
Combining Model-based Testing and Continuous
Integration

Martin Koskinen, Dragos Truscan, Tanwir Ahmad and Niklas Grönblom
Åbo Akademi University,

Turku, Finland

Email: [martin.koskinen, dragos.truscan, tanwir.ahmad, niklas.gronblom]@abo.fi

Abstract—We present our approach on combining model-
based testing with the continuous integration process. The main
benefits of this combination lie in the ability to automatically
check the conformance of the implementation with respect to its
specification, while shortening the feedback cycles and providing
increased test coverage. A case study on developing an in-house
academic tool is presented in which the online model-based
testing approach is used with the continuous integration process.

Keywords—Continuous Integration; Model-Based Testing; UP-
PAAL Timed Automata

I. INTRODUCTION

Continuous Integration (CI) is a software development
practice in which developers frequently integrate their work [1]
[2]. The CI process runs continuously during the lifetime of a
project, resulting in that the different parts of the product are
always updated, integrated, and tested. Regression test suites
are used for checking the quality of the integration.

One perceived problem of CI is that the increasing size of
the code base leads to increasing run time of the integration
build. According to Rogers [3], one of the main causes behind
this, is not the increasing compilation time, but rather the
increasing number of tests executed. In addition, the mainte-
nance of the regression test suites can be time consuming and
error-prone. As current practice, Duvall et al. [2] recommend
that system builds are run several times, or at least once a day,
which imposes tight constraints on the CI and testing process.

In this paper, we discuss the inclusion of the model-based
specifications and automated test design techniques into the CI
process, in order to enable incremental development, shorter
feedback cycles and increased test coverage. There are two
enablers for achieving these targets: (a) early detection of
errors is facilitated by performing simulation and verification
on the model-based specification after each update of the
specifications; and (b) the test suite corresponding to the latest
version of the specifications is generated automatically and
made available to the CI process.

Our testing approach focuses on the conformance testing
using automated test generation techniques. The system is
developed incrementally. The specifications are done using
UPPAAL timed automata (UPTA) [4]. Every time a new fea-
ture is added, it is first modeled, simulated and verified. Once
the specifications are updated, they are used for automated

test generation. When the feature is also implemented in the
source code, the automatically generated tests are executed in
order to detect possible behavioral inconsistencies between the
specification and the implementation, and a report is issued as
feedback.

The paper has the following structure: Section II will
briefly discuss different background concepts. In Section III
we introduce a generic process for combining MBT with CI,
followed by a concrete case study in Section IV. Section IV
also describes how we applied this approach in a practical
software development project. An evaluation of our approach
is discussed in Section V, whereas final thoughts and future
work are presented in Section VI.

II. BACKGROUND

In the following subsection, the CI process is described in
more detail, followed by a short introduction to Model-based
testing (MBT) [5]. The last subsection briefly introduces the
UPPAAL tool and its capabilities.

A. Continuous Integration revisited

The traditional workflow of the CI process can be sum-
marized as following. When a developer has finished an
implementation task, he makes a local build to see whether
the program builds correctly. Ideally, he also runs tests locally
to verify that the implementation is correct. After this, the
developer commits the code to the Source Code Management
(SCM) system.

A CI-server is used to integrate source code from different
SCMs used in the process and to create an integration build,
either at regular time intervals or based on commit triggers
linked to the SCMs. The build process might contain different
kinds of code analysis, for example to ensure that the code
conforms to common code conventions, or integration/ac-
ceptance tests for the newly built software. Subsequently,
feedback is provided to the concerned parties on the outcome
of the build. If errors occurred or conventions were violated,
these are mentioned in the report. When errors or violations are
detected in the integration build, the responsible developer is
supposed to fix them as soon as possible. In many instances of
CI, the CI process is stopped, i.e., no one can commit updates,
before the previous failed build is fixed or the code is reverted
to the previous working version.

