
Towards a UML Meta Model Extension for Aspect-Oriented Modeling

Meriem Chibani

Department of Mathematics and

Computer Science

University of Oum El Bouaghi

Oum El Bouaghi, Algeria

e-mail: c.meriem@univ-oeb.dz

Brahim Belattar

Department of Computer Science

University of Batna

Batna, Algeria

e-mail: brahim.belattar@univ-

batna.dz

Abdelhabib Bourouis

Department of Mathematics and

Computer Science

University of Oum El Bouaghi

Oum El Bouaghi, Algeria

e-mail: a.bourouis@univ-oeb.dz

Abstract— The aspect-oriented programming paradigm (AOP)

as a way of improving the separation of concerns principle has

emerged initially at the programming level using strong

languages like AspectJ. Currently, it becomes mature to

stretch at premature stages of the software development

process namely, the Aspect-Oriented Software Development

(AOSD) which is a popular topic of software engineering

research that leads to more dependable, reusable and

maintainable artifacts. In this paper, we propose a UML

profile for modeling crosscutting concerns where the

separation of concerns is maintained to the level of code and
the weaving is done by an AspectJ compiler.

Keywords-Aspect-Oriented Programming (AOP); UML

profile; AspectJ; Aspect-Oriented Software Development.

I. INTRODUCTION

Besides functional concerns, software system
development requires other concerns, namely crosscutting
concerns as logging, distribution, error handling and security.
These concerns cross cut the system functional modules,
which produces a scattered and tangled design and decreases
software’s maintainability and modularity. The object-
oriented paradigm does not satisfy the separation of concerns
principle. It provides a powerful way to separate core
concerns but it could not modularize crosscutting concerns in
separate units. The aspect-orientation has originally emerged
at the programming level with the well-known AspectJ
language [1], in the late 1990s. Its use is no longer restricted
to the programming level but more and more stretches over
early phases of the software development life cycle such as
requirements engineering, analysis and design. This new
field is called the Aspect-Oriented Software Development
(AOSD).

Aspect-oriented programming has emerged as a solution
paradigm to overcome modularization problem. It
distinguishes between the different categories of concerns,
decreases coupling between concerns and more generally, it
increases reuse. An AOP system may include many
constructs where the central one is the aspect unit, which
consists of two parts: dynamic crosscutting constructs and
static ones. Dynamic crosscutting constructs provide a way
to affect the behavior of a system. Join points are the points
in the execution flow of an application; and pointcuts, a

mechanism for selecting join points. The aspects have
advices that are attached to one or more join points. When an
advice is attached to join points, it will be executed, guided
by its modifier which may specify the execution time relative
to the join points: before, after, around, after exception or
even after return value. These advices have an additional
instance variable named thisJoinPoint that encapsulates the
contextual information captured from the current junction.
On the other hand, static crosscutting constructs alter static
structure of the system. For example, when implementing
tracing crosscutting concern, the introduction of a logger
field into each traced class could be needed and inter-type
declaration constructs make such modifications possible. In
some situations, the need to detect certain conditions could
arise, typically the existence of particular join points, before
the execution of the system for which weave-time
declaration constructs are suitable [2]. Furthermore, one of
the main elements of AOP is the “weaving” mechanism
which composes classes and aspects to produce a system
with a new semantics. It could be performed before or after
compilation and is known as static weaving. On the other
hand, dynamic weaving is performed at load-time or run-
time [3].

For an Aspect-Oriented Modeling (AOM) notation that
provides a foundation for achieving better concern separation
and integration, there is a need for several requirements. A
general purpose, UML-based visual modeling language has
several advantages over textual and domain specific
alternatives. The notation should be complete, which means
having a supporting abstraction for each of the commonly
accepted AOSD concepts (aspect, component, pointcut,
advice, static and dynamic crosscutting, Aspect-component
relation and aspect-aspect relation). Furthermore, different
concepts should be implicitly or explicitly mapped to
different existing or new first-class UML elements. The
notation should be independent from implementation
language until the lowest level of detail is provided. In this
way, the resulting aspect-oriented architectural models could
be easily translated into elements of distinct aspect-oriented
programming languages/frameworks and detailed design
notations. Finally, the integrated UML-based notation should
promote simplicity and avoid unnecessary extensions [4].

The Unified Modeling Language (UML) is a standard
object oriented modeling language for specifying,

591Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

visualizing, constructing, and documenting the artifacts of a
system process. To enable it to represent the AOSD concepts
at the design level, two alternatives are available. The
general extension alternative aims at modifying the meta
model of UML to include concepts related to the paradigm
and is currently impractical due to a lack of tools support.
The second alternative aims at building a UML profile which
provides extension mechanisms [5]. UML extension
mechanisms are based on “Stereotypes”, “Tagged Values”,
and “Constraints” concepts. Briefly said, stereotypes are
means of extending the UML metamodel classes, while
tagged values are properties for stereotypes and constraints
are used to restrict the stereotype vocabulary.

