
Toward a Definition of π-DSL for Modelling Business Agents

MDA based π–calculus extension

Charif Mahmoudi and Fabrice Mourlin

Laboratory of Algorithms, Complexity and Logics,

Paris 12th University

Créteil, France

{charif.mahmoudi, fabrice.mourlin}@u-pec.fr

Abstract—In this paper, we will address the issue of modeling

the integration of agents with various resources and services,

as found in an Service-Oriented Architecture (SOA) platform.

We are proposing an approach for modeling agents and

integrating these agents in existing pipes and filters based

message routing and mediation engines. Using Model-driven

development (MDA) as a base for our modeling strategy, our

agent model generates source code based on Enterprise

integration patterns (EIP) by Hohpe and Woolf. We are

presenting a new agent design that uses the Open Gateway

Services Interfaces (OSGi) architecture as an agent platform

and the Apache Camel enterprise integration framework as the

EIP based engine. The approach is illustrated by a business

process use case, and a complete example including process

specification and code generation. The main objective of the

example is to demonstrate the benefits of using agents as

orchestration of external services via a specialized message

routing engine that supports EIPs.

Keywords- Process algebra; Orchestration languages;

Software agents; Web services; EIP; π–DSL; MDA; SOA; OSGi

I. INTRODUCTION

In the business world, the orchestration of Web Services
is becoming increasingly widespread [1] This technology
allows, via tools, a simple way to handle graphically
different business needs. We give as an example BPMN [2].
Other specifications can be described as the specification for
the construction of orchestrations as Apache CAMEL [3]
and Spring Integration [4]. For some researchers [5], the
specifications based on based on Enterprise Integration
Pattern (EIP) [6] are dedicated routing within ESB [7]. But
most of them [8] agree that specifications based on EIP are
ideal for building orchestrations. In addition, it should be
noted that most of the specifications based on EIP do not
offer graphical tools to develop visually unlike BPMN
specification.
In this paper, we will present an approach allowing
orchestrations in a mobile agent [9] form based on the EIP
specifications. This approach is based on the work [10] that
we previously published and which we consider as the
foundation of an OSGi [11] based ecosystem able to run
mobile agents.

The paper is organized as following. We review a
number of related works in Section 2, and describe the

standards we have set as a framework of our work in Section
3. Section 4 provides the detail of the MDA approach that
we used to define our system. Section 5 presents the formal
specifications of our EIP based target system. It uses EIP
specifications as a mean to declare a mobile orchestration
carrying agent [12]. We conclude our work, and describe the
future work in Section 6.

II. WORK CONTEXT

In the context of SOA [13], the orchestration has a
central role since it defines the steps to be performed to
provide a result. The steps are Web services calls, the results
of the various services are handled by the orchestrator. The
final result of the orchestration is based on the results of each
step.

The orchestrations are defined by the W3C (glossary) as
"the pattern of interactions that must respect a Web service
agent to achieve its purpose." Based on this definition, we
can consider an orchestration as a director of a software
agent (program) behavior [14]. The agent exposes a Web
service that is available to other agents, the result returned by
the agent consists of a series of calls to basic services and
transformations on the data retrieved from the basic services
used. Figure 1 illustrates a simple agent based orchestrations
[15].

Figure 1. Connections of orchstration.

An orchestration gives rise to a semantic once
interpreted. The benefit of orchestration is noticed during
interpretation. The same semantics can come from many

86Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

styles of definitions. The model depends on the language
used to implement the definition of an orchestration.

The approach that we present is an EIP based model of
orchestration definition. The proposed model allows the
building of orchestrations with semantics quite similar to
those built by other models in the domain [16] [17] [18].

A. Business Agent

Our approach allows managing orchestrations composed of

EIP's. In this section, we will see what a software agent; we

will also see how to use an orchestration within an agent.

A business agent is an agent first. In addition, this agent

assures the autonomy property. An agent is a program that is

autonomous [19]. It has the ability to communicate with its

environment and to perform the task for which it was made.