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

B. Model-based Testing

MBT is a testing approach which reduces the effort needed
for testing [6], by automatically designing test suites from
abstract behavioral specifications of the system under test
(SUT). The main philosophy behind MBT is to automatically
generate tests from abstract models, which specify the ex-
pected behavior of the system under test. Based on how tests
are generated and executed MBT has two flavors: online and
offline [7]. In online testing, tests are generated from the model
and executed on-the-fly against the SUT. At each step, a new
test is designed based on the output of the previous test. In
contrast, in offline mode, all test are pre-generated (scripted)
into an executable format, which is then executed in batch
mode using test execution frameworks.

C. UPPAAL

UPPAAL is a toolbox for verification of real-time sys-
tems [4]. The tool provides a graphical user interface for
editing, simulating and verifying models based on an extended
version of time automata, referred to as UPTA [4].

Informally, in UPTA, systems are modelled as a network of
timed automata which communicate with each other through
global variables and channel synchronizations. An edge, that
connects locations, can be decorated by a guard, allowing or
not allowing the edge to be taken, depending on some condi-
tion. A channel can be sending or receiving synchronizations,
which are annotated by the suffixes ! and ? subsequently. An
edge with a sending synchronization requires one edge that
can receive the synchronization. If several receiving channels
are available, one will be chosen non-deterministically. Syn-
chronization channels can be declared as broadcast channels,
which removes the requirement of a synchronization receiver.
This implies that broadcast synchronizations will be sent, even
if there is no receiver. If there are several receivers available
for a broadcast, all receivers will receive the synchronization
simultaneously. On edges, variable values are updated by
assignment statements. Initial locations are marked with a
double circle. There are two other special location types except
the normal location. An urgent location, which stops time, is
marked by an ’U’. A committed location, marked by a ’C’, is
stricter than the urgent one, since the automaton is allowed to
leave the location in the next transition without intervention by
another process. For a formal definition of UPTA, one could
refer to [4].

III. COMBINING MBT AND CI

As mentioned in the introduction, in order to take advantage
of the MBT approach, we integrate MBT into the CI process.
We use MBT to make sure that the specification and the
implementation of the SUT always conform to each other. A
generic view of our CI process is shown in Figure 1.

The CI process employs several SCM servers, used for
maintaining different artifacts of the development process. In
Figure 1, there are different SCMs for versioning the source
code, specifications, toolchain, test suites, etc. In practice, one

can use the same SCM server for accommodating several or
all artifacts.

Several teams are involved in the development, for in-
stance, a specification and a development team, each following
specific processes and committing regularly (with different
frequency) to the corresponding SCM server. Basically, when
a new feature is introduced, it is specified, validated and
then committed. Validation helps in detecting potential in-
consistencies in the specifications, such as misunderstanding
of requirements or omissions. The simulation and validation
ensure that the desired behavior can be achieved.

The task of the development team is to implement the
requested features according to the specifications. The devel-
opers can test their code locally, after which they commit it to
the corresponding SCM server. These tests may be unit tests
developed by the developers themselves or tests retrieved from
the test suite SCM.

As the main idea of software testing is to verify the
behavioral conformance between the specification and the
implementation, every time one of them is updated, we check
that they conform to each other using MBT.

This process is controlled by a CI server, which is config-
ured to monitor the SCM repositories involved in the build.
Whenever a commit to any of the repositories is detected,
all repositories related to the project are updated on the CI
server. Regardless of which repository triggered the update,
the following steps are executed depending whether an offline
or online testing approach is used.

a) Offline process: When a build is triggered due to
changes on a SCM server storing the specifications, the CI
server checks if the existing test suite needs updating due to
changes to the specifications. If needed, a fresh test suite is
generated from scratch. The test generation replaces the need
for maintaining and deciding which tests should be added or
removed from a manually created regression test suite. The
updated test suite is stored on a SCM server for later use.
The test suite is generated once and can be reused as long
as the specifications do not change. Updating the test suite
can be done as part of the CI, or as a separate process as for
convenience is showed in Figure 1.

When the code is updated on the corresponding SCM server,
a build is started. Upon completion, the test suite is executed
in batch mode against the SUT. Finally, the developers get
feedback on how the build proceeded.

b) Online process: For distinction, the online testing
process is depicted with thicker line pattern in Figure 1. When
a build is triggered by either of the SCM servers, the CI server
starts by building the project. As in online mode the tests are
generated and executed on-the-fly, there is no previous test
suite as such to be updated.

