
Experiences on Mobile Cross-Platform Application Development Using PhoneGap

Jussi Ronkainen, Juho Eskeli, Timo Urhemaa, Kaisa Koskela-Huotari
VTT Technical Research Centre of Finland

Finland
jussi.ronkainen@vtt.fi, juho.eskeli@vtt.fi, timo.urhemaa@vtt.fi, kaisa.koskela-huotari@vtt.fi

Abstract—Cross-platform mobile application development
frameworks are an attractive alternative to native application
development, with potential for improved asset reuse and
reduced development costs. Few reports exist, however, on
determining their suitability for a given type of application or
identifying their potential pitfalls. To address this, we report
our experiences from implementing a hybrid web application
demonstrator on Android, iOS, Windows Phone 8, and desktop
platforms for cloud-based content sharing and co-creation. The
hybrid web application approach was found adequate for
implementing the demonstrator. Notable challenges discovered
during the process were platform dependent variation in
HTML5 feature support, differences in the way browsers
interact with platform services, and lack of platform specific
debugging tools. Based on the results, emphasis on debugging
tool support is suggested, as well as early and frequent testing
on all target platforms.

Keywords-cross platform; multi platform; phonegap; jquery;
cordova; cloud; cloud-based; content; content sharing; liquid
experience

I. INTRODUCTION
The current mobile device market is dominated by two

operating systems (Q4 2012: Android 69.7%, iOS 20.9%),
and the global smartphone sales for 2013 is estimated to be
close to one billion units [1]. In this light, cross-platform
development approaches, which facilitate application
development for multiple operating systems with a single
code base, seem compelling. Furthermore, in the current
market situation there could be some room for a third
competitor (e.g., Windows Phone or BlackBerry) into the
mix of operating systems, which could make cross- platform
mobile application development even more lucrative for
software developers.

The advantages of a cross-platform development
approach compared to a multi-platform approach using
native development platforms come from the use of a single
codebase, which in turn can result in improved asset reuse
and reduced development and maintenance costs, for
example. Additionally, the barrier of entry into mobile
application development can be lower in cross platform
development environments where HTML, CSS, and
JavaScript technologies are commonplace [2].

The downside of the cross-platform mobile development
approach is that it may not be suitable in all situations, for
example when native look and feel in user interface is
required, or in games where adequate performance cannot be
guaranteed [2].

For the reasons mentioned above we wanted to study the
feasibility of the cross-platform approach for a specific
application, and to learn of the potential pitfalls with the
approach. As a result we want to share the experiences
gained to practitioners in the field in form of practices that
did or did not work.

To achieve this, we implemented a hybrid web
application demo for cloud-based content sharing and co-
creation. Our aim was to study the practicalities of cross-
platform development on the popular PhoneGap platform to
gain an understanding of its strengths and weaknesses, as
well as the skills and effort required. As a secondary
objective, we studied the suitability of a hybrid web
application approach for our particular application.

In the next section, the application concept is explained.
Section 3 illustrates our implementation approach, along
with expected results. Section 4 discusses mobile cross-
platform development approaches with respect to identified
state of the art. Results are described in Section 5, followed
by conclusions and future work in Section 6.

II. CASE CONTEXT
The background for developing the application is in our

previous research into the way people understand digital
content, how they currently use it, and how they would want
to use it. Sixty people participated in the research via the
online user interaction forum Owela [3]. Of the 71 narratives
and more than a thousand discussion comments provided by
the participants, we chose photographs as the theme for our
application.

We wanted to focus on the ease of content sharing and
co-creation because of their perceived importance in many of
the user stories. Cloud storage for the photos was also a
recurring theme in the stories, and an evident requirement
also because the wider context of the Cloud Sofware
Program in which this research was carried out.

Our earlier research in content sharing and co-creation
had also focused on the concept of liquid experience [4],
which aims to provide users with a consistent experience
regardless of the device used for accessing the information.
This concept also gave us more freedom in choosing the
cross-platform framework since following native application
look and feel on each device platform was not deemed
critical.

III. APPROACH
Wishing to experiment further with the liquid experience

concept, we chose to implement the application as a hybrid

146Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

web application that would allow running it standalone on
Android, iOS, and Windows Phone 8 and, with some
restrictions, on a desktop browser. For backend, we chose to
use Google App Engine mostly because of our prior
experience with it, and because it offers rudimentary image
manipulation functionality we assumed could be useful. At a
later stage in the project, we also evaluated the feasibility of
porting the application to another backend, experiences of
which will be briefly discussed later.