An agent is characterized by four main features:

• Autonomy: an agent is master of its decisions. Its behavior

is not directed from the outside but it is self-managing

agent. We can see the property of autonomy in two aspects:

autonomy of the internal state of the agent and the

autonomy of the agent's actions. Internal autonomy means

that the agent is able to change its state by objective. The

autonomy of action means that the agent is able to make a

decision based on the information from its environment.

Both aspects of the autonomy of the agent are provided by

the π-DSL language. The ultimate goal of the agent is to

compose a response to an invocation. This composition is

based on communications with business and monitoring

components.

• Reactivity: the agent is able to perceive the changes in its

environment using the components of monitoring and

possibly take action in response to changes in this

environment.

• Proactivity: an agent is able to determine the actions to

achieve its objective, it is based on its internal state and the

information received from its runtime environment.

• Social: an agent is able to communicate with other agents,

to carry out its mission and achieve its objective. Given that

agents expose their services using the same interface type as

the components business. Calls to agents and business

services base happens in a transparent manner.

A business agent is a composition of business services

characterized by four properties of the agent. These four

properties are provided by our approach to defining business

agent A. π-DSL.

B. EIP orchestration

Several EIP based specifications exist, which were not
initially dedicated to Web services orchestration, but could
be used as tools allowing orchestration, like Translator or
Aggregator. We have decided to base our approach on these
specifications. These EIP specifications are the base of the
different interactions with basic services as well as the
transformations necessary to build an orchestration. Thereby,
orchestrating inherits the properties of the EIP that compose

it. Note that the order of definition is important and must be
preserved during execution.

EIPs provide a framework for interacting with partners to
transform the data flow and be invoked by other partners.
Each EIP provides a work step, i.e., interaction in the
orchestration; it is possible to have a work step composed of
several EIPs.

Given that the EIPs are based on the "pipe and filter"
architecture, they automatically provide the concepts of
channel messages, routing, transformation and endpoint.
Messages are what travel between a pipe and a filter. The
structure of a message is as specified in the JMS [20]. In this
paper, a channel allows a message to transit and an endpoint
is a destination of the message. In addition, EIPs introduce
the concepts of routing and transformations between
channels and endpoints.
Our orchestration will be a composition in which each step is
based on one or more of EIP concepts.

Figure 2. An EIP based system

Figure 2 shows some EIPs, and how it is possible to build
an EIP from basic treatments. These treatments are basic
bricks we use to define our orchestrations.

Our orchestrations are exposed as Web Services
endpoints. When an exposed endpoint is invoked, the
orchestration activates the different EIP component of the
requested orchestration. Activation of an orchestration can
allow data transformation, invoking the participants in this
orchestration and returning a result to the client on the
initiative of the invocation on the exposed endpoint.

Our system supports various treatments and activities
offered by other systems, such as BPM orchestration. The
difference lies in the fact that the treatments and activities are
implemented within well-defined patterns.

III. FORMAL SPECIFICATIONS

In this section, we will present the formal specifications

of our system. We will start by a reminder of the π-calculus

language, then we will present and comment on some parts

of the specifications of our system and finally, we will

present an example of agent-based orchestration definition

as a foundation of our case study.

A. π-calculus

The π-calculus is a formal language designed to define
concurrent systems. The language basically focuses on the
communication between parallel systems. The language was
developed by R. Milner [21] and was published for the first
time in [22]. The π-calculus is based on the concept of terms
and names. Term represents a process or sub-process. Also,
a term consists of a sequence of emissions and receptions via
communication channels. It also consists of calls to other

87Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

terms. However, a name can be either a communication
channel or a variable that will be calculated by the values
received via a channel.

 () (()| ())

 () () (() ̅〈 〉|) (1)

 () () (̅〈 〉 ()|)

The equation (1) is a definition of S, a term that execute

in parallel the term P and Q that use the canals c and d to
communicate with each other. This definition is expressed
using one of the three variations of the π-calculus, which is
the monadic π-calculus. This variation characteristic is that a
communication channel can transfer only a single value.