IV. CASE STUDY

In this section, we provide a concrete example of how
the generic process described in Section III can be put into
practice. The case study presented in this paper is part of
the development process of an academic tool for performance

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 1. Generic process overview

testing, called MBPeT. MBPeT [8] is a model-based load
generation tool which uses probabilistic models to generate
load and applies it interactively against the target system.
The development team consists of 2-4 developers, while the
specification team consists of 1-3 persons.

In the following subsections, we briefly describe different
activities involved in our development process.

A. Model-based specifications

The MBPeT tool has a distributed architecture, in which
one master node controls several slave nodes that are actually
generating the load by executing the desired number of con-
current virtual users. During load generation, the master node
decides how the load is distributed to the slaves. Each slave has
a predefined saturation threshold for the local resources which
is used to ensure that the slave node is able to generate the
required load. Whenever the saturation threshold is reached,
the load on the current slave is kept constant, while the
remaining load is delegated to the next available slave.

In the specification phase, the models of both the master
node (see Figure 2) and the slave node (see Figure 3) are
created and their communication is modelled in UPTA. The
behavior of the two node types is described in the following:

c) Master model: The master process in Figure 2 is
designed to handle several slaves. It starts by waiting for all
slave processes to connect, by receiving the i slave connect
synchronization from each slave process. Then the master
process continues with configuration and initialization of the
connected slaves, by sending an o initSlave synchronization
to each slave process. The initialization is completed when
all slave processes have sent an i slaveInit synchronization
to the master. At this point, the master requests the first
slave to start load-generation by sending an o generateLoad
synchronization to it. The master continues to listen for either
an i slaveSaturated or an i slaveDone synchronization. If an
i slaveSaturated is received and there are no available slaves

to start, the failure variable is set to 1. When the master
process has received the i slaveDone synchronization from
all started slaves, the master proceeds by shutting down all
connected slaves, by sending an o killSlave synchronization to
each slave process. At the end of the test session, the master
process enters the STOPPED location.

d) Slave model: The process model, corresponding to
the previously described master process, is shown in Figure
3. The process starts by sending an i slave connected sig-
nal to the master process. The master initializes the slaves
by sending configuration information, which corresponds to
the slave process reaching the Initialized location. Here it
waits for either an o killSlave or an o generateLoad syn-
chronization. The former results in a return to the initial
location and the latter instructs the slave process to start
generating load. The slave saturation is calculated by looping
via the locations Load calculated - Saturation Check. If the
slave’s load variable is greater than a threshold value, the
slave is considered saturated. When the slave becomes satu-
rated, it transitions to the generate load saturated location by
sending an i slaveSaturated synchronization. When test time
runs out, the slave transitions to the initial location via the
Load generation completed location. If the test duration runs
out without the slave being saturated, the slave transitions to
the Load generation completed location via location TestDu-
ration timeout and sends an i slaveDone synchronization to
the master. The slave instances share a global clock timer,
which is used for exiting the load generation when test
time runs out. The clock is reset when the first slave starts
generating load. For the rest of the slaves, the load generation
is started without resetting the timer. The models discussed
above allow for an instance of the master to communicate with
several instances of the slaves, thus imitating the architecture
of the real tool.

Simulation The models of the MBPeT tool have been
created incrementally, one feature being added at the time.

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 2. Master process model

Figure 3. Slave process model

After each feature is modeled, the models are simulated in
the UPPAAL tool, allowing us to experiment and check if the
proposed models behave as specified in the requirements.

Verification The models are also used for verification
of different system properties, e.g., reachability, safety, and
liveness. UPPAAL provides its own verification engine [4],
which uses a simplified version of the TCTL language [9].
For brevity, we refer the reader to [4] for more details.

B. CI process

In our development process, we have used three repositories:
one for the implementation of the SUT, one for the specifica-
tions of the SUT and one for the tool chain. We follow the
online testing process described in Section III.

