
Separation of Concerns and Code Enhancement: Aspect-oriented Programming

Versus Customization Approach Followed in Open Source Software

Sidra Sultana

Department of Computer Software Engineering

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

sidra.sultana88@gmail.com

Fahim Arif

Department of Computer Software Engineering

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

fahim@mcs.edu.pk

Abstract— In order to facilitate the separation of concerns

and code enhancement without modifying the original code,

open source software (OSS) offers a package containing the

core code. Depending upon the design or architecture pattern

followed in the specified package, the ways to facilitate code

enhancement are provided. Hook Architecture is followed in

Wordpress, Drupal, etc., in customizing plugins or modules,

and Model View Controller (MVC) pattern is followed in

Joomla, open source content management systems. Aspect-

oriented Programming (AOP) is a programming paradigm

that addresses the same code scattering and code tangling

issue, and thus, ensure code enhancement without modifying

the core code. The research question is whether AOP supports

the separation of concerns and allows the enhancement in

functionality without modifying the core code; then, hook

architecture and other open source customization patterns are

there to facilitate the goal. What different features does it offer,

as compared to AOP? This research paper differentiates

between the separation of concerns and code enhancement

addressed by OSS and AOP.

Keywords-Aspect-oriented Programming (AOP); Open

Source Software (OSS); Advice; Joinpoint; Pointcut; Hook

Architecture; MVC pattern; Aspect-oriented Model View

Controller (AOMVC)

I. INTRODUCTION

Aspect-oriented Programming (AOP) [1] is a

programming paradigm that complements Object-oriented

Programming (OOP) [2] by separating concerns of a

software application to improve modularization. The

separation of concerns (SoC) aims at making software easier

to maintain by grouping features and behavior into

manageable parts, which all have a specific purpose and

business to take care of. It is the decomposition approach

followed in the conventional modular programming that

leads to code tangling (code mingling) and code scattering

(replication and duplication of same code chunk at many

places).

Third party tools, off-the-shelf components, and open

source modules are there to be used by the current

application; if the application is flexible enough to utilize it

without modifying the core code and by simple joining the

new functionality from a point where changing

(adding/removing) additional code is easier to maintain.

Thus, an effortless and unified approach is offered by

AOP in terms of making the dynamic switching of complete

features along with providing the conciseness, evolution,

and testability. Aspect-oriented approach focuses on the

argument related to the maintainability and readability of

the constructed software.
Section II offers a brief literature survey. The comparative

analysis is performed in Section III. Research Results are
presented in Section IV. Section V provides a discussion.
Conclusion is given in Section VI.

II. LITERATURE SURVEY

AOP is designed to formulate code easier to query about,

trace, develop, enhance, maintain, and modify certain verity

of application code. For the sake of validating these

potentials claimed by AOP and to verify the impact of AOP

on the program structure, Robert et al. conducted two

investigatory experiments [1]. AspectJ version 0.1 [14] was

the language in which the requirements are implemented to

trace change and debugging process supported by AOP.

Developer’s ability to trace and then resolve the issues

(programming fault) of the multi-threaded program is

analyzed in the very first experiment. In the other

experiment, existing distributed system is focused on

checking the ease in change management provided by the

AOP.

A. Modularization in AOP

Kiczales et al. [2] have familiarized AOP for providing

more organized and well managed way of capturing the

code while enhancing the scope of the program concerns.

Software programmers explicitly manage the separation of

some concerns within the code by the help of built-in

functionalities provided by the selected programming

language. Explicit language support is provided by AOP to

help functional decomposition in the program and to be well

modularized upon the design decisions.

B. Usability of AOP

Usability and usefulness of AOP are well proved in the

experimental results [3]. The core code that is functionally

decomposed and aspects’ interface has some characteristics

highlighted by the experiment, to show that programming

benefits can be accrued best with the understanding of it.

Vital feature as per the completeness point of view of AOP

approach is that, it is beneficial in totality [4]. This refers to

the fact that partial benefits cannot be extracted by the

partial implementation of separation of concerns. Well

112Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

mailto:sidra.sultana88@gmail.com
mailto:fahim@mcs.edu.pk

defined scope of the aspect effected across the boundaries,

is necessary to provide the refined (narrowed) scope of the

aspect without digging deep the core code for extensive

analysis. Thus, when the separation is more complete, i.e.,

interface is narrow, only then the AOP approach will be

more promising [5] [6].