The second variation of the π-calculus is polyadic π-
calculus. The main difference between the monadic and
polyadic is that the latter can transmit and receive multiple
names on the same channel as demonstrated in the (2) using
the same example from term "S".

 () (()| ())

 () () (() ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉|)
 () () ()
 (̅〈 〉 ()|)

The third variation is the π-calculus of higher order. This

variation contains all the characteristics of the polyadic π-
calculus. In addition, it allows to send and receive terms and
names via a channel in the same way. The equation (3)
shows the transfer of a term 'R' between terms 'P' and 'Q'.
Therefore, showing that the execution of the term 'R' is on
the target process.

 () (()| ())
 ()

 () (() ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉|)
 () () ()
 (() ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉|)
 () ()
 (̅〈 ()〉 ()|)

We will use the extension communication operator [23]
in a polyadic context as shown below:

 | ̅ ()
Let us define the following:

 (⃗)
 [⃗] ()

The operator allows us to define an interface

between the two terms in which it operates. This will make
possible to dynamically integrate terms with the entire
orchestration steps. This operator can be assimilated to a
communication interface in UML as shown in Figure 3.

Figure 3. π-calculus interface

B. Construction of a definition of orchestration

We consider ‘Orch’ an orchestration with a single

participant. The variable IN from (6) represents an input of
the orchestration:

 ()[⃗] | (⃗) ()

And the term OUT in (7) is the sole participant in the
orchestration:

 (⃗) | [⃗] ()

The vector ⃗⃗⃗⃗⃗ represents all the terms corresponding to
processing steps and transformations performed between
receiving a request and returning the result.
We can then define the term ‘Orch’ as follows:

 (((⃗) [⃗]))
‖ ‖

 ()

The term „Orch‟ given in (8) creates a flow through all
terms between the input 'IN' and the output 'OUT'. Each
term representing a step in the orchestration will have a
vector of names as input. Each term will have a second
vector as output. These vectors will be transported
between the different steps following the same order defined

within the vector ⃗⃗ ⃗⃗ ⃗⃗ . The input ⃗ to the Term is
connected to the output ⃗ of the term while its output

is connected to ⃗ the input ⃗ of the term .

The operator “ ” is an ideal way to represent an exchange
that carries the communication streams between two steps of
an orchestration. This operator will help us to connect the
various processes that define an orchestration.

As we have seen, our orchestrations are in the form of a

set of steps (transformations) between an endpoint and the

participants of the orchestration. The list of steps has not

been known by the engine before loading the definition of

orchestration. We will use a data structure in order to persist

the definition of orchestration. The instance of this structure

will be loaded by the engine via an activator that is a

particular endpoint type for connecting managed services to

an input channel. The engine will be based on this definition

that it receives in the form of a linked structure to activate

the orchestration.

Activation of the orchestration can link the different

steps. As illustrated in Figure 4, the link between these steps

is the connection of inlet flow of step 'n' with the exit of 'n-1'

using the concept of exchange, which carries a two-way

flow.

88Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 4. An EIP based system

We will use both π-calculus concepts of abstraction and

concretion in order to implement dynamic linking on

chained lists. These lists will be used to contain the different

steps of our orchestration.

IV. AN APPROACH BASED ON MDA

We defined the π-calculus language as meta-meta-model.

In Section 5, we will present the definition of a meta-model

in π-calculus. Meta-model consists of an extension of π-

calculus as dedicated to DSL service orchestration based

routes. Routes are an implementation of pipe and filter

architecture using routing rules. The proposed DSL takes a

form of a composition of EIP. Meta-model also describes

the tools needed to run a model once created. These tools

are in the form of a set of components. The models are

created using the π-calculus based DSL. Figure 5 illustrates

the four levels of our approach.

Figure 5. MDA Model

In the next section, we will detail the transformations

made between the different models.