A. Framework Selection
We didn’t want to limit the application to any particular

platform or device. At the time of writing, HTML5 based
approaches support the most platforms and also, via the use
of CSS3, make adaptation to different screen sizes and
orientations relatively simple. Of the available HTML5
cross-platform frameworks, we chose PhoneGap due to its
widest device support and because it imposes minimal
restrictions to applications that utilize it. Also, PhoneGap
enables the packaging of HTML5 applications as native
applications. PhoneGap ships without visual components,
which makes it very flexible in terms of UI, but also means
that the developer has to choose or implement all application
components oneself and ensure they will work together.
Browser based applications also have a performance
overhead with respect to native applications but that was not
considered an issue, since the performance requirements for
our application were considered very modest.

Furthermore, the PhoneGap framework has a plugin
interface for running native code that can access device
capabilities. Many common plugins such as GPS, camera
and local file access are implemented by default in
PhoneGap. Utilizing these plugins does not require any
native development skills. PhoneGap also supports custom
plugins, so the application can be extended to use native
code for functionality that is not supported in HTML5 or
PhoneGap by default, or which would be computationally
too intensive to implement in JavaScript. Although our
application does not make much use of PhoneGap plugins,
from a research perspective we found native code support to
be an important feature in cross-platform development for
added flexibility.

From application development point of view, there are
many JavaScript frameworks available that focus on, for
example, the graphical user interface and widgets, DOM tree
manipulation, and web application architecture (Model-
view-controller).

We chose the jQuery Mobile application framework as
the JavaScript library for implementing the application UI.
jQuery was used for DOM tree manipulation and Ajax based
server requests. Our choice of frameworks was largely
influenced by the vast popularity jQuery, and in case of
jQuery Mobile, the fact that it seemed to provide wider
platform support than most similar frameworks. Both jQuery
Mobile and PhoneGap have active user communities and
both projects are frequently updated and well documented. In
addition, many examples and demos paved our way to
choose these platforms.

Figure 1. Our client/server structure.

B. Development Methods and Tools
We had three developers, each focusing on one platform

in particular and the common codebase in general. This gave
us an opportunity to observe the multi-platform development
procedures with respect to, e.g., version control where the
common application codebase had to be integrated into three
platform specific codebases.

Our version control setup was such that there was a Git
repository for each native project, and a repository for the
common application code. The common repository was
included into each native project as a Git submodule.
Implementation was done on platform specific preferred
editors for the native part - Xcode for iOS, Eclipse for
Android, and Visual Studio for Windows Phone 8. HTML5,
JavaScript and CSS3 editing was mostly done with JetBrains
WebStorm.

The testing, largely UI driven and ad hoc, was done by
the developers themselves on desktop browsers, mobile
devices, and device emulators. Some functionality was also
tested as automated unit tests on the Jasmine JavaScript unit
test environment, which was run on a desktop browser.

C. Expected Results
From user interface point of view, we expected to have to

make some conditional layout in the common code to cater
for different screen sizes and resolutions. Also, we expected
some minor variations in the way the application would
render on the different devices. But for the most part, we
assumed the ”write once, run anywhere” promise of cross-

147Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

platform development to work more or less straight out of
the box, especially since we were using the popular jQuery
Mobile framework which we assumed to be well adapted for
most platforms.

PhoneGap uses the device’s browser as the application
platform. Browsers are complex applications themselves,
meaning that there is performance overhead for applications
running on them. Also, since browsers have to handle all
kinds of content, they are not optimized for any specific kind
of application. Different browsers support HTML5 features
to varying degrees, so application performance on different
platforms might also vary. Performance was not, however,
considered to be an issue in our case due to the simplicity of
the application.

The use of HTML5 and jQuery / Ajax as the common
implementation technology on all platforms was also
expected to make cloud resource access simple.

IV. RELATED WORK
We identified the current state of the art in mobile cross-
platform development ([2][5][6][7][8][9]). In the following,
cross-platform approaches are described in general,
followed by a detailed discussion on one publication which
most closely relates to our work discussed in more detail.

In native application development approach the
application is implemented for a particular platform (as
opposed to multiple platforms in cross-platform
development) by using the provided Software Development
Kit (SDK). The applications developed in this fashion
maintain the look and feel of the platform. Porting the
application to another platform is not possible without
additional effort.