C. Design Quality in AOP

With regards to the design quality and software

development efficiency [7], a web based system is

developed to empirically study its behavior in both AOP

and OOP fashion. The study reveals that if the number of

subjects undertaken in the experiment increases, then

benefits offered by AOP will be much more as compared to

those underline in the present study. To produce high

quality, design aspects are very vital so, Madeyski et al. [8]

aimed at providing empirical evidence of the impact of AOP

on design quality metrics and software development

efficiency.

III. COMPARATIVE ANAYSIS

In order to facilitate the separation of concern and code

enhancement without modifying the original code, OSS

provides with a package containing the core code.

Depending upon the design or architecture pattern followed

in the specified package, the ways to facilitate code

enhancement are provided. Hook Architecture is followed

in Wordpress, Drupal, etc., in customizing plugins or

modules, while MVC pattern is followed in Joomla,

FLOW3, etc., open source content management systems.

AOP is a programming paradigm that addresses the same

code scattering and code tangling issue and thus, ensure

code enhancement without modifying the core code. The

research question is whether AOP supports the separation of

concerns and allows the enhancement in functionality

without modifying the core code; then, hook architecture

and other open source customization patterns are there to

facilitate the goal. What different features does it offer, as

compared to AOP?

For the comprehensive analysis, three aspects are

implemented in FLOW3 (an open source framework) to

address all cross cutting concerns in components of MVC.

For potential cross-cutting concern in Model Class,

Logging Aspect is used to log the delete details, in other

case; it can be mistakenly added as a part of business logic

in Model class of the package.

To address potential cross-cutting concern in View Class,

Flash Message Aspect is used to inject html element (i.e.,

styled div) with specific list of actions, thus addressing the

cross cutting concerns at interface level or View class of the

package.

For potential cross-cutting concern in Controller Class,

Manipulation Aspect is used to provide control access for

number of controller’s actions so in terms of addressing

control flow, manipulation aspect resolves cross cutting

concerns in Controller Class.

Kato et al. [21] also presented the Context-Oriented

Programming implementation along with the OOP and AOP

comparison but lacking the comprehensive metrics analysis.

The novelty of the conducted research lies in the wide

domain discussion of the concerned problem in functional

and non-functional requirements domain like

maintainability, re-usability, scalability, code organization,

dynamics, etc.

This section differentiates between the separation of

concerns and code enhancement addressed by OSS and

AOP and thus, giving an insight of AOMVC and MVC

cross-cutting concerns resolved by MVC.

A. OSS

OSS like CMS [8] or frameworks provide with the general

package containing backend (administrator view) and front

end (user view) of the application. Some of the cross cutting

concerns like security (Manipulation Aspect), logging

(Modeling Aspect), flash messaging (View Aspect) etc., are

addressed by the CMS and frameworks like Joomla, Drupal,

Wordpress, YII, Zend, Virteom, Magento, Oscommerce,

etc.
Almost all OSS followed certain programming approaches

for handling the separation of concerns and demotivates
modifying the core code. Mostly MVC or Hook Architecture
is followed to code custom components, modules, or plug-
ins. It helps in enhancing the application functionality in a
flexible adding/removing way.

B. AOP

“Separation of concerns” principle has been used for

many years by software engineers to handle the software

system’s development [9]. Software programmers explicitly

manage the separation of some concerns within the code by

the help of built in functionalities provided by the selected

programming language. Explicit language support is

provided by AOP to help functional decomposition program

and to be well modularized upon the design decisions.

AOP is made for code enhancement, so that the cross

cutting code related to the design decision is not dispersed

throughout the program rather it is expressed in a separate

set of coherent code chunks [10]. AOP owns a better way of

modularizing cross-cutting concerns, resulting in the more

readable and less complex developed system

implementation.

C. Cross Cutting Concerns

Allowing the modularization of the concerns that usually

cross-cut in the object-oriented way of programming

application [11], AOP resolved number of programming

issues encountered by OOP like code tangling and code

scattering, all as result of cross-cutting concerns.

