptic handle providing haptic warnings (i.e., vibration).
The HMI elements have been tested and demonstrated on
the Yamaha and the Piaggio [24][25]. Figure 5 and Figure
6 illustrate, respectively, the class diagram and the sequence
diagram of the HMI of Saferider system.

We note that the common elements are represented with a
bold lines in Figures 1, 3 and 5.
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Fig. 4. Sequence diagram of the action subsystem of ACC system.

Fig. 5. Class diagram of the action subsystem of Saferider system.

Fig. 6. Sequence diagram of the action subsystem of Saferider system.

B. Application of rules to define ADAS-AS pattern

We note similarities and differences between LS system,
ACC system and Saferider system. The identification of these
similarities and differences allows us designing the pattern
class and sequence diagrams. The design of our pattern class
diagram is based on applying the unification rules as shown
in the following:

• The following elements are equivalent:

◦ HMIElement (LS), DashboardDispaly (ACC)
and HMIDevice (Saferider).

◦ HMIManager (LS), InterfaceActuator (ACC)
and HMIManager (Saferider).

◦ Vehicle (LS), Car (ACC) and Motorcycle
(Saferider).
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◦ Driver (LS), Driver (ACC) and Rider
(Saferider).

◦ WarningSignal (LS), WarningAlarm (ACC) and
WarningSignal (Saferider).

◦ WarningSignalType (LS), WarningSignalType
(ACC) and WarningModality (Saferider).

HMIElement, Vehicle, Manager, Driver, WarningSig-
nal and WarningSignalType classes are added to the
pattern as fundamental classes and they are stereo-
typed << mandatory >>.

• Visual, audio and haptic warnings (N var(BeepSound
(LS), LightSymbol (LS), VisualWarning (Saferider),
StereoAudio (Saferider), HapticWarning (Saferider),
BeepAlert (ACC), SymbolLight (ACC)) [23]) are vari-
able elements (i.e., represented with specialization re-
lationships). Thus, VisualWarning, AudioWarning and
HapticWarning are added as optional classes and they
are stereotyped << optional >>.

• AutomaticAction and AutomaticActuator classes are
present in ACC system and in other modeled sys-
tems which exist in the literature. Thus, Automat-
icAction and AutomaticActuator are added to the
pattern as optianl classes and they are stereotyped
<< optional >>.

• LEDDevice, CarSpeaker, ThrottleActuator, Brake-
Actuator, VisualDevice, VisualDisplay, HeadUpDis-
play, VisualAttractor, InHelmetSpeaker, HapticDe-
vice, HapticThrottle, HapticHandle, HapticSeat and
HapticGolve are specific classes for each application.
Thus, they are not added in the pattern.

• Once the classes are added to the pattern, we define
the relations between classes. For example, the system
provides warnings to the driver in critical situations.
Thus, it exists a relation between Driver and Warn-
ingSignal classes. That is, Driver class is associated
with the WarningSignal class. Driver and WarningSig-
nal are mandatory classes, thus the association be-
tween them is added to the pattern as a fundamental
relation which is stereotyped << mandatory >>.

The design of our pattern sequence diagram is based on
the application of the unification rules (Section IV), as shown
in the following:

• The following elements are equivalent:
◦ HMIManger (LS), InterfaceActuator (ACC),

HMIManager (Saferider).
◦ HMIElement (LS), DashboardDisplay (ACC),

HMIDevice (Saferider).
◦ Driver (LS), Driver (ACC), Rider (Saferider).
◦ Vehicle (LS), Car (ACC), Motorcycle

(Saferider).
Rule RS-1 is applied by adding the following lifelines:
Manager, HMIElement, Driver and Vehicle to the
pattern sequence diagram as fundamental elements
and they are stereotyped << mandatory >>.

• AutomaticActuator lifeline is present in several ap-
plications (ACC and other modeled systems). Rule
RS-2 is applied by adding this lifeline to the pattern

sequence diagram as an optional element and it is
seterotyped << optional >>.