We consider cross platform application development to
be development that is done with the help of cross-platform
framework or with combination of platforms. Combining of
platforms may be required because the frameworks focus on
different purposes; some of them support development of
complete applications that include application logic, user
interface, and deployment, while some of them may focus on
just one of these [2]. Related to UI representation in
frameworks there are two different approaches commonly
used; to imitate native look and feel (or use native
components), or to maintain uniform look and feel for the
supported platforms that ignores the native styling [2].

A definition of cross-platform frameworks is given by
Sommer as follows: “Cross-platform frameworks are
frameworks that support multiple platforms, with the same or
similar effort involved to create an application on potentially
more than one platform at once (or porting an application to
other platforms with very little effort), as compared to
creating it for only one platform with the native SDK. This
essentially requires that a framework has to provide means to
reuse parts of the architecture and source code that are
platform-independent” [2].

The most commonly used frameworks in mobile cross-
platform development can be categorized by the architectural
approach taken into web-based, hybrid, and self-contained

categories as presented in [2][6][7]. The publications also
mention other types of approaches that utilize, e.g., cross
compilation techniques. However, none of the current cross-
compilation solutions that we are aware of are ready for
production quality application deployments to prevalent
mobile operating systems (e.g., Qt Alpha 5.1 advertises
preliminary support for Android and iOS, with full support
announced later in the oncoming 5.2 version).

By utilizing web based frameworks the application is
developed as regular web site using HTML, CSS, and
JavaScript technologies. An example framework in this
category is jQuery Mobile. Pure web applications cannot be
installed in similar fashion as native applications nor can
they access the sensors or actuators of the mobile device.

In hybrid frameworks, the web based and native approach
have been combined to create applications that inherit
features of native applications (e.g., capability to install from
an application store, native fashion application launching,
capability to interface with sensors and actuators) but are
developed using web technologies. An example framework
from this category is PhoneGap.

Self-contained runtime environments, as described in [2],
do not attempt to reuse existing web frameworks of the
selected platform. By implementing their own web container
the frameworks are in theory less constrained by any
shortcomings in platform frameworks. Example of this type
of framework is Titanium Mobile.

Zibula and Majchrzak [9] document the development of a
Smart Metering Application using similar tool set as in our
work. They outline the relevance of continuous testing on all
target platforms because bugs might be visible only on a
single platform. Our experiences also highlight the
importance of continuous testing in cross-platform
development. They also mention immaturity of the
frameworks used, namely jQuery Mobile. We didn’t face as
severe problems in our work, which could be an indication
that the frameworks have matured already. They also
mention the debugging tools that they used, but don’t go into
detailed discussion about debugging, other than that the tools
were very useful. Based on our experience debugging is one
of the more important issues in cross-platform mobile
development in which we focus in more detail in our work.
Finally, they note that the hybrid approach is viable and
advisable approach for cross platform development, but that
in the long term it could be a transitional technology that
may be replaced by pure HTML5 approach. While this may
turn out to be true, we think that some form of tool or a
solution is still needed to wrap the HTML5 application as a
native application, and additionally HTML5 is unlikely to
allow native extensions for whatever purpose. Zibula and
Majchrzak also note that usability (of cross-platform
developed mobile applications) and value for users are
important research topics to consider besides technological
development.

V. RESULTS
Overall, we feel the application demo we implemented is

complex enough to get an idea of the potential of hybrid web
applications and to gather meaningful experiences from

148Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

building it. Figure 2. shows a screenshot of the application
during photo sharing on Android, Windows Phone and iOS
devices. The figure illustrates differences due to the different
fonts and screen aspect ratios on the devices.

We have divided our findings into three main groups;
platform specific findings, user interface findings, and
findings on the development process in general.

Figure 2. User photo sharing screen on Android (Galaxy Nexus, left),

WP8 (Nokia Lumia 920, middle), and iOS (iPhone 4, right).

A. User Interface Findings
We found the user interface rendered from the common

codebase to be fairly consistent among the platforms. This
was largely due to our use of the jQuery Mobile framework
which provided most of the UI elements. On the phones we
tested, there were some nuances caused by different default
fonts and different screen aspects, as illustrated in Figure 2.
We used seven CSS3 media queries to set UI component
dimensions to cater for all the screen sizes and orientations
on the phones and tablets we had. In general, we found the
underlying browser engines to do a good job in laying out
the application on different screens and orientations. Some
layout issues were discovered, such as different default page
footer element handling on WebKit based vs. Windows
Phone 8 devices but these could be fixed with platform
specific style definitions.

