
The Use of Experimentation Packages for
Evaluating the Quality of Mobile Software Products

Auri Marcelo Rizzo Vincenzi
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: auri@inf.ufg.br

Gilcimar Divino de Deus
Departamento de Computação

Pontifícia Univ. Católica de Goiás, PUC-GO
Goiânia-GO, Brazil

e-mail: gyngil@gmail.com

João Carlos da Silva
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: jcs@inf.ufg.br

Plínio de Sá Leitão-Júnior
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: plinio@inf.ufg.br

José Carlos Maldonado
Inst. de Ciências Matemáticas e de Computação

Universidade de São Paulo, USP
São Carlos-SP, Brazil

e-mail: jcmaldon@icmc.usp.br

Márcio Eduardo Delamaro
Inst. de Ciências Matemáticas e de Computação

Universidade de São Paulo, USP
São Carlos-SP, Brazil

e-mail: delamaro@icmc.usp.br

Abstract—Mobile devices are becoming more and more com-
mon. Embedded in these devices are different mobile applica-
tions, making the devices more useful and popular. The quality
of such applications is increasingly becoming a problem. Several
techniques have emerged to assess software quality. In this paper,
an experimentation package is proposed to evaluate some of
the well-known software testing criteria on detecting faults in
mobile software. This paper presents the results obtained after
three replications of the proposed package. Based on statistical
analysis, it was possible to arrive at statistical equivalences and
differences between the evaluated criteria. This can help people
concerned to establish testing strategies for mobile software.

Keywords-experimental package; software testing; ubiquitous
application

I. INTRODUCTION

When a customer orders an information system, he/she lists
some characteristics or requirements and he/she searches for
quality in each item of the list. Software engineers must aim
at quality during all the development process. According to
IEEE, software product quality is defined as: “The degree to
which a system, component or process meets the specified
requirements and the needs or expectations of the client” [1].

Standards such as ISO 9000, 9001, and 9002 deal with
quality management. One of the requirements of these models
is Verification and Validation (V&V). In other words, it is nec-
essary to determine if the product is being produced correctly,
if this product meets its requirements and if it responds as
expected. Software testing is largely responsible for ensuring
the quality of a software product and it is one of the most
common activities in software validation.

Several techniques have been adopted to expose faults in
software products. Ad-hoc testing is based on the experience
of the tester that executes a set of test cases he/she believes
enough to ensure quality. A more systematic way of carry-
ing out testing is to employ the best known functional and
structural techniques.

With the functional technique, a program is tested from
the user’s point of view. The component being tested is
considered as a black box, whose implementation details are
not known, inputs are supplied, and results are compared
against the expected ones. On the other hand, the structural
technique, also known as a white box test, determines test
cases based on implementation aspects and helps detect logical
and programming faults.

In 2012, there were around 256 million cell phones in
Brazil [2]. Their processing power, transmission speed, and
other technological characteristics allow information handling
by systems in mobile devices. It is very important for projects
to be developed, which focus on improving testing strategies
and applying them to the mobile environment.

One problem with mobile devices is the difficulty in
testing applications in the device itself (real environment).
Development and testing phases, in general, take place using
emulators on desktop computers. It is extremely important
for applications to be tested in their real environment, since
errors may occur and be camouflaged by emulators due
to their memory and processing limitations. Java Bytecode
Understanting Testing/Micro-Edition (JaBUTi/ME) is a tool
developed in this context, which supports the testing of Java
ME software in both emulators and real devices [3].

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

This paper presents the results collected after three replica-
tions of an experimentation package created with the purpose
of analyzing and comparing three testing techniques for mobile
devices: ad-hoc, functional (focusing on boundary analysis and
equivalence partitioning), and structural (mainly All-Nodes
and All-Edges criteria [4]).

An experimentation package is a controlled and systematic
way of carrying out experiments in several stages, making it
possible to incrementally obtain a quantity of statistically sig-
nificant data. In addition, the availability of an experimentation
package allows the same study to be carried out by different
people, in different places, with different cultures. This makes
it possible to update these data over time, increasing the
statistical database and increasing the confidence on the quality
of obtained results.