Aspects are declared by using around, after and before

advices for the retrieval of properties and intercepting

settings.

113Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

D. Code Enhancement in OSS

In order to facilitate the code enhancement without

modifying the original code, OSS provides with a package

containing the core code. Depending upon the design or

architecture pattern followed in the provided package, the

ways to facilitate code enhancement are specified [12].

Hook Architecture is followed in Wordpress, Drupal, etc.,

customizing plugins or modules, while MVC pattern is

followed in Joomla, etc., Open Source CMS.

E. Code Enhancement in AOP

Code scattering and code tangling are not the only results

of implementing security concerns in an application - by

following OO approach - but it also because the weaker

existence of the security related issues. AOP addresses this

code scattering and code tangling issue hence, advocating an

improvement in dealing these issues previously in OO way.

A number of reasons are there for showing weaker

enforcement of security including programming error,

inherit design of the system etc.

Conventional software engineering practices failed to

modularize cross-cutting concerns and Aspect-oriented

Software development offsets this limitation of current

software engineering constructs. The advice injected in the

point-cut expression is to be bonded after, before or around

the code. Also, wildcards (.*) can be used to bind advice

with number of join-points. This flexibility of hooking the

code at number of places creates the difference and provides

an edge to the AOP paradigm.

F. AOMVC

MVC refers to modularizing the application in terms of

separating the layers of Control flow and management (i.e.,

Controller), Interface Design (View) and Database

interaction (Model) [13]. MVC framework, in the domain of

J2EE [14], has cross cutting concerns throughout the

multiple modules (e.g., validation transaction, logging, etc.).

MVC framework is the well-known layered architecture

but it has greater limitations and architectural constraints in

dealing with cross-cutting concerns. These overlapping

concerns lead to code confusion, code tangling and code

scattering and finally, result in the difficulty of system

maintenance and extensibility. AOP addresses all these

problems in every layer of abstraction, i.e., Model, View

and Controller. Aspects can be defined to modularize such

concerns. All such concerns are well defined by the aspects

of AOP.

G. MVC cross-cutting concerns and AOP

The three potential cross-cutting concerns that address

almost all components of MVC are presented.

a. Potential cross-cutting concern in Model Class

Logging Aspect is used to log the delete details and hence

can be mistakenly added a part of business logic in Model

class of the package.

b. Potential cross-cutting concern in View Class

Flash Message Aspect is used to inject html element (i.e.,

styled div) with specific list of actions, thus addressing the

cross cutting concerns at interface level or View class of the

package.

c. Potential cross-cutting concern in Controller Class

 Manipulation (security) Aspect is used to provide control

access for number of controller’s actions so, in terms of

addressing control flow, manipulation aspect resolves cross

cutting concerns in Controller Class.
Thus, by extracting the different cross-cutting concerns

from the model, view and controller component of the MVC
model, an aspect layer is to be composed to weave with the
core functionality.

IV. RESEARCH RESULTS

Some of the factors that distinguished the contribution of

AOP and OSS for separation of concerns and code

enhancements are: point of access, code management,

development time, line of codes, and functional breakdown,

etc. These qualitative and quantitative factors that contribute

in the estimation of software metrics are analyzed in this

section.

A. Point of Access

In case of AOP, aspect classes with variety of advices are

defined to be injected at different levels of code. For

example, this injection of the wildcard \before ("method

(.*Controller->.* Action ())") to all controllers actions will

bind the particular advice with all actions of every

controller. \before ("method (studentController->.*Action

())") this one-to-many injection will affect all actions of

student controller only and \before ("method

(studentController->registerAction ())") this one-to-one

injection will bind the advice to registerAction of the

studentController and for all three injection types, advice

will be bound before the action’s code. This single class is

the single point of access for all related code management in

terms of adding and removing the aspect’s advices.

For OSS, customization is to be ensured by coding

plugins, components and modules as per the coding

conventions of the selected OSS. In that case modifications

are to be managed in multiple files and thus, there are

multiple points of code access that increases the complexity

measure.

B. Separation of Cross-cutting Concerns

AOP is designed for handling cross-cutting concerns and

thus, resolving them by addressing the code tangling and

code scattering issues. Code Tangling refers to the

phenomena where the concerns are interwoven with each

other in a module. Code Scattering occurs when the

concerns are dispersed over many modules. It results in a

typical design problem of high-coupling and low cohesion.