1). When a new feature is to be introduced to the MBPeT
tool, it is first modelled in UPTA. The specification is sim-
ulated and verified. When the new feature is considered
”approved”, the new models are submitted to the specifications
SCM. The first time, this commit will trigger a build which

will fail, since the specification contain an unimplemented
feature. The failed build shows that the system implementation
is lagging behind the specifications, i.e., it does not conform
to the specified behavior.

2). The development team will start implementing the
new feature in code. When the implementation is ready, the
developers run unit tests locally. The development team also
has access to the entire testing tool chain to validate their
updated implementation before committing. When the code is
committed, a new build is started followed by the model-based
testing of the build. If the integrated system behaves according
to the specification, the build will pass the testing successfully;
otherwise an error-report will be generated.

3). Both the development and the specification teams will re-
ceive an error-report, which will be discussed and analyzed in
order to detect the source of the failure(s). It may happen that
the error is in the specification, instead of the implementation,
due to misunderstanding of the requirements or undetected

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

errors in the specification. The error may also be located in
the tool chain or in the test environment.

4). The identified failures are fixed by the team responsible.
Upon committing the updated artifact, a new build is triggered
which should result in a successful test run.

The CI process is supported by the Jenkins CI server [10],
an open source continuous integration server, configurable via
a Web interface. Its functionality is extendable via plugins,
e.g., integration with SCM systems. The building of projects
is configured via jobs. A job can be triggered manually, based
on a time trigger or based on an event, e.g., the completion
of another job.

The SCM software we use is Subversion [11]. In order
to implement the job-triggering mechanism, we implemented
a set of ”hook” scripts, which are run on the SCM servers
and monitor certain paths for commits. When a commit is
detected by a hook script, via a regular expression match on
the monitored path, the Jenkins CI server job is triggered by
an a HTTP request.

C. Test generation

In our approach, we have targeted the online mode of
MBT, since it addressed better the non-determinism in the
specifications. In our case, study we have non-determinism at
several locations, for example in the generating load location.
There is no limit on how many times, if any, the loop
calculating the slave’s saturation is taken.

Since the models of both the master and the slave nodes
are created and verified in the specification phase, any one
of them can be used as a SUT model, whereas the other one
will be used as environment model. Consequently, in our CI
environment, we have two independent jobs: one considering
the master node as the SUT, while the other uses the slave node
as the SUT. In this paper, we selected for exemplification the
setup where the master node is the SUT, and the slave nodes
act as the test environment.

An overview of our model-based test setup, is shown in Fig-
ure 4. We use three repositories: specifications, source code,
and tool chain. Whenever one of the repositories is updated
the commit trigger is activated and the CI process is started
by updating the repositories (if new versions are available),
building and deploying the implementation, instantiating the
tool chain and starting test execution.

The tool chain is composed of several components. Dis-
tributed TRON (DTRON) [12] is a tool for distributed online
test generation. DTRON uses a Spread network, the Spread
Toolkit [13] for its multicast communication between different
instances of DTRON and an eventually distributed SUT. In
order to interface with the implementation under test (IUT),
an adapter written in Java, is used to convert tests messages
received from DTRON into messages compatible with the
communication protocols required by the IUT. DTRON will
receive output from the SUT via the adapter, which distributes
it via the Spread network. The received values are compared
with the expected output and a verdict is given.

Figure 4. Overview of the test setup

The adapter is updated every time new observable interfaces
of the SUT are added to the UPTA specifications. There
is a naming convention for making channels and variables
observable by DTRON. A channel name prefixed by o
means the channel is used for IUT-to-model communication.
Similarly, a channel prefixed by i is used for model-to-
IUT communication. Integer variables can be sent along with
these synchronizations. In this case, the variable name is
prefixed by the observable synchronizing channel’s name,
i.e., i channelname variablename; see Figures 2 and 3 for
exemplification.

Once the test session is started, DTRON will generate tests
via symbolic execution of the specifications using randomized
choice of input. The observable communication between the
environment model and the system model is captured by the
adapter and send or expected to be received from the SUT.
Whenever an expected output is not received from the IUT
with the expected value or within the specified timeframe, a
failure will be observed and the test generation and execution
will be stopped. Consequently, the build job on the CI-server
will generate a test report and will send it to the respective
teams.