This paper shows the database status after the third replica-
tion of the experimental package (investigating ad-hoc, func-
tional, and structural testing techniques), and the adaptation of
the JaBUTi/ME tool to support one of the testing techniques.
Related works are described in Section II. In Section III, the
main characteristics of the JaBUTi/ME tool are described,
along with the testing criteria it supports. The experimentation
package used in the replications is detailed in Section IV.
Section V presents the experiment description, including the
statistical data analysis. Section VI presents the conclusion of
this study and future research directions.

II. RELATED STUDIES

Some studies in the literature have discussed mobile ap-
plications testing and the majority of them applies black-box
testing technique without comparisons with structural testing.

Malevris [5] presented a method to effectively perform
structural testing in Java programs. The proposed methods
intend to generate a set of feasible paths and automatically
generate test data to traverse such paths. Symbolic execution
is used to identify feasible paths and the results show that, in
general, the proposed methods avoid the generation of infea-
sible paths and ensure high coverage of the generated paths.
No comparison with additional testing criteria is provided.

Pocatilu [6] focuses on the aspects related to unit testing
in mobile applications based on Java ME. Emulators are
used to run test cases written according to the JUnit testing
framework. The author concludes that unit testing does not
have to be limited to the JUnit framework, and other methods
and techniques shall be used, such as the ones proposed in our
evaluation.

Hu and Neamtiu [7] propose an approach for automating
the testing process for Android applications. The first step
was to understand the nature and frequency of bugs affect-
ing graphical user interface (GUI) of Android applications.
Following, they proposed an automated test generator for
detecting these GUI bugs. The approach is based on feeding
the application with random events, instrumenting the Android
Virtual Machine, registering log/trace files, and analyzing
them post-run. In that work, no structural testing criteria was
employed to evaluate the quality of the generated test data.

In our work, we evaluate three different testing criteria
considering the coverage and fault detection capability of their
generated test set.

III. JABUTI/ME AND MOBILE DEVICES

Testing without a tool increases the chance of human mis-
takes, and lowers productivity in test execution and analysis
of results. Many tools have been produced, and each is
focused on the use of one or more criteria. Java Bytecode
Understanding and Testing (JaBUTi) [8] is one such tools.
It explores structural testing criteria, which help creating test
cases that exercise specific parts of the code.

Among the various resources offered by JaBUTi, one of
the most important is the support in the coverage of bytecode-
based Java programs. In others words, JaBUTi performs all
computations for the Java structural test directly on bytecode,
not on program source.

Java Bytecode Understanting Testing/Micro-Edition (JaBU-
Ti/ME) is a version of JaBUTi that supports the structural
testing of Java ME programs [3]. It explores the same re-
sources as the original version and complements the original
version with resources that allow program test in real mobile
devices or emulators. Among the customizable resources in
this version are the different code instrumentation mechanisms
offered, which make it possible for the real application to
communicate with the test server in accordance with memory
and connectivity restrictions imposed by the different types of
mobile devices, as shown in Figure 1.

Figure 1. Environment cross platform

Program instrumentation is an essential activity for applying
structural testing, making it possible to capture information
about code coverage during test case execution. When a
code is being instrumented, a call to a method responsible
for identifying and storing information about which section
of code has been executed is added to the bytecode. This
information is later sent to the test server which computes
the resultant coverage with respect to each testing criterion.

Since the development of JaBUTi/ME, a series of experi-
mental studies was carried out aiming at evaluating whether
its characteristics help the test of Java ME products. In this
context, the focus of this study is to execute tests of programs
developed for mobile devices using JaBUTi/ME. The creation
of an experimentation package allows the experiments to be
executed in a controlled environment and to be replicated by
other researchers also interested in this research area.

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

The replications of one particular package help to improve
the collected data, to increase the sample size and to allow
more reliable conclusions. One reason for carrying out the
replications was the physical impossibility of executing the
entire experimentation package with a large sample of sub-
jects. This was due to the limited number of places in software
laboratories available. The replications in this study serve to
increase the level of confidence in the collected data. They also
help to show which technique, ad-hoc, functional or structural
is more efficient in detecting faults in Java ME programs for
the creation of new test cases and program code coverage. An-
other intention was to evaluate whether the resources offered
by the tool are useful for testing Java ME programs in real
devices and emulators. Due to the unavailability of a sufficient
number of real devices, that replication was carried out using
mobile device emulators.

IV. EXPERIMENTATION PACKAGES

This section describes how the experimental study using the
JaBUTi/ME tool in replications was conducted. The purpose
was to evaluate the three techniques mentioned earlier and
their suitability for testing mobile device applications. This
also made it possible to evaluate the benefits the criteria
supported by the tool offer to the tester.