We also encountered a few UI issues that affected only
some platforms, such as page transition animations flickering
on Android and completely missing or visually different on
Windows Phone 8, and difficulties in disabling the default
visual cue when attempting to scroll past the end of page on
Windows Phone 8. Some of these issues have already been
fixed in recent jQuery Mobile and PhoneGap versions, and
we assume such easily noticeable visual differences will be
fixed in future versions. However, we had to use platform
specific style definitions from time to time to enable, e.g.,
HW acceleration for UI transition effects.

Another source of UI issues was the virtual keyboard
which is unique to each platform. The screen area taken by
the keyboard varies, as does its interaction with the
underlying application. In our experience, the effect of the
virtual keyboard needs to be tested thoroughly on each
platform.

Probably the most notable issue we discovered, however,
was the occasional sluggishness of touch input. This seemed
to affect all platforms at some time or another. Most

commonly there were missed touch events such as pressing a
button or starting a swipe. The issues were random and slight
but still noticeable and detrimental to a smooth user
experience. We did not analyze the cause of the sluggishness
but to get the UI really responsive would probably require
platform specific analysis and optimization of the
HTML5/JavaScript/CSS3 code. Also, we did not pay any
attention to DOM tree optimization, which at least in large
applications could have a significant effect in application
performance.

In general, UI event support was found to differ between
browsers and if mobile and desktop browsers are to be
supported, both touch and mouse events need to be handled.
Also, touch event support differs between platforms – for
example, not all jQuery Mobile swipe events work on
Windows Phone 8 without platform specific HTML5 style
definitions. For this reason it is necessary to test all UI events
as early as possible on all devices, and support multiple
navigation methods where possible.

B. Platform Specific Findings
In addition to user interface issues which were caused by

the differences in browser rendering engines, there were a
couple of platform specific issues we could not solve or
circumvent by modifying the application.

By request from a Cloud Software Program partner, we
briefly experimented with the possibility of porting the
application to use another backend. During our trials with the
second backend which used HTTPS we came across a
problem with SSL certificates. The development installation
of the backend used a static IP address without a domain
name, which meant that browsers could not ensure the
authenticity of the certificate. On desktop browsers we could
add an exception, and on the Android PhoneGap version we
observed no issues. However, we could not get iPhone to
create an exception for the server. This meant that the iOS
application could not be run against that backend. While the
problem is eliminated when the certificate is tied to a domain
name, it could be a problem during development as in our
case. Certificate handling was not tested using Windows
Phone 8.

Another issue we could not solve from within the
application was with browser cookies on Windows Phone 8.
Our application uses a session cookie received from the
server at login to identify the user during subsequent
operations. PhoneGap obtains the cookie settings from the
browser, but these settings vary between platforms. On
Windows Phone 8, we had to change the system wide cookie
settings manually on the browser of the device in order to get
the application to store the session cookie. This, of course, is
not acceptable for a consumer application. The need for
cookies could be averted by implementing an authentication
token scheme on the client and the server but that would
require extra work.

Overall, however, we found cloud-based resource access
straightforward and uniform across all platforms.

Native plugins are also a source of platform specific
differences. It should be noted that even the plugins that ship
with PhoneGap are not supported on all platforms, so the

149Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

need for native support should be considered early on in a
cross-platform development project. We implemented a
native application settings screen on each platform and
passed the settings to the HTML application via the plugin
interface. Activation of the settings screen was also done via
the interface. We found the plugin interface to work quite
well. The native side of the plugins can be debugged on
platform specific development environments like any native
code.

C. Development Method and Tool Findings
JavaScript is an interpreted language, meaning that

without a compiler, the role of the editor in finding
programming errors is emphasized.

While all native development environments (Xcode,
Eclipse, Visual Studio) support the development of HTML5
applications, none of them in our opinion match the best of
dedicated HTML5 editors. Also, the use of a common editor
for the HTML5 application by all developers in a project is
justifiable in order to establish, e.g., common practices and
file templates. While significant parts of an application can
be implemented against a desktop web browser, deploying
the application on a device, however, requires the native
development environment. This causes extra steps and
switching between applications in the development process.

We found automated unit testing useful in detecting
problems in program logic earlier. Running unit tests with a
framework such as Jasmine is quick and isolates program
logic issues well. We ran a limited set of unit tests on a
desktop browser and because of the ease of running the test
suite, unit testing was useful in detecting programming errors
quickly. Unit testing frameworks typically provide means for
writing stubs, spies and mocks that enable the separation of,
e.g., network code from the UI. This helps in isolating
program logic issues and programming errors, but in our
experience, automated unit testing frameworks are of limited
use in exposing issues related to the target platform.