• The following messages are equivalent:
◦ GenerateWarning() (LS), DisplayWarning()

(ACC), ProvideWarning() (Saferider).
◦ TakeAction() (LS), TakeAction() (ACC), Took-

CorrectiveAction() (Saferider).
◦ UpdateState() (LS), UpdateState() (ACC), Up-

dateState() (Saferider).
Rule RS-4 is applied by adding GenerateWarning(),
TakeAction() and UpdateState() messages to the se-
quence diagram as fundamental elements.

• ExecuteAction() is present in ACC system and other
modeled systems. It exists between InterfaceActuator
and AutomaticActuator. Rule RS-6 is applied. Exe-
cuteAction() message is added to the pattern sequence
diagram as an optional message and it is stereotyped
<< optional >>.

VI. DESCRIPTION OF ADAS ACTION SUBSYSTEM
PATTERN

In this section, we describe the proposed pattern through
the following elements: name, context, problem, forces and
solution.

1) Name
ADAS Action Subsystem (ADAS-AS).

2) Context
When the system detects a critical situation, it gen-
erates warning information to the driver through
an HMI and/or it provides automatic actions (e.g.,
activates the brake actuator or the throttle actuator).

3) Problem
How ADAS-AS can be applied to take the actions
(automatic actions and/or warning information) that
increase the driver’s safety and prevent collisions?

4) Forces
The action subsystem communicates the warnings
to the driver through an appropriate HMI (visual,
audible and haptic devices) and/or activates vehicle
dynamic actuators (e.g., steering and brakes) accord-
ing to a potential risk. Driver will be warned early
of hazards using different warning levels (e.g., low
danger and high danger) to have enough time to take
a corrective action. In fact, the warning time depends
on the reaction time of each driver.

5) Solution
Static specification: Figure 7 presents the action sub-
system static view, i.e., the participants represented
by the class diagram.
AutomaticActuator. The modeled actuators are de-
vices in a vehicle, used to generate automatic me-
chanical actions such as brakes actuators which make
the vehicle go slow or stop. AutomaticActuator class
has: (i) Status attribute that represents the state’s
actuator (i.e., an actuator can be activated or de-
activated) and (ii) ReactionTime attribute that rep-
resents the time needed for an actuator to provide
automatic actions. This class has an ExecuteAction()
operation to indicate that the actuator makes an
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Fig. 7. ADAS-AS pattern.

Fig. 8. Action subsystem sequence diagram.

automatic force to change the vehicle’s state, and
thus reduces the risk of accidents. This operation is
stereotyped << sporadic >> to indicate that the
action is performed whenever a critical situation is
detected. We define an OCL constraint related to
the AutomaticActuator class. This constraint (context
AutomaticActuator::ExecuteAction() pre: deadline ≤
current time + D), where D is the duration before a
risk occurs.
HMIElement. The modeled HMI elements are de-
vices that provide warning information to the driver.
They can be a car speaker, a Head-Up Display and