The goal of this study is to contribute to the development of
an incremental test strategy with the support of a testing tool
that can be used to improve the quality of software products
and information systems used in mobile devices. Considering
the increasing demand for mobile device software, the results
of this study may significantly contribute to evaluating of
testing techniques and to increasing in the quality of mobile
software products.

A. Experimentation Package for JaBUTi/ME

The experimental study follows the process described by
Wohlin et al. [9]. This experimentation package is defined and
organized in the following way:

• Definition: Structural Test of Java ME Software in Mo-
bile Devices Using JaBUTi/ME.

• Context: This experiment is an example of software
engineering and, more specifically, of software testing.
A specific tool, JaBUTi/ME, which was created for the
structural testing of Java ME programs.

• Hypotheses: The following hypotheses may or may not
have been valid after the experiment has been carried out.

– Null Hypotheses:
∗ H0,1 - The structural technique, supported by

JaBUTi/ME tool, detected the same number of
faults as the ad-hoc or functional techniques;

∗ H0,2 - The structural technique, supported by
JaBUTi/ME tool, obtained the same percentage of
coverage as the ad-hoc or functional techniques;

∗ H0,3 - The structural technique, supported by
JaBUTi/ME tool, did not contribute to the creation
of new test cases.

– Alternative Hypotheses:

∗ H1,1 - The structural test, supported by JaBU-
Ti/ME tool, detected different number of faults
obtained when compared to the ad-hoc or func-
tional technique;

∗ H1,2 - The structural technique, supported by
JaBUTi/ME tool, obtained a different percentage
of coverage when compared to the ad-hoc or
functional techniques;

∗ H1,3 - The structural technique, supported by
JaBUTi/ME tool, contributed to the creation of
new test cases which had not previously been
identified by either the ad-hoc or functional test.

• Dependent Variables:

– Program complexity;
– Number of defects revealed;
– Coverage percentage;
– Number of new test cases.

• Independent Variables:

– Ad-hoc technique;
– Functional technique;
– Structural technique;
– Selected programs.

• Participants: Sixty people with computer science and
Java programming knowledge participated in the experi-
ment as subjects. The only prerequisite to participate in
the experiment is a basic knowledge of Java program-
ming. Participants should be able to recognize commands,
programming structures, loops, and so on. No software
testing knowledge was required.

• Experimental Project: Four Java ME programs were
selected for the experiment. The factorial-fractional ran-
domized technique [10] was used to assign to each subject
a particular testing technique and a program to be tested.
One of these programs was used for teaching functional
and structural techniques. Participants used the other three
to run the experiment. The participants identification
by their names was not relevant for the object of the
experiment. Participants were grouped merely as a way
of dividing the same program among a given number
of students. The information was collected and evaluated
individually. It is important to mention that the programs
were divided equally among the groups.

The experiment was carried out over three non consecutive
days. An hour of training was provided for each technique.
Later, the participants had an hour and a half to apply “hands
on” the technique in one of the selected programs. The
laboratory had 20 desktop computers with the Linux operating
system, Java 6.0, Eclipse, Wireless Tool Kit 2.5, EclipseME,
and the JaBUTi/ME tool.

The programs were selected from software repositories
such as http://www.sourceforge.net and http://code.google.
com. Twenty programs were pre-selected based on the avail-
ability of source code and program complexity, of which the
four most complex were chosen.

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://www.sourceforge.net
http://code.google.com
http://code.google.com

All these programs were previously instrumented using
JaBUTi/ME to make it possible to collect trace data during
the program execution, even when the ad-hoc or functional
technique is used to generate test cases. The execution was
monitored and code coverage could be evaluated later in
relation to the structural criteria implemented by JaBUTi/ME.
It is important to point out that the same tool was used to
evaluate the three techniques. Figure 2 shows the process of
executing instrumented software and how coverage informa-
tion was collected. Additionally, each subject should also fill
out a form indicating when a given test case detects a fault.

• Instrumentation: In this stage, the forms, software, and
laboratory environment for carrying out the experiment
was prepared.

Figure 2. Monitoring scheme outline

Four forms were prepared to be filled out by the subjects:
Form 1 – Group Formation; Form 2 – Test Cases; Form 3 –
Suggestions; and Form 4 – Course Evaluation. These forms
and all the data collected may be obtained by contacting the
corresponding author.