A. Model-driven orchestrations definition

Our approach in defining orchestrations is a MDA based
approach [24]. The business area of our system is the
definition of orchestrations; these orchestrations are
components of the fundamental services. We have extracted
domain-specific vocabulary as a π-DSL language. We can
represent the π-DSL as a set of terms called EIP when EIP =
{from, process, to ...}

Each orchestration will be defined using a language
described in π-calculus. This language allows the interaction
between various tools made available to the orchestrations.

Our meta-meta-model describes a language of
orchestration in addition to the tool permitting the
interpretation of this DSL orchestration language. The
interpretation tools using π-DSL will be subject to a manual
transformation [25] to object-oriented programming
language [26]. The execution of the system supports
different terms materialized from meta-meta-model in order
to connect via the EIP channels. These channels are essential
to the π-DSL.

Each orchestration is defined as a set of "emissions" on
the EIP channels. Emissions existing on the EIP channels are
received by one of the tools, which are the same as the term
Routes that will be described in detail in subsequent section.
We will also specify the term Route that allows transforming
the definition of a π-DSL orchestration into a definition
taking the form of data structure. This data structure
represents the Platform independent model (PIM) [27]
orchestration.

The structure representing the PIM is transformed in
order to activate the orchestration. The step involving the
activation transforms the structure representing the PIM in an
executable code representing an orchestration language. The
code will be generated automatically as Camel java-DSL
[28]. The Camel DSL code communicates on the same
channels as the EIP tools defined in the meta-meta-model.

Figure 6 illustrates an example of an orchestration that
uses a service that transforms the Route of this service before
returning it to the customer at the initiative of the invocation.
Consumer and Provider are specific process wrappers for
external endpoints interaction.

Figure 6. Exchages in orchestration

Our goal is to reach an executable system from the
definition in the form of π-DSL. To do this, we perform a set
of transformations whose outlines are highlighted in the
Figure 7.

In the next section, we detail the structure of meta-meta-
model orchestrations then in the next section, we will talk
about the definition of the various EIP, which constitute the
π-DSL routing and orchestration oriented language. Then, in
the section dedicated to message route, we will detail the
activation principle such as we designing our approach.

B. Model-driven orchestrations transformations

In our approach, the definition of orchestrations is the

body of the wrapper agent of these orchestrations. Each
agent has a definition, which characterizes it by an
orchestration that is unique for the agent itself. Applying the
definition of the agent in our system triggers a change in the
system state. This new state is reached after the activation of

89Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

the orchestration definition. The activation implements the
semantics described by the definition of orchestration.

Figure 7. MDA transformations levels

Orchestrations will use the concept of route introduced by
EIP. The Route is the building blocks of an orchestration.
The Route is used to associate an input to transformations
and outputs. Inputs are endpoints exposed by the agent while
the outputs are endpoints consumed by the agent.
Transformations can be applied to both input and output
stream flows.

The Figure 8 shows an orchestration using the content
based router EIP and message translator EIP to route the
input message to the adequate translator

Figure 8. An EIP orchestration

The definition of an orchestration and the semantics of an
orchestration are separate concepts. So far we have only
discussed the definition of orchestration, which is composed
of the series of actions to take in response to an external

invocation. Each orchestration is a model. It is described
using the π-DSL, which is the extension of π-calculus
offered by the meta-meta-model (see Section 5).

The π-DSL consists of all the EIP channel names. It
defines an orchestration through signals on EIP names. Since
π-DSL is an extension of π-calculus, it inherits all its
properties. This gives the possibility to manipulate some
terms that are free within the π-calculus limitations.
Manipulated terms will be called processors and will have at
their disposal data streams they can use.

During the orchestration activation, the definition is
transformed into an instance. Activation is made via a
component that is one of the different tools defined in the
meta-meta-model. These tools are defined as terms in the
section dedicated to the definition of the system.