a haptic seat. HMIElement class has: (i) Location
attribute that represents the position of the HMI
element in the vehicle, (ii) Status attribute that rep-
resents the state’s HMI and (iii) RateFA attribute that
represents a needless alarm given by a processing
error. This Class has a GenerateWarning() operation
to indicate that an HMI element provides warnings to
the driver in order to react. This operation is stereo-
typed << sporadic >> because an HMI element
generates warning information only if a danger is
detected. We define an OCL constraint related to the
HMIElement class. This constraint (context HMIEle-
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ment::GenerateWarning() pre: deadline ≤ current
time + D + self.Driver.ReactionTime), where D is
the duration before a risk occurs. The HMI element
generates warnings taking into account the driver’s
reaction time.
Manager. The manager is responsible for processing
the warning provided by the controller. It indicates
which HMI hardware components or automatic actu-
ators should be active/inactive.
AutomaticAction. This class represents the different
actions provided by an automatic actuator to avoid
dangers (e.g., automatic braking).
WarningSignal. The action subsystem provides dif-
ferent warnings if a critical situation is detected.
These warnings are generated to the driver through
HMI elements.
WarningSignalType. The warning signals are clas-
sified into visual, auditory and haptic modes. These
types are characterized by (i) a priority that represents
the level of the warning according to the degree of
hazard (e.g., high warning and low warning). The
high priority warning requires an immediate action
and should be distinguishable from other warnings,
(ii) a duration that constitutes the time interval in
which the warning is considered valid and (iii) repeti-
tion that represents the repetition rate of the warning.
AudioWarning. Auditory warnings include both
acoustic (e.g., tone and auditory icons) and speech
outputs. These warnings should be presented in
higher frequency.
VisualWarning. Visual outputs can be symbols and/or
texts. These warnings should take into account some
properties such as luminance, size, flashing rate and
color.
HapticWarning. Haptic warnings should be suffi-
ciently intense to make drivers able to feel them.
They should be presented in a form that the driver is
physically able to perceive them (e.g., steering wheel
vibration and accelerator vibration).
Driver. The driver needs to understand the warning
signal, to choose an appropriate response and to take
action. The driver must react immediately to reduce
the risk of accident. This class has TakeAction()
operation which is stereotyped << sporadic >> to
indicate that the driver take a corrective action only
if the system generates warnings.
DriverAction. This class represents the reactions
taken by the driver after each warning of a hazard
event, such as braking and steering. We use notes
to define a constraint under OCL (Object Constraint
Language) related to the DriverAction class. This
constraint (context DriverAction inv: self.Duration ≤
self.WarningSignalType.Duration) indicates that the
driver must react immediately.
Vehicle. This class has the UpdateState() operation to
indicate that the vehicle changes its status according
to any automatic action provided by a mechanical ac-
tuator (represented by the association between Vehicle
class and AutomaticAction class) or any action taken
by the driver (represented by the association between
Vehicle class and DriverAction class).
Dynamic specification: Figure 8 presents a sequence

diagram of the action subsystem pattern. In this
diagram, we are interested in modeling the manner
to take an action that minimizes the hazards and
prevents accidents. In fact, the action subsystem con-
sists of (i) several automatic actuators which provide
some automated actions through the ExecuteAction()
operation such as the brake actuator which activates
the brake pedal to decelerate the vehicle, and (ii)
different HMI elements which deliver warnings to
the driver through the GenerateWarning() operation.
The driver takes the appropriate decision according
to the generated warning through the TakeAction()
operation. For example, if a system detects a risk
of frontal collision, it provides warnings indicating
that the driver must decelerate to avoid the collision.
When the action (automatic action or warning) is
taken, the controlled vehicle updates its state through
the UpdateState() operation. ExecuteAction(), Gener-
ateWarning(), TakeAction() and UpdateState() opera-
tions are stereotyped << sporadic >> to indicate
that the actions are triggered only if the system
detects an hazard.

VII. CONCLUSION AND FUTURE WORK

The main objective of this work was to define a RT design
pattern specific to the action subsystem of ADAS. This pattern,
named ADAS-AS, models the structural, behavioral and real
time aspects of an action subsystem. In fact, it models the
different components of the actuator subsystem of ADAS
such as the automatic actuators and the HMI elements. This
pattern facilitates the modeling of any ADAS; it will be easy
for the designer to reuse this pattern by adapting it to the
needs of a particular advanced driver assistance system without
starting from scratch. Therefore, modeling using ADAS-AS
reduces the system failure. However, using another pattern
such as [6][10][16] allows the designer to add all specificities
of an ADAS. So, the developed system does not meet the
requirements.

In future work, we will propose to reuse the following
patterns to model real industrial ADAS systems: the data
acquisition pattern proposed in [9], the controller pattern
defined in [10] and the ADAS-AS pattern defined in this
paper. We will propose also to develop a tool that supports
the definition of ADAS patterns and the dictionary of the
semantic relations in the design process. Then, we will propose
an approach of using patterns to build a new architecture of
an ADAS system that integrates a RT database. This approach
helps designers to build their systems without starting from
scratch. The developer is limited to provide the properties and
the specificities related to a particular system.
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