The four most complex pre-selected programs were chosen
for the experiment. Table I presents the name of the programs
used for data collection, the average maximum cyclomatic
complexity of their methods, and a brief description of each.

TABLE I. SELECTED PROGRAMS AND COMPLEXITY

Id. Name Complexity Description
P1 AntiPanela 3.87 Registers soccer players and per-

forms team drawings based on the
number of players, avoiding fa-
voritism.

P2 CarManager 5.52 Monitors and manages motor vehi-
cle fuel expenses.

P3 CódiceFiscale 6.17 Checks the validity of or generates
the Italian “Codice Fiscale” tax ID.

Programs P1, P2, and P3 were used by participants to apply
ad-hoc, functional, and structural techniques. Their order and
distribution are defined in Table II. A fourth program, called
BMI, which calculates Body Mass Index based on height and
weight and classifies an individual according to obesity level,
was used for training participants in functional and structural
techniques and tools.

To assess the quality of the resulting test set on detecting
faults, ten faults were artificially seeded to each program
based on the concept of mutation [11]. Faults were related
to variable initialization, computations, control flow, interface,
and data structure. After inserting the faults, programs were
compiled and instrumented using JaBUTi/ME resources to
make it possible to monitor test case execution, and later to

analyze their coverage in relation to the criteria supported by
the tool.

• Evaluation: For all programs, the evaluation was based
on Form 2 – Test Cases, which contains information about
test case execution (faults found).

• Preparation: Materials and instructions for participation
in the experiment were distributed. It is important to
demonstrate what is really taking place as the experi-
ment was conducted. The BMI software was chosen for
teaching all of the techniques and for running programs
in mobile device emulators. This software was not used
for collecting information from the participants.

• Execution: This is the task of executing what was
planned in the estimated time and documenting any
deviation that could change or affect the objective of the
experiment. Program specifications were also explained
to the participants, so they could become familiarized
with the programs under testing.

• Data Validation: At the end of the application of each
technique by the participant, the entire project (including
the trace file) must be labelled and sent to the organizing
commission, ensuring that the generated data of each
participant was correct.

• Analysis and Interpretation: Immediately after experi-
ment and replication data had been collected, the informa-
tion was cross-checked and analyzed in order to evaluate
the hypotheses defined in the experimentation package.

• Presentation and Packaging: This paper intends to
group the data of these three replications.

V. EXPERIMENT DESCRIPTION

The proposed experimentation package was replicated
three times. The information collected after each replication
strengthen and increase the entire experiment’s sample size.

An introduction about software testing showing the impor-
tance of testing, the role of the tester, the main kinds of
tests, unit, integration, and system tests were explained to and
discussed with the participants during training. The students
were then randomly assigned to 6 groups. Once the groups
were defined, a Java ME program together with its respective
specification text were distributed to each group. The objective
on the first day was to find the largest number of faults in
the programs in accordance with each individual’s knowledge
of software construction and testing, i.e., using the ad-hoc
technique. The distribution of programs to the groups is shown
in Table II.

TABLE II. GROUP, PROGRAM AND TECHNIQUE DISTRIBU-
TION

Technique/Group G1 G2 G3 G4 G5 G6
ad-hoc P1 P3 P2 P1 P3 P2
Functional P2 P1 P3 P2 P1 P3
Structural P3 P2 P1 P3 P2 P1
G – Group; P – Program;

After executing the ad-hoc technique, on the second day
the participants received training concerning functional test

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

technique criteria. New programs and their specifications were
distributed to each group. The groups were again asked to
apply the knowledge they had acquired on functional testing
to carry out tests on the second program.

After the tests using the functional technique were run,
on the third day participants were trained in the structural
technique and use of the JaBUTi/ME tool. After this, the third
and final distribution of programs was carried out and students
applied structural technique concepts in running structural
tests.

During the execution of the tests using any of the tech-
niques, the participants recorded any nonconformity they
found. To conclude the experiment, they were asked to fill out
a form with suggestions for improvement and their individual
evaluation of the course. It is important to emphasize that all
students were required to test all three programs using the
three different testing techniques.