All the components that are specifically fragmented using

the traditional techniques for highlighting their role as a

114Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

cross-cutting concern, should be well evaluated. For

instance, if a logging functionality is implemented in an

aspect-oriented way then in large number of modules

invocation to the logger necessitates being present in the

model.

The interesting insight of the aspect-oriented

implementation is that along with providing the

modularized solution to cross-cutting concerns there is no

negative effect on software size and system modularity with

AOP implementation. If any particular task is to be

performed at a lot of places, then that particular

functionality, for instance logging, will be the part of the

application domain logic. All of the functional dependencies

related to logging would be then injected into the model.

Logging is not the domain model logic, neither its view nor

controller. So, it does not fit in any layer of MVC. Aspect

logging is the non-functional requirement and an example of

cross cutting concern. Therefore, such concerns should be

implemented in a separate layer, i.e., the Aspect Layer.

Hook Architecture is followed along with MVC to run the

code side by side in most of the AOP applications.

Separation of cross-cutting concerns is not addressed in

OOP, thus OOP with AOP is suggested for better

modularization and code optimization.

C. Change Management

Due to singularity of Aspect Class, maintainability and

change management is easy for AOP. For OSS, plugins and

components have multiple files, so need to track all related

code in case of any required modification.

Insertion and deletion in case of OSS is also complex like

change management and thus affected other related metrics

like development time, line of codes, coupling and cohesion

etc.

D. Code Enhancement

In case of OSS convention modular code enhancement,

scope of the customized or enhanced code is specific to that

particular module for customization of the package. And

the defined code has a limited impact on the package. For

hook architecture (Wordpress and Drupal, etc.), flexibility

of hooking enhanced code is ensured through a single

function definition instead of multi-files modules or

components. But the impact of the hooked functionality is at

a single code point and there is no way to hook the same

code to multiple points of the package’s core code.

Wildcard (.*) access in case of AOP advice binding

enhanced the impact to advice to wide variety of code

clones. For example, this injection of the wildcard \before

("method (.*Controller->.*Action ())") to all controllers

actions will bind the particular advice with all actions of

every controller.

E. Development Time

Aspects developer requires one time focus to learn the

aspects implementation and once learned she can bind

advices of aspects to any desired code clone. As no

knowledge of the current system is required for aspects

implementation, the development time is optimized by

aspects customization and the development time is focused

on required functionality instead of replicating and testing

the same code at number of points.

For OSS customization, knowledge of the current system

is required, so development time is also spent on related

modules. As per the OSS architecture and conventions,

there are variable maintenance time issues.

F. Line of Codes

In order to measure the size of the set of instructions – the

computer program – there is a metric named line of code

LOC, which simply shows the count of the number of code

lines of program. Maintainability, programming

productivity and effort to be required for developing a

program are predicted by LOC. As the cross cutting code is

resolved at a single point, line of codes are limited. The

same code needs to be coded at all required points, so, line

of codes are more as compare to that in AOP.

For instance, there is a requirement of making a detailed

entry with timestamp in a logger file whenever any record is

deleted. For this simple requirement, wherever delete code

is written in the package OSS customization approach will

handle the case by coding a plugin, component or module to

log the details separately for every code. Thus, if the

modified functionality is ‘m’ and number of clones to be

modified is ‘n’, then the m*n is the number of code lines

(LOC) increased in case of OSS customization approach.

In case of AOP, LOC increases by ‘m*1’, meaning

that ‘m’ lines are added in the original LOC. If there is a

single point of change, then, the OSS and AOP approaches

are equally to adopt but in common practices logging related

codes are required at number of joinpoints. This refers to the

strong adoptability of the AOP for large scale projects. In

the light of this calculation, it revealed that the usability of

aspect-oriented technique directly depends upon the size of

application. In case there is a large number of code clones

then, the AOP will help in reaping maximum time saving

benefits whereas the development speed decreases when this

technique is used for small number of code clones.