We also found the SW project structure to have
significance in cross-platform development. Since in our
case the common application code project was included as a
subproject in each of the native projects, we occasionally
ended up with subproject version conflicts. In the Git version
control system the only links between the main repository
and the submodules are submodule IDs which are saved in
the main repository, and in some situations changes in the
IDs are not automatically reflected into the submodules. As a
result, we ended up cloning the common module as a
separate project into the appropriate directory in each native
project, and excluding the directory from version control in
the native projects. Automatic refreshing of the subproject
during native project refresh was thus lost, but in our case
extra manual work caused by that was negligible since the
native projects were changed much less frequently than the
common project. Native project updates were mostly
PhoneGap version updates. In our experience, however, they
need to be done with care as PhoneGap version updates
usually have to be synchronized between all native projects
and the common project. Occasionally, a new PhoneGap
version forced us to recreate the native projects from scratch.

The documentation of the new release was also outdated at
times, which caused some extra work to solve out the native
project upgrade process.

To reduce the need for handling native projects, Adobe
offers the cloud-based PhoneGap Build service which builds
native applications from the HTML5, JavaScript and CSS
code. There are, however, restrictions to custom plugins in
PhoneGap Build.

The most significant shortcoming we experienced during
development was the limited debugging ability of PhoneGap
applications. The reason is that the embedded native browser
PhoneGap uses is not accessible to a debugger on every
platform, and thus problems that arise only on a specific
platform may be very difficult to debug. At the time of
writing, only BlackBerry and iOS browsers offer remote
debugging that can be extended to PhoneGap applications.
The Chrome browser on Android offers remote debugging
but not via PhoneGap. Windows Phone 8 lacks remote
debugging capability for both of the scenarios. At the time of
writing, the best solution for remote debugging of hybrid
web applications is Apple’s development tools for iOS.
Xcode in combination with Safari on Mac offers all required
debugging capabilities including DOM tree manipulation,
breakpoints and variable inspector.

For most of the time we used a desktop browser for
debugging, occasionally augmented by the PhoneGap
Emulator on Google Chrome. The emulator was useful in
verifying the UI with different screen sizes and resolutions,
and getting a hang of using the native interfaces exposed by
PhoneGap, although the emulator mostly uses mock data for
them. A good rule of thumb for hybrid web application
development is to use desktop browsers so that Chrome is
used as a preliminary test for Android, Safari for iOS and IE
for Windows Phone. Some browsers also have built-in tools
for simulating different mobile device screen sizes.

Another useful PhoneGap debugging tool we used is
weinre that is available either as a local installation or online
via debug.phonegap.com. While weinre does not offer
breakpoints, it does allow the inspection, highlighting and
modification of DOM elements and JavaScript variables via
a console.

PhoneGap can also relay the JavaScript console.log()
output to the development environment console window. We
found debug prints to console a viable debugging method,
although understandably limited.

D. Summary of Findings
HTML5-based cross-platform applications rely heavily

on the web browser on each platform, and differences in how
the browsers implement HTML5 features were the
underlying cause for most of our findings. In particular, we
found occasional platform specific issues with page element
layout and certain jQuery Mobile page animations, and touch
event support. Most issues were solved by platform specific
code and style definitions, but the intermittent problems with
touch input responsiveness on all platforms were not.

Issues were also encountered in the way the browsers
interact with their surroundings, namely in the visual cue the
browsers give on trying to scroll past page boundaries,

150Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

virtual keyboard behaviour, SSL certificate handling, cookie
handling, and PhoneGap plugin support. While some of the
issues were remedied via native project settings, solutions
were not found during this study for the SSL certificate and
cookie problems.

From a developer viewpoint, we found a dedicated
HTML editor more useful than native IDEs which are
typically not optimized for editing HTML5. Support for
debugging on the device is only possible on iOS and
Blackberry at the moment, which was found to be the biggest
drawback of the approach. When device debugging is not
required, desktop browsers provide good debugging options
– although their use is not as seamless as debuggers on
native IDEs.

VI. DISCUSSION
In our experiment, we implemented a content sharing and

co-creation application using PhoneGap and jQuery Mobile.
We found the approach to fit our type of application well,
and platform specific additions to the common codebase to
be fairly minimal. HTML5 and CSS3 were found to do an
efficient job of scaling the layout to different screen sizes
and orientations, and that in general, the UI renders smoothly
on the different platforms. However, we encountered issues
with jQuery Mobile animations, so it is advisable to keep
them to a minimum. This is particularly important if the
targeted range of platforms is wide, or targeted devices are of
modest performance or use old web browser engines.