A. Data Analysis

The experimentation package was prepared to capture cov-
erage information for the programs under testing, regardless
of applied technique. The JaBUTi/ME tool was used to read
the data from the executed tests of each subject. The tool
supports four testing criteria: All-Nodes, All-Edges, All-Uses,
and All-Potential-Uses [8]. The training focused on the first
two criteria, known as control flow criteria (All-Nodes and
All-Edges). However, all the criteria cited above, including
data flow, were analyzed by measuring the coverage of the
tests in relation to these test criteria. It is important to point
out that non-executable test requirements produced by the
above mentioned criteria were not identified. In addition, test
execution time was limited to one hour and a half. Therefore, it
may be that the maximum coverage of 100% was not achieved
due to these requirements and time constraints. However, since
the objective was to compare which test set covered more
testing requirements, the maximum obtained coverage of any
test set is sufficient to establish this relationship. Tables III
and IV synthesize these data.

The cumulative data after the third replication shows that
the generated test set from the structural technique achieved
the highest coverage of all the programs tested, and, for this
set of programs, the standard deviations of the three techniques
were very close (see Table IV). These data show that the
values presented do not cluster around the mean and that the
structural technique demonstrates better coverage for software
testing in a mobile device context. Figures 3 to 5 show
the coverage evolution of each testing criterion supported by
JaBUTi/ME for each program under analysis. Observe that
structural testing test set achieved the highest coverage in all
three programs.

The structural and ad-hoc techniques detected more faults
(see Table IV and Figure 7). Although the numbers are
small in comparison with the number of faults inserted, it
is important to point out that program coverage was not
complete and that test execution time was a criterion in
creating the experimentation package. This suggests that there

is a tendency for increasing the number of detected faults
as coverage also increases, which would only be possible if
test creation and execution time increased. Since the structural
technique presented the best results in coverage and number
of test cases, it has a chance of revealing more faults than the
other techniques, due to its different characteristics , but this
should be further investigated.

Figure 3. Coverage by program: AntiPanela

Figure 4. Coverage by program: CarManager

Figure 5. Coverage by program: CodiceFiscale

Thus, the more complex the program, such as CarManager
and CodiceFiscale, the greater the time required to test it.
In addition, the structural and functional techniques with
JaBUTi/ME were used in actual practice by the majority of
participants for the first time. All this information can be found
in Tables III and IV, and Figures 6 and 7.

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

TABLE III. AVERAGE OF COVERAGE (%), TEST CASES AND FAULTS BY PROGRAM

AntiPanela CarManager CodiceFiscale
Criteria/Technique ad-hoc Functional Structrual ad-hoc Functional Structrual ad-hoc Functional Structrual
All-Nodes 68,76 63,50 87,25 56,56 56,63 66,27 40,88 50,71 64,69
All-Edges 58,35 53,50 77,67 43,89 43,84 52,53 31,29 38,79 51,69
All-Uses 57,47 52,89 77,17 48,22 47,63 56,33 34,47 43,00 57,00
All-Pot-Uses 57,59 53,33 75,92 40,17 39,32 48,27 28,47 34,93 42,81
Number of Test Cases 11,13 10,56 13,33 7,75 9,16 10,62 7,94 7,29 11,56
Faults Found 3,73 2,67 3,33 1,75 1,79 1,00 1,59 1,69 2,50

TABLE IV. STATISTICS OF COVERAGE (%), TEST CASES AND FAULTS BY TECHNIQUE

ad-hoc Funcional Structrual
Criteria/Technique Av SD Median Av SD Median Av SD Median
All-Nodes 55 20 56 57 18 61 72 18 73
All-Edges 45 18 44 46 17 50 59 18 59
All-Uses 47 19 48 48 17 50 62 18 63
All-Pot-Uses 42 19 40 43 18 44 54 20 54
Number of Test Cases 8,9 6,6 8,0 9,1 5,0 8,0 11,8 5,4 11,0
Faults Found 2,3 2,0 2,0 2,1 1,5 2,0 2,3 1,8 2,0

Figure 6. Number of test cases by program

Some data were lost during the experiment. The most
common causes were: a) the participant did not save Form
2 – Test Case files correctly and was unable to send them
to the course organizers; b) the participant did not initialize
the programs correctly. This made it impossible to capture
coverage information. Information loss reached about 20% for
AntiPanela, 12% for CarManager, and 20% for CodiceFiscale.