The definition of an orchestration considers the definition
of a general context of the process as shown in Figure 9.This
context allows the exchange of shared information between
the various components of the orchestration. This set of
shared variables is a part of the state context of the business
agent at a given time. The result of the invocation of a route
will depend on the current state of the agent because a
previous invocation may have set a value on a shared
variable, and thus influence the final result.

Figure 9. Shared context

The semantics of the agent is enhanced after loading the
definition by the engine. The engine activates the
orchestration routes and thus integrates the wrappers
(Consumers and Providers). Then, the engine loads the
context of the agent. Following this action, we end up with
an active and ready-to-receive external invocations system
state. However, it is important to make the distinction
between the contexts of the agent corresponding to the
internal information of the agent on one side and the state of
the system that contains the context and the routes
constituting the different agents on the system.

V. SYSTEM DEFINITION

Based on the definition (1), our system (9) defines a
container running in parallel with the Repository.

 ()

90Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 ()|
 ()

(9)

The Repository (10) is a term that represents a
composition for sharing the definition of agents. It can add
an artifact containing the definition of an orchestration or
retrieve the artifact using the URL that was used to add the
artifact. The processing performed inside the Repository
complies with the Maven [29] specifications. We will ignore
the details of the inner workings in this paper.

 ()

 ()
 ̅̅ ̅̅ ̅̅ 〈 〉

 ()

 ()

(10)

The container (11) is the container application on which
our services and our agents will be deployed. It allows
loading definitions of orchestrations in its context. The
container and the system have the same execution context.

A container can host any number of agents and services.
Because each agent/service has a definition of its own, let's
take the example of a system that contains one agent that
performs an orchestration using a couple of services. The
container allows the sharing of different channels to activate
the definition of an agent in the engine.

Shared channels are associated with EIP. The definition
of orchestration is transformed after activation in a set of
Routes respecting an EIP sequence.

 In order not to overload our definitions with a large
number of parameters we will use the name "EIP" to
represent all EIP names.

 ()
() (()
(()
| ())
|()
(()| ()| ()))

(11)

Runtime (12) is designed to: manage the retrieval,

activation and shutdown of various artifacts containing the
definition of the agent as well as services. For this, it
communicates with the Repository to recover the definition
using the URL of the artifact. Once the artifact is recovered,
it executes the definition to activate the engine.

 () ()

(()
 () ()

 () () ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉)
 ()(()
 () ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉)

(12)

The Engine (13) enables The Routes activation. Routes

will be added to the system’s context. The integration of
context changes their status. The new status supports
invocation of the active orchestration.

 () ()
 ()| ()

 () (())
‖ ‖

 | ()(() ()
 () ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉 ()
 ()(() ()
 () ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉 ()

(13)

The term Routes (14) is the basic element of the

activation of an orchestration, as the term that uses the
"emissions" on EIP channels. It is able to add to the system
the ability to run the orchestration, then, transform this
definition to a set of steps that are executed after the event
fired.

 () () () (14)

The term Route (15), as its name suggests, allows you to

link an entry to one or more outputs. Routing the term can
manage a set of connections between both ends with a
transform in the stream exchanged if needed.

 ()

 () (())

 () (())

 () (())

(15)

The first step is the transformation of a π-DSL definition

to data structure representing an orchestration. This
transformation is conducted by the term 'Routes' listening on
the EIP channels. At each "emissions", the term Route
manages the integration of a Route in the current
orchestration. To do this, the term 'Routes' Delegates the
treatment of integration PIEs to orchestration. Therefore,
appealed to the term Route after each transmission on
channel EIP 'from'.

The second level of transformation is the transformation
of the structure representing a Route in a set of processes
chained together and able to implement the semantics of the
orchestration

Figure 10. Activation of orchestration

91Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

This subdivision illustrated in Figure 10 allows us to
keep control of an intermediate data structure, which may be
modified to adapt it to the target platform. This
transformation is at the heart of the migration mechanism
that we will detail in a future paper

VI. CASE STUDIES

In order to illustrate our approach by case studies, we
will take as an example the definition of an orchestration
between two weather services and compare the values
returned by called services.