D. Measuring coverage

In our approach, for each new commit, we measure both
specification coverage and code coverage for each test run.

Specification coverage. In order to achieve a certain
coverage level, with respect to specific coverage criteria, we
have two options available when using UPPAAL-based tools.
The first option is to use an environment model which will
drive the test generation to follow specific test targets in the
SUT model, as described by Hessel et al. [14]. The second
option is to have an environment model which does not enforce
explicitly specific test targets in the SUT model (e.g., the
model of the slave node) and to recognize the coverage level
of the test run upon completion.

In our CI process, we use the second approach, which
requires an additional utility script to be included in the
process. The general idea is to automatically customize the
UTPA models, without modifying the original behavior, in

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

order to allow one to observe how different structural parts
of the model have been covered during the test execution.

The coverage recognizer tool (CRT), as shown Figure 4, has
two main functionalities. When the specification is updated
and detected by the CI-server, the script processes the UPTA
model by adding unique counter variables and a corresponding
updates statements on each edge of the SUT model. See for
exemplifications variables i c1, . . . , i c20 added to the Master
model in Figure 2.

An observable channel is also added, hereafter referred to
as the counter channel, which is used for synchronizing the
counter variable values to the CRT. The channel is declared of
type broadcast, which is weakly synchronized and therefore
does not require a receiver automaton [4]. In order to be
visible on the Spread network, the counter variables and the
counter channel follow the naming conventions of DTRON as
explained earlier. The counter channel has to be synchronized
at some point for the CRT to be able to produce a coverage
report. To achieve this, the tool adds a process to the system,
containing one location with a self-edge, that synchronizes the
counter channel periodically.

The second functionality of the CRT is to connect to
the Spread network and monitor the counter variables and
to build statistics about the edges visited during the test
run. At the moment, CRT provides support for edge, edge-
pair and requirement coverage, respectively. However, other
structural coverage criteria could be implemented in the tool.
The requirement coverage criterion, is a simplified version of
the edge coverage one described above, in which test targets
fulfilling certain system requirements are manually added to
the model as counter variables.

If we would follow an offline test generation approach,
a set of traces satisfying, e.g. edge coverage, can be eas-
ily obtained via model-checking of the property E <>
i c1&& . . .&&i c20 using tools like verifyta provided by
UPPAAL as described in [14].

Code coverage. Since we have access to the source code of
the IUT we also track how much of the code has been covered
by each test run. For this purpose, we use the coverage tool
for Python [15]. The tool counts the number of statements in
the source files and monitors which of them are executed. At
the end of the test run, it provides a coverage report detailing
the coverage level for different source files.

V. EVALUATION

MBT has two distinct components: modeling and test gen-
eration. Each of them brings its own benefits to reducing the
effort of the testing process. The main benefit of modeling is
that it forces the designers to simulate and verify the system
specification before deciding to implement a new feature.
During the specification and development of the MBPeT tool,
we detected many specification inconsistencies which could
have resulted otherwise time spent during the implementation,
testing and debugging.

The automatic test design has also its benefits, even if
the test suite has to be generated for each iteration. Due to

the online generation approach and also of the available tool
support, generating only parts of the test suite when the model
changes has not been considered. We do not consider it a
problem for two reasons: 1). with our approach the duration
of a test run requires less than one minute to achieve an
acceptable edge coverage level and 2) if the models would
become too complex to handle timely test generation, then
raising the level of abstraction or focusing the test generation
on certain parts of the models will help.

However, if complex test suites cannot be avoided there exist
a body of work which has addressed regression testing in the
context of MBT, e.g., [16], [17], [18], in its vast majority
targeted to offline test generation. In addition, there exist
already commercial tools such as Conformiq tool-set [19],
which optimizes the offline test suite generation by generating
only new test cases and removing old test cases which are not
relevant anymore.

With respect to our case study, the code base of the Master
node is approx. 2100 LOC written in Python, whereas the test
adapter needed for the models in Figures 2 and 3 is slightly
over 200 LOC written in Java.