Figure 7. Number of faults found by program

Despite our emphasis on the importance of correctly follow-
ing all the steps and executing the experiment, unfortunately
deviations happen, the simultaneous supervision of around 20
participants per replication is very complex, and losses of
data are inevitable. On Form 3 – Suggestions, 45% of the

subjects asked for the presentation of other tools, including
other languages, to give them more options for carrying out
the tests. Thirty percent (30%) said that they would need more
time to learn and practice the techniques. In other words, they
assumed that they did not find more faults in the programs
because of time constraints. Fifteen percent (15%) suggested
not using Java ME programs.

In Form 4 – Course Evaluation, 100% of the participants
said that the course had increased their knowledge of testing.
Eighty-eight percent (88%) indicated that they felt confident
in applying presented techniques. On the form, participants
were asked to grade the level of knowledge acquired during
the course. The average was 7.9 and the general grade for
the course was 8.6, considering a 0 to 10 scale. Thus, the
majority of participants approved and praised the initiative
because testing techniques are not widely disseminated and
it is difficult to find a free course on testing.

The participants made a number of comments about the
course. The most important were: 1) that there is a lack of
trained testing personnel; 2) that testing software is difficult;
3) that there is a shortage of testing tools. Many participants
were interested in further studying JaBUTi/ME and in applying
it in academic and professional programs.

The first step in the statistical analysis was to group the data
by technique (ad-hoc, functional, and structural) rather than by
program (AntiPanela, CarManager, and CodiceFiscale). The
Shapiro-Wilk Test showed that the sample did not present
a normal distribution. That is, it was necessary to use non-
parametric statistical methods. The Kruskal-Wallis Test is
robust for normality and its use makes it possible to check if
there are relevant differences between the techniques evaluated
in this paper. Its application showed that there are relevant
differences between the three techniques for the criteria of
coverage and number of test cases, as shown in Table V.

TABLE V. KRUSKAL-WALLIS TEST – RANK SUM TEST

Crit./Tech. Ad-Hoc Functional Structural p-value Diff
All-Nodes 55,5 73,0 61,0 0,000019 Yes
Test Cases 8,0 11,0 8,0 0,009148 Yes
Faults 2,0 2,0 2,0 0,930200 Yes

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Having discovered that there are differences between the
techniques, it is necessary to find out what these differences
are and then display the most effective technique for carrying
out Java ME software tests on mobile devices. The Kruskal-
Wallis Multiple Comparison Test is robust for normality and
number of samples. It was used to compare pairs of techniques
for each criterion. The result of this comparison is shown in
Table VI.

TABLE VI. KRUSKAL-WALLIS MULTIPLE COMPARISON
TEST

All-Nodes Diff Observed Crit Diff Diff
ad-hoc X Structural 37,531753 20,86848 Yes
ad-hoc X Functional 3,86463 19,95248 No
Structural X Functional 33,667123 20,96088 Yes
Test Cases Diff Observed Crit Diff Diff
ad-hoc X Structural 25,485814 20,69736 Yes
ad-hoc X Functional 5,804322 19,56142 No
Structural X Functional 19,681492 20,51164 No
Faults Diff Observed Crit Diff Diff
ad-hoc X Structural 4,3252033 20,500141 No
ad-hoc X Functional 3,8666667 19,48089 No
Structural X Functional 0,4585366 20,31164 No

VI. CONCLUSION

Together, the three replications of the experiment highlight
the importance and complexity of software testing in software
engineering. All the different techniques and criteria focus on
finding faults in types or parts of applications. The best known
criteria include value limit analysis, equivalence partitioning,
all-nodes, and all-edges.

Each technique has a particular focus, and techniques should
be used together to find more faults in programs. The presented
techniques help the tester select entry domain values systemat-
ically and may optimize the creation of test cases and increase
fault detection.

The data collected in the replications of this experiment by
Deus et al. (2008) show that the use of JaBUTi/ME and the
structural technique help create test cases and consequently,
provide greater coverage in mobile device programs. A statis-
tical analysis showed that all techniques work equally well in
detecting faults. In other words, the number of faults found
using the evaluated techniques in this study did not differ
significantly. However, it is important to point out that there are
other characteristics besides fault detection that add value to
software, which include the coverage of the software’s internal
structure, mainly important for program maintenance.