We begin by defining our orchestration that will be as
shown in Figure 11:

 ̅̅ ̅̅ ̅̅ ̅〈 〉 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉 ̅〈 〉 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉 ̅〈 〉

Figure 11. Generated Camel-DSL code

This definition is subject to an automatic transformation
(as shown in Figure 7) of π-DSL part, against the terms {P1,
P2} that represent the processor, which will be subject to
manual transformation.

A mapping is defined between the pair {P1, P2} and
there collocations in a π-DSL definition. The result will be in
the form of Camel DSL code ready to be loaded and run on
tools materialized from the meta-meta-model. Tools are
generated in the form of a container, which uses Apache
Felix [30] as a basis for implementing the definition of the
container.

The second tool is the repository, which is an
implementation standard Apache maven.

The third is the runtime that is included in the OSGi
container (Felix) and provides a shell "Gogo" for interacting
with the external.

Go back to our example of the definition of agent
orchestration. The transformation from the π-DSL in code
"Camel-DSL" leads to a deployable artifact on the container.
The code is as shown in Figure 12.

import org.apache.camel.builder.RouteBuilder;

/**

 * A Camel Java DSL Orchestration

 */

public class OrchestrationRouteBuilder extends

RouteBuilder {

 public void configure() {

 from("nmr:uri1")

 .process(p1)

 .to("nmr:uri2")

 .process(p2)

 .to("nmr:uri3");

 }

}

Figure 12. Generated Camel-DSL code

Once deployed and activated, this route allows us to
integrate the services present on the uri2 and 3 with the client
that invoked the uri1.

The Camel engine will take control of the artifact
deployed and ensure the interpretation of the Camel-DSL
code. The engine will incorporate routes contained in the
artifact to its execution context. The result will change the
state of the system initially defined by the tools generate
during the transition from meta-meta-meta-model to model.

The system is then enriched by the definition of the
agent. Activation of this definition enhances the overall
execution context.

VII. CONCLUSION

In this paper, we were able to develop an approach for
generating a system dedicated to the orchestrations. Our
approach is based on the MDA approach to obtain a
dedicated orchestration and a set of tools constituting the
execution context of the π-DSL orchestration

The formalism represented by the π-DSL language,
defines an orchestration as a composition EIP. The
orchestration is transformed into a camel-DSL and packaged
as Maven artifact. The activation of the archetype load routes
EIP composes orchestration.

We will discuss in a forthcoming paper on mobility in
order to include in the definition of our system. We will
prove by model checking [31] the mobility support of the
system code.

We propose an extension of the semantics of our
approach by adding a new dimension of freedom through the
mobility aspect, which will be added to the semantics of an
orchestration.

REFERENCES

[1] C. Peltz, “Web Services Orestrestration and Choreography,”

Computer, vol. 36, no. 10, Oct. 2003, pp. 46-52

[2] BPMN. Bpmn - business process modeling notation.
‘http://www.bpmn.org/ retrieved: October, 2013

[3] C. Ibsen and J. Anstey, Camel in Action, Manning Publications, 2010

[4] C. Walls, R. Breidenbach, Spring in Action, 2nd Ed, Manning
Publications, 2008

[5] M. Endrei et al., Patterns: service-oriented architecture and web
services. IBM Corporation, International Technical Support
Organization. 2004.

[6] G. Hohpe and B. Woolf, Enterprise Integration Patterns : Designing,
Building, and Deploying Messaging Solutions . Addison-Wesley,
Boston, 2004.

[7] D. Chappell, Enterprise Service Bus, O‟Reilly Media, Inc.,
Sebastopol, 2004.

[8] A.Charfi and M. Mezini, “Hybrid Web service composition: business
processes meet business rules,” Proc. ICSOC ‟04, Proceed- ings of
the 2nd international conference on Service oriented computing,
ACM Press, New York, 2004, pp. 30–38.