Letting the DTRON tool randomly generate tests from the
model in Figure 2, we could identify six different test scenar-
ios, as depicted in Table I. For each scenario, we extracted the
corresponding edge coverage and statement coverage levels.
As shown in this table, the minimal edge coverage achieved
for our particular models is 70%, when running with one slave
which does not saturate. This corresponds to 91% statement
coverage. The highest edge coverage, 95%, is achieved when
having more than two slaves, of which at least one saturates,
one generates load unsaturated, and one is idling. In this case,
the statement coverage increased to 98% coverage.

With the model in Figure 2, full edge coverage cannot be
achieved due to two mutually exclusive paths in the model:
for a given set of slaves one cannot have both an idling slave
(which would be killed via edges c18, c19) and all slaves
saturated (edge c14).

Test Scenario Covered Edges EC Statement
Coverage

1 slave, no saturation 1-11, 15, 17, 20 70% 91%
1 slave, saturation 1-11, 14, 15, 17, 20 75% 91%
2 slaves, slave 1 saturated 1-13, 15, 16, 17, 20 85% 92%
2 slaves, both saturated 1-17, 20 90% 91%
2 slaves, 1 idle 1-13, 15, 17-20 90% 92%
>2 slaves, 1 idle 1-13, 15-20 95% 98%

TABLE I
COVERAGE RESULTS

Due to the way the tests are generated from these models,
with each test run we may obtain a different trace depending
on the number and behavior of the slaves. However, using two
slave nodes in the test configuration, provided an acceptable
edge coverage level. Adding another slave will increase the
edge coverage by 5% and the statement coverage by 6%. At
the moment, we did not consider this approach necessary, since
when inspecting the source code coverage for all three test

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

scenarios using two slave nodes, we found that actually the
entire code base was covered by the respective traces.

VI. CONCLUSION AND FUTURE WORK

We have presented an approach in which model-based
testing and continuous integration approaches have been com-
bined in order to lessen the testing effort and consequently
shorten the integration cycles.

Having performed simulation and verification of the speci-
fications increased their quality and decreased the number of
failures originating in the specifications, such as common mis-
takes, omissions and misinterpretations of the requirements.
The UPTA formalism allowed us the modeling of time and the
verification of time properties. Using automatically generated
tests decreased the time spent to develop tests every time a
new update was performed either in the specification or in the
implementation.

Since the repositories can be updated independently, the
modeling and development teams are immediately aware of
problems in the build. Ideally, the implementation and the
models should be in sync, that is the implementation should
reflect the model. As long as the tests conclude that the
implementation and models conform to each other the builds
are successful. If they start diverging, we can conclude that
either the model or implementation is erroneous, or the other
team has not yet updated their part of the system to conform
to new requirements.

In our current case study, we used tests generated and
executed on-the-fly. This approach has both advantages and
disadvantages. As explained in the paper, one benefit is that
using online MBT allows for non-deterministic behavior due
for instance to concurrency or to time/value domains. In addi-
tion, it does not require an additional test execution framework
to be included in the toolchain, although it does require the
implementation of the adapter. However, the adapter has to be
updated only when new observable interfaces are added to the
SUT, otherwise it can be reused as such.

Among the perceived drawbacks of online MBT is that tests
have to be regenerated from scratch every time, which can be
time consuming. However, since all the tests are generated
automatically, the generation times are short for reasonably
sized models. If the models become too complex, increasing
the level of abstraction or focusing only on certain parts of
the functionality should be considered. For instance, with
our models, the average test run is on average less than a
minute. This means that one can get a test report in several
minutes since a new version is committed to the SCM servers.
Another drawback of our online MBT approach is that the
test session is stopped on the first failure of the tests, which
compared to offline testing will not give a good overview
of the failed/passed test case ratio. However, observing the
achieved coverage with the CRT tool alleviated this problem
and allowed us to identify which parts of the specification
passed testing and which did not.

Future work will look into more detail at using offline MBT,
and, in particular in deploying more efficient methods of model

and test suite update via the modularization of test specifi-
cations. Also, by improving test reporting, more meaningful
debug information can be provided for the development teams.