Thus, due to the techniques’ similar performance, it is
necessary to evaluate other criteria to choose the most effi-
cient technique for ensuring mobile software product quality.
Statistical analyses showed that among the evaluated tech-
niques, there are significant differences in the criteria of
code coverage and the number of test cases. Statistically, the
structural technique performs better with respect to both of
these aspects. More test cases were created and, consequently,
greater coverage was achieved. Therefore, this initial study
was not conclusive and should be replicated more times to
increase its knowledge database.

Lessons were learned with each replication. This will help
to improve the quality and objectivity of future studies that
assess the results of experimentation packages.

Future research into mobile device software quality may
include replication of this experimentation package using real
mobile devices instead of emulators, creation of an effective
method for mobile software quality control, and the evaluation
of these or other techniques for conventional (non-mobile)
software.

Smartphones are becoming more and more common and a
large number of applications are created and freely distributed
in different software repositories. Another option for future
research is to use this package or to create a new package for
Android environment that uses Java, that is a prerequisite for
execution in JaBUTi/ME.

ACKNOWLEDGMENT

The authors would like to thank the Instituto de Informática
– INF/UFG, Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior – CAPES – Brasil, and Fundação de Amparo à
Pesquisa do Estado de Goiás – FAPEG – Brasil, which support
this work.

REFERENCES

[1] IEEE, “IEEE standard glossary of software engineering terminology,”
International Standard, IEEE Computer Society Press, Standard 610.12-
1990 (R2002), 2002.

[2] G1, “Mobile phones reach 256 milion of lines in july on brazil,”
Web page, Aug. 2012, [retrieved: Sep., 2013] (in Portuguese).
[Online]. Available: http://g1.globo.com/tecnologia/noticia/2012/08/
telefonia-movel-alcanca-256-milhoes-de-linhas-em-julho-no-brasil.
html

[3] M. E. Delamaro, A. M. R. Vincenzi, and J. C. Maldonado, “A strategy
to perform coverage testing of mobile applications,” in I International
Workshop on Automation of Software Test – AST’2006. New York, NY,
USA: ACM Press, May 2006, pp. 118–124.

[4] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge
University Press, 2008.

[5] N. Malevris, “On structurally testing Java programs effectively,” in
Proceedings of the 3rd international symposium on Principles and
practice of programming in Java, ser. PPPJ’04. Trinity College
Dublin, 2004, pp. 21–26, [retrieved: Sep., 2013]. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1071565.1071570

[6] P. Pocatilu, “Testing Java ME applications,” Informatica Economica,
vol. 12, no. 3, pp. 147–150, 2008.

[7] C. Hu and I. Neamtiu, “Automating gui testing for android
applications,” in Proceedings of the 6th International Workshop on
Automation of Software Test, ser. AST’11. New York, NY, USA:
ACM, 2011, pp. 77–83, [retrieved: Sep., 2013]. [Online]. Available:
http://doi.acm.org/10.1145/1982595.1982612

[8] A. M. R. Vincenzi, W. E. Wong, M. E. Delamaro, and J. C. Maldonado,
“JaBUTi: A coverage analysis tool for Java programs,” in XVII SBES –
Brazilian Symposium on Software Engineering. Manaus, AM, Brazil:
Brazilian Computer Society (SBC), Oct. 2003, pp. 79–84.

[9] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. New York, NY,
USA: Springer Heidelberg, 2012.

[10] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Ex-
perimenters: Design, Innovation, and Discovery, 2nd ed. Wiley-
Interscience, May 2005.

[11] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class mu-
tation system: Research articles,” STVR – Software Testing, Verification
and Reliability, vol. 15, no. 2, pp. 97–133, 2005.

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://g1.globo.com/tecnologia/noticia/2012/08/telefonia-movel-alcanca-256-milhoes-de-linhas-em-julho-no-brasil.html
http://g1.globo.com/tecnologia/noticia/2012/08/telefonia-movel-alcanca-256-milhoes-de-linhas-em-julho-no-brasil.html
http://g1.globo.com/tecnologia/noticia/2012/08/telefonia-movel-alcanca-256-milhoes-de-linhas-em-julho-no-brasil.html
http://dl.acm.org/citation.cfm?id=1071565.1071570
http://doi.acm.org/10.1145/1982595.1982612

	Introduction
	Related Studies
	JaBUTi/ME and Mobile Devices
	Experimentation Packages
	Experimentation Package for JaBUTi/ME

	Experiment Description
	Data Analysis

	Conclusion
	References