There were also issues with UI responsiveness. Some
issues we were able to fix via platform specific, non-standard
style definitions, but we could not quite reach consistent,
native quality responsiveness on any of the platforms.

Development tools were found adequate for most of the
time, when the code could be developed and tested against a
desktop browser. Automated unit testing was also
experimented, and found useful in finding program logic
bugs quickly.

Debugging on the target devices is the area that is in our
experience most evidently lacking in hybrid web application
development. The role of debugging is emphasized by the
loosely typed, interpreted nature of Javascript, as without a
compiler there are fewer safety nets to catch programming
errors early. For limited device debugging we experimented
with weinre and the PhoneGap emulator. Both were found
useful, but lacking in functionality. Problems that do not
surface on a desktop browser tend to concern non-standard
HTML5 / CSS3 extensions or other platform specific
browser behaviour. Thus, solving these problems is difficult
without platform specific source-level debugging with
breakpoints. For these reasons, the role of active and early
testing on every platform is paramount.

VII. CONCLUSIONS AND FUTURE WORK
The current smartphone and tablet market has made it

necessary to develop applications for several platforms.
Cross-platform development approaches are one way of
increasing asset reuse between platforms and reducing

development cost. Our study focused on the hybrid web
application approach using the popular PhoneGap platform.

Overall, the approach was found solid and suitable for
the type of application presented in the study. The biggest
drawback encountered in the approach is insufficient
debugging support on mobile devices. Platform specific
variation in HTML5 feature support and browser interaction
with the platform were found to necessitate constant testing
on all platforms. UI performance issues that varied between
mobile platforms were also encountered. Examining them
would be one potential objective for future research.

Comparison of the hybrid web application approach with
other cross-platform approaches would be another interesting
topic, perhaps by implementing the same demonstrator using
different approaches.

ACKNOWLEDGMENT
The authors wish to thank the TiViT Cloud Software

Program in which this research has been carried out.

REFERENCES
[1] Gartner, “Gartner Says Worldwide Mobile Phone Sales

Declined 1.7 Percent in 2012”, Press release,
http://www.gartner.com/newsroom/id/2335616 08.08.2013

[2] H. Heitkötter, S. Hanschke, and T. A. Majchrzak, “Evaluating
Cross-Platform Development Approaches for Mobile
Applications,” in Lecture Notes in Business Information
Processing, Volume 140, 2013, pp. 120-138

[3] P. Näkki and K. Koskela-Huotari, “User Participation in
Software Design via Social Media: Experiences from a Case
Study with Consumers,” in AIS Transactions on Human-
Computer Interaction, vol. 4, 2012, pp. 128-151.

[4] H. Kiljander and V. Nore, “Experiences from Long-Term
Online User Collaboration in Strategic Product Design,” in
Proceedings of NordiCHI 2012, Industrial Track, ACM.

[5] A. Sommer, Comparison and evaluation of cross-platform
frameworks for the development of mobile business
applications, Master’s thesis, Fakultät für Informatik,
Technische Universität München, 2012.

[6] A. Holzinger, P. Treitler, and W. Slany, “Making Apps
Useable on Multiple Different Mobile Platform: On
Interoperability for Business Application Development on
Smartphones,” in Multidisciplinary Research and Practive for
Information Systems, Lecture Notes in Computer Science,
Volume 7465, 2012, pp. 176-189.

[7] E. Masi, G. Cantone, M. Mastrofini, G. Calavaro, and P.
Subiaco, ”Mobile Apps Development: A Framework for
Technology Decision Making,” in Mobile Computing,
Applications, and Services. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and
Telecommunications Engineering, Volume 110, 2013, pp. 64-
79.

[8] L. Corral, A. Janes, and T. Remencius, “Potential Advantages
and Disadvantages of Multiplatform Development
Frameworks – A Vision on Mobile Environments,” in
Procedia Computer Science, Volume 10, 2012, pp. 1202-
1207.

[9] A. Zibula and T. A. Majchrzak, “Cross-Platform
Development Using HTML5, jQuery Mobile, and PhoneGap:
Realizing a Smart Meter Application,” in Web Information
Systems and Technologies, Lecture Notes in Business
Information Processing, Volume 140, 2013, pp. 16-33.

151Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