G. Direction of Functional Breakdown

For a student manager, customization in terms of adding

student registration functionality, the direction of functional

breakdown varies as per nature of the functionality to be

focused. For instance, student registration comprises of two

main modules, i.e., Managing Student Bio data and

Managing Student Courses. Courses Manager is further

divided into content manager and batch manager with

course information. All these managers are the functional

breakdown of registration manager in top to down direction

and thus, will be implemented by OSS way of customization

as modularization is done in a vertical fashion.

In case of displaying a flash message on every successful

insertion of record in registration manager, advices need to

115Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

be defined to manage the case in AOP way. For AOP, cross-

cutting concerns are handled in the horizontal fashion, i.e.,

left to right.

Thus, a combination of AOP and OSS customization will

be used where the cross-cutting concerns are implemented

in AOP to manage code maintainability in single file and

other particular module functionalities are implemented in

OSS modules, plugins or components.
Summary of these qualitative and quantitative factors that

contribute in the estimation of software metrics are
tabularized in Table 1.

TABLE I. AOP VS OSS

System having cross cutting concerns can be successfully

handled through AOMVC using AOP techniques. AOMVC

creates an additional layer of aspects and then declared the

aspects in the configuration file in order to provide

scalability, maintainability and refined modularization

within the system. Also, wildcards can be used to bind

advice with number of join-points. This flexibility of

hooking the code at number of places creates the difference

and provides an edge to the AOP paradigm.

V. DISCUSSION

The potential benefits as per the system’s features offered

by the AOP approach include the simplicity, readability and

modularity. This way, the created system with improved

software development efficiency works faster than its

object-oriented version.

A. Code Reuse

Reusability of the code refers to the phenomena of writing

the code once and using it later on number of occasions as

per the scenario defined. Once a code is defined and as per

its invocation, it gets weaved and called on multiple

locations. Hence, the code duplication is reduced manifold.

In case of Manipulation aspect the reusability measure is too

high to affect number of code clones. Thus, through single

point of access, code gets reused and maintained.

B. Maintainability

System gradation is a part of every real world application.

Code once developed has to be maintained and to ensure

configuration management application maintainability is a

vital concern for meeting user’s needs. Instead of tracing the

code in each and every file for the modification or deletion

purpose, AOP offers a woven point defined as per language

selection in XML, PHP, JAVA, .NET etc., in the declarative

way, in order to delete the cross-cutting concern if it is no

longer in need, which progresses the maintainability of the

system compared with traditional methods - one by one

steps to locate the code.

C. Scalability

Through scalability, demand for the change in

functionality of the original system is facilitated. New

functional requirement proposed by the user is coded as an

aspect in the form of new feature, specified in the

configuration files, woven or bind in a respective point

instead of updating number of files required to be modified.

Hence, aspects provide scalability for a large amount of

changes in the current system in the way to incorporating

user’s emerging requirements with the passage of time.

D. Reduced Development Time

As the line of code is decreased in case of using OOP

with AOP, so the development time gets reduced. In case

there is a large number of code clones (as in case of

Manipulation Aspect) then the AOP will help in reaping

maximum time saving benefits whereas the development

speed decreases when this technique is used for small

number of code clones.

E. Code Organization

Cross-cutting concerns of logging, flash message and

manipulation are kept aside from Model, View and

Controller classes in case of coding aspects for logging,

flash message and manipulation functionality. Thus, the

domain logic is not confused with the supporting domain

logic (logging entry in file or database) in case of logging

aspect implementation.

F. Changeability

Request for change in web application is too common.

With the advent of technology changeability should be

offered by the web development. Code once developed has

to be maintained and to ensure configuration management

application maintainability is a vital concern for meeting

user’s needs. If in case of Logging Aspect, instead of

recording entry in file, requirement got changed to record

entry in database then a single line of aspect get replaced

instead of replacing code in every related file in case of

OOP without AOP.

G. Extensibility

Aspects provide scalability for a large amount of changes

in the current system in the way to integrating user’s

evolving requirements with the project advancement. In

case of Logging Aspect, if along with recording deletion

time in file, recoding an entry in database is required then a

 AOP OSS

Point of Access Single File Multiple Files

Separation of Cross-cutting

Concerns
Resolved Not Addressed

Code Enhancement Wide Impact Limited

Change Management Easy Complex

Development Time Optimized Increased

Line of Codes Optimized

Increased

(Replication in
case of cross-

cutting concern)

Direction of Functional

Breakdown
Vertical Horizontal

116Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

single line code at one place need to be added in the logging

aspect class.