In this paper, we propose a UML v2.4 profile for
modeling crosscutting concerns at the design level. The
separation of concerns is maintained to the level of code and
the weaving is done by an AspectJ compiler. We have used
only UML class diagrams where the system behavior is not
specified in UML behavioral diagrams.

The rest of the paper is organized as follows. Section 2
describes briefly the related work. Section 3 presents the
proposed profile, while Section 4 discusses an application
example. Finally, a conclusion is given in Section 5.

II. RELATED WORK

An aspect-oriented UML profile is one of the most
challenges in closing the gap between AOP and aspect-
oriented modeling phases. Initial discussion on UML profile
was presented in [6], which proposed the specification of
aspects as stereotypes on classes and aspects behavior as
association relationship using collaboration diagram. The
profile was specific for synchronization aspect and without
addressing joinpoints, advice and pointcut concepts. It was
later extended to include advice and pointcut specification in
[7]. Similarly, in [8][9], initial aspect-oriented extensions
using UML metamodels were described with a lack in
graphical representation of most aspect-oriented constructs
such as static crosscutting, join point and pointcuts.

In contrast to previous works, a complete AspectJ profile
without textual specification was discussed by Evermann
[10]. It was developed using the commercial tool
MagicDraw with XMI (XML Metadata Interchange) format
which allows easy code generation. However, it has
inconsistencies compared to what is required by the
paradigm and the proof was provided by a process for
aspect-oriented profile checking in [11]. In [12], Evermann
profile was extended to support aspect-oriented frameworks
taking into consideration some AspectJ idioms, patterns and
also stereotypes from a profile for object-oriented
frameworks called UML-F.

In the terminology of Model Driven Architecture
(MDA), unlike the previous works, which allow modeling
only of Platform Specific Models (PSM), a Platform
Independent Modeling (PIM) profile was developed in [13],
after the identification of commonalities and differences
between two representative AOSD implementations. As
shown in Table 1, the significant differences between the
implementation languages, i.e., AspectJ and AspectS, make
the resulting profile complex to apply to models. Thus, a

profile dedicated to a platform-specific technology is the
candidate solution for reducing complexity [14].

TABLE I COMPARAISON OF AOP APPROACHES [14]

Recently, Gowri [15] modeled joinpoint as sequence
diagrams and it adopted XMI to deploy the profile in
available CASE tools. It is a generic profile that captures
only few of the AspectJ extensions.

The present proposal is an extension of the Evermann
profile with several improvements. It represents a complete
AspectJ imitation with two main contributions:

 Extending Evermann profile to comprise static
crosscutting representation as shown in Figure
1, with highlighted stereotypes, e.g., the weave-
time error and warning declarations constructs.

 Doing a considerable number of changes, for
instance at the level of the used metaclasses and
relations between stereotyped profile elements
in order to eliminate Evermann profile
complexity and improving efficiency, e.g., the
metaclass Property is sufficient to represent the
pointcut instead of the metaclass
StructuralFeature, add the conditionalPointcut
stereotype, etc.

III. THE PROPOSED PROFILE

Our profile is developed using the UML commercial tool
MagicDraw [16]. It provides an efficient graphical UML2
editor for modeling and profiling with OCL verification
engine for constraints checking.

A. Aspect

Aspect represents the modular unit in AOP paradigm that
includes all crosscutting constructs such as advice and
pointcut. The aspect is like a class, which may have both
attributes and operations, access modifiers (public, private,
protected or package), the ability to extend other classes,
realize interfaces in addition to the fact that they may be
abstract. Thereby, aspects are modeled by means of a
stereotype <<aspect>> of Class, as shown in the Figure 1.
Despite their similarities, aspects are different from classes
and in order to overcome this, additional attributes and

592Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 1. AspectJ profile.

593Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

constraints on the metaclass Aspect are used.

1) Attributes

 isPriviliged: a Boolean which indicates if the
aspect has a special privileged access specifier.
If true, the aspect may access to private
members of the classes which are crosscutting.

 aspectInstance: specifies the aspect
instantiation model. Its possible values are:
perthis, pertarget, percflow, singleton, or
percflowb. Its default value is singleton, which
means that the aspect has a unique instance.

 Precedence: it is modeled using a recursive
(reflexive) association and determines the
execution order of aspects with the same join
point.

2) Constraints
 In contrast to the class, concrete aspect could not declare

generic parameters. Further, concrete aspect is not available

for inheritance.

B. Advice

 Advice is a dynamic construct in AspectJ, whereby it
alters the behavior of the system at joinpoints selected by
pointcuts. Because both advice and method express the
behavior, have name, have arguments, could throw
exceptions and have a body, we model advices using the
metaclass Advice which extends the metaclass Operation.

1) Attributes
AdviceExecutionType: enumeration attribute that

determines the type of the advice, i.e., before, after or
around.

2) Constraints
In contrast to the method, which