REFERENCES

[1] M. Fowler. (2006, May) Continuous inte-
gration. Retrieved: 20.08.2013. [Online]. Available:
http://martinfowler.com/articles/continuousIntegration.html

[2] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improv-
ing software quality and reducing risk. Addison-Wesley Professional,
2007.

[3] R. Rogers, “Scaling continuous integration,” in Extreme Programming
and Agile Processes in Software Engineering, ser. Lecture Notes in
Computer Science, J. Eckstein and H. Baumeister, Eds. Springer
Berlin Heidelberg, 2004, vol. 3092, pp. 68–76. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24853-8 8

[4] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,” in
Formal Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM-RT 2004, ser. LNCS, M. Bernardo and
F. Corradini, Eds., no. 3185. Springer–Verlag, September 2004, pp.
200–236.

[5] M. Utting and B. Legeard, Practical Model-Based Testing – A Tools A
pproach. San Francisco, CA, USA: Morgan Kaufmann, 2007.

[6] ITEA 2, “D-MINT project result leaflet:
Model-based testing cuts development costs,”
http://www.itea2.org/project/result/download/result5519?file=06014 D
MINT Project Leaflet results oct 10.pdf, February 2010, retrieved:
20.08.2013.

[7] G. J. Myers et al., The Art of Software Testing. John Wiley & Sons,
Hoboken, NJ, 2nd ed edition, 2004.

[8] T. Ahmad, F. Abbors, D. Truscan, and I. Porres, “Model-based per-
formance testing using the MBPeT Tool,” Turku Centre for Computer
Science, TUCS Technical Reports 1066, 2013.

[9] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time
systems,” in Logic in Computer Science, 1990. LICS’90, Proceedings.,
Fifth Annual IEEE Symposium on Logic in Computer Science. IEEE,
1990, pp. 414–425.

[10] Jenkins CI - Meet Jenkins. Online at https://wiki.jenkins-
ci.org/display/JENKINS/Meet+Jenkins. Retrieved: 20.08.2013.

[11] Subversion. Online at http://subversion.apache.org/. Retrieved:
20.08.2013.

[12] A. Anier and J. Vain, “Model based continual planning and control
framework for assistive robots.” in PECCS 2012 - Proceedings of
the 2nd International Conference on Pervasive Embedded Computing
and Communication Systems, C. Benavente-Peces, F. H. Ali, and
J. Filipe, Eds. SciTePress, 2012, pp. 403–406. [Online]. Available:
http://dblp.uni-trier.de/db/conf/peccs/peccs2012.html

[13] The Spread Toolkit - Overview. Online at
http://spread.org/SpreadOverview.html. Retrieved: 20.08.2013.

[14] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson,
and A. Skou, “Testing real-time systems using UPPAAL,” in Formal
methods and testing, R. M. Hierons, J. P. Bowen, and M. Harman,
Eds. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 77–117. [Online].
Available: http://dl.acm.org/citation.cfm?id=1806209.1806212

[15] Code coverage measurement for Python – coverage, v. 3.6. Online at
https://pypi.python.org/pypi/coverage. Retrieved: 20.08.2013.

[16] B. Jiang, T. Tse, W. Grieskamp, N. Kicillof, Y. Cao, and X. Li,
“Regression testing process improvement for specification evolution of
real-world protocol software,” in Quality Software (QSIC), 2010 10th
International Conference on. IEEE, 2010, pp. 62–71.

[17] E. Fourneret, F. Bouquet, F. Dadeau, and S. Debricon, “Selective test
generation method for evolving critical systems,” in Software Testing,
Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth
International Conference on. IEEE, 2011, pp. 125–134.

[18] Y. Chen, R. L. Probert, and H. Ural, “Model-based regression test
suite generation using dependence analysis,” in Proceedings of the
3rd international workshop on Advances in model-based testing, ser.
A-MOST ’07. New York, NY, USA: ACM, 2007, pp. 54–62. [Online].
Available: http://doi.acm.org/10.1145/1291535.1291541

[19] Conformiq tool set. Online at http://www.conformiq.com/. Retrieved:
20.08.2013.

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