H. Dynamics

Dynamics refers to the enabling and disabling of the

aspects. If the injected functionality is no more required

then the aspect injection code can be commented. In case of

Logging Aspect, if the logging of the delete record is no

more required then single line code of recording time of the

delete can be commented. Similarly, if the Flash Messages

are not to be injected then the code can be commented and

same is the case for manipulation aspect.

VI. CONCLUSION

OSS customization mostly follows OOP. Replacing the

OOP by AOP was an obsolete question and now it reveals

that AOP basically complements OOP and cannot be used

in isolation because AOP is developed on the basis of OOP.

AOP counterbalances the constraint of OOP. When applied

together with OOP, AOP is more efficient and

complementary in providing an ideal structure for modular

programming.

The scope of aspect-oriented implementation –that either

it solves a specific cross cutting concern or it can be applied

in general to the whole application – is to be well estimated

by the metrics, so that to ensure the risks involved and

opportunities offered by AOP. There are several factors that

affect the performance of the application like main memory

size, memory management, cache size and even program

size (line of codes, etc.). Switching between the base code

and the aspect is more often resulting in the back and forth

movement of the control flows of the system, with the

potential increase in the number of join points.

ACKNOWLEDGMENT

Many thanks to Saeeda Sultana Sadia, that we are able to

complete the research. It could have been near to impossible

to achieve the successful completion without the supervision

and guidance of Saeed ur Rehman - Mentor. The

cooperation of Department and faculty is heartedly

acknowledged. Special thanks to Salma Sultana and Sara

Sultana for their support and motivation to complete the

research successfully.

REFERENCES

[1] R. J. Walker, E. L.A. Baniassad, and G. C. Murphy, “An Initial
Assessment of Aspect-oriented Programming, ICSE99 Proceedings of
the 21st international conference on Software engineering”, ACM,
ISBN: 1-58113-074-0, 1999, pp. 120-130.

[2] G. Kiczales, J. Lamping, and A. Mendhekar, “Aspect-oriented
Programming, Proceeding of 11th European Conference of Object-
Oriented Programming”, LNCS 1241, 1997, pp. 220-242.

[3] S. K. Otrappa and P. J. Kulkarni, “Multilevel Security Using Aspect
Oriented Programming AspectJ, Advances in Recent Technologies in
Communication and Computing (ARTCom)”, 2010 International
Conference, IEEE, ISBN: 978-0-7695-4201-0, 2010, pp. 369 – 373.

[4] H. Li, M. Zhou, G. Xu, and L. Si, “Aspect-oriented Programming for
MVC Framework, Biomedical Engineering and Computer Science

(ICBECS)”, 2010 International Conference, IEEE, ISBN 978-1-4244-
5315-3, 2010, pp. 1 – 4.

[5] B. Amar, H. Leblanc, B. Coulette and C. Nebut, “Using Aspect-
Oriented Programming to Trace Imperative Transformations,
Enterprise Distributed Object Computing Conference (EDOC)”, 2010
14th IEEE International, IEEE, ISBN 978-1-4244-7966-5, 2010, pp.
143 – 152.

[6] S. Hanenberg, S. Kleinschmager, and M. J. Walter, “Does Aspect-
Oriented Programming Increase the Development Speed for Cross-
cutting Code? An Empirical Study”, ESEM '09 Proceedings of the
2009 3rd International Symposium on Empirical Software
Engineering and Measurement, ACM, ISBN: 978-1-4244-4842-5,
2009, pp. 156-167.

[7] J. Zhang, and Y. C. G. Liu, “Modeling Aspect-Oriented
Programming with UML Profile”, 2009 First International Workshop
on Education Technology and Computer Science, ISBN: 978-0-7695-
3557-9, vol. 2, 2009, pp. 242-245.

[8] L. Madeyski, and L. Szała, “Impact of aspect-oriented programming
on software development efficiency and design quality: an empirical
study”, Software, IET, IEEE, ISSN 1751-8806, 2007, pp. 180 – 187.