[9] D. B. Lange and M. Oshima, “Seven good reasons for mobile
agents,” Commun. ACM , vol. 42(3), 1999, pp. 88–89.

[10] C. Mahmoudi and F. Mourlin, “Adaptivity of Business Process,”
Proc. ICONS 2013, The Eighth International

[11] OSGi Alliance. OSGi Service Platform Core Specification , release 4,
version 4.2 ed. 2009 http://www. osgi.org retrieved: October, 2013.

92Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

[12] G. B. Laleci et al., “A Platform for Agent Behavior Design and Multi
Agent Orchestration,” Agent-Oriented Software Engineering
Workshop, the Third Inter- national Joint Conference on Autonomous
Agents & Multi- Agent Systems, 2004, pp 205–220.

[13] BonitaSoft. Bonitasoft : open source business process management
and workflow software. URL : http://www.bonitasoft.com/ Retrieved
on January 25, 2013

[14] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology,
and Design ; Prentice-Hall, 2005.

[15] S. P. Fonseca, M. L. Griss, and R. Letsinger, “Agent behavior
architectures a MAS framework comparison,” Proc. AAMAS, 2002,
pp. 86–87.

[16] M. Viroli, E. Denti, and A. Ricci, “Engineering a BPEL orchestration
engine as a multi-agent system,” Journal of Science of Computer
Programming, vol 66, issue 3, 2007, pp. 226-245.

[17] A. Charfi and M. Mezini, “Aspect-oriented web service composition
with AO4BPEL,” ECOWS, LNCS, vol.

[18] D. Jordan and J. Evdemon editors. Web services business process
execution language version 2.0.http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-specification-draft.pdf retrieved:
October, 2013

[19] F. Stan and A. Graesser, "Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents." Intelligent agents III agent
theories, architectures, and languages. Springer Berlin Heidelberg,
1997, pp. 21-35.

[20] R. Monson-Haefel and D. Chappell, Java Message Services.
O’Reilly, 2001.

[21] R. Milner, The polyadic p-calculus: a tutorial. Technical Report ECS-
LFCS-91-180, Laboratory for Foundations of Computer Science,
Department of Computer Science, University of Edinburgh, UK,

October 1991. Also in Logic and Algebra of Specification, ed. F. L.
Bauer, W. Brauer and H. Schwichtenberg, Springer-Verlag, 1993.

[22] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes,
Parts I and II . Volume 100 of Journal of Information and
Computation , pages 1-40 and 41-77, 1992.

[23] D. Sangiorgi, “From -calculus to Higher-Order -calculus | and back,”
Proc. TAPSOFT, LNCS 668 . Springer-Verlag, 1993.

[24] A. Kleppe, S. Warmer, and W. Bast, MDA Explained. The Model
Driven Architecture: Practice and Promise, Addison- Wesley, April
2003.

[25] S. R. Judson, R. B. France, and D. L. Carver, Specifying Model
Transformation at the Metamodel Level, Wisme 2003.

[26] M. Campione and K. Walrath, The Java Tutorial. Addision-Wesley,
2003.

[27] G. Benguria, X. Larrucea, B. Elvesæter, T. Neple, A. Beardsmore,
and M. Friess, “A platform-independent model for service-oriented
architectures,” Proc. I-ESA‟06, 2006.

[28] R. Z. Frantz, “A DSL for enterprise application integration,”
International Journal of Computer Applications in Technology, vol.
33(4), 2008, pp. 257–263.

[29] Maven , In Apache Maven Project, http://maven.apache.org/
Retrieved on January 25, 2013

[30] Apache felix. http://felix.apache.org/site/index.html Retrieved on
January 25, 2013.

[31] B. Bérard et al., “Systems and Software Verification,” Model-Chec
king Techniques and Tools, Springer, 2001.

93Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://www.bonitasoft.com/
http://maven.apache.org/
http://felix.apache.org/site/index.html