[9] D. Zhengyan, “Aspect Oriented Programming Technology and The
Strategy Of Its Implementation, Intelligence Science and Information
Engineering (ISIE)”, 2011 International Conference, IEEE, ISBN
978-1-4577-0960-9, 2011, pp. 457 – 460.

[10] M. Bartsch and R. Harrison, “An exploratory study of the effect of
aspect-oriented programming on maintainability”, Software Quality,
vol. 16, no 1, 2007, pp. 23-44.

[11] R. Coelho et al. , “Assessing the Impact of Aspects on Exception
Flows: An Exploratory Study Proceedings of the European
Conference on Object-Oriented Programming”, 2008, pp. 207-234.

[12] P. Greenwood et al. , “On the Impact of Aspectual Decompositions
on Design Stability: An Empirical Study”, Proceedings of ECOOP
2007, pp. 176-200.

[13] K. Gybels and J. Brichau, “Arranging language features for more
robust pattern-based cross-cuts”, Proceedings of AOSD, 2003, pp. 60-
69.

[14] M. Kuhlemann and C. Kästner, “Reducing the Complexity of AspectJ
Mechanisms for Recurring Extensions, In Proceedings of the Second
GPCE Workshop on Aspect-Oriented Product Line Engineering
(AOPLE)”, 2007, pp. 14-19.

[15] J. Zhang, Y. Chen, G. Liu, and H Li, “An Aspectual State Model and
its Realization based on AOP, Proc. of WRI World Congress on Soft.
Eng”., vol.3, 2007, pp. 163-166.

[16] T. Osogami and S. Kato, “Optimizing System Configurations Quickly
by Guessing at the Performance, Proc. of ACM Special Interest
Group on Measurement and Evaluation”, 2007, pp. 145-156.

[17] C. A. Cunha, “Reusable Aspect-Oriented Implementations of
Concurrency Control Patterns and Mechanisms, Proc. of the Aspect-
Oriented Software Development”, 2006, pp. 134 –145.

[18] W. Liu, C. Lung, and S. Ajila, “Impact of Aspect-Oriented
Programming on Software Performance: A Case Study of
Leader/Followers and Half-Sync/Half-Async Architectures”,
COMPSAC 2011, 2011, pp. 662-667.

[19] G. Kiczales, E. Hilsdale, and J. Hugunin, “An Overview of AspectJ”,
In Proc. ECOOP 2001, LNCS 2072, Berlin, June 2001,Springer-
Verlag, 2001, pp. 327-353.

[20] R. Douence, T. Fritz, N. Loriant, J. M. Menaud, M. S. Devillechaise,
and M. Suedhol, “An expressive aspect language for system
applications with Arachne”. 4th Int. Conf. on Aspect-Oriented
Software Development (AOSD ’05), Chicago, Illinois, Mar. 2005.
ACM, pp. 27–38.

[21] F. Kato, K. Sakamoto, H. Washizaki, and Y. Fukazawa,
“Comparative Evaluation of Programming Paradigm: Separation of
Concerns with Object-, Aspect-, and Context-Oriented
Programming,” Proceedings of 24th International Conference on
Software Engineering and Knowledge Engineering (SEKE 2013), pp.
594-599.

117Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5654667
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5654667
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5654667
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5461720
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5461720
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5628338
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5628338
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4124007
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5996361
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5996361
http://www.informatik.uni-trier.de/~ley/db/conf/compsac/compsac2011.html#LiuLA11

	I. Introduction
	II. Literature Survey
	A. Modularization in AOP
	B. Usability of AOP
	C. Design Quality in AOP

	III. Comparative Anaysis
	A. OSS
	B. AOP
	C. Cross Cutting Concerns
	D. Code Enhancement in OSS
	E. Code Enhancement in AOP
	F. AOMVC
	G. MVC cross-cutting concerns and AOP

	IV. Research Results
	A. Point of Access
	B. Separation of Cross-cutting Concerns
	C. Change Management
	D. Code Enhancement
	E. Development Time
	F. Line of Codes
	G. Direction of Functional Breakdown

	V. Discussion
	A. Code Reuse
	B. Maintainability
	C. Scalability
	D. Reduced Development Time
	E. Code Organization
	F. Changeability
	G. Extensibility
	H. Dynamics

	VI. Conclusion
	Acknowledgment
	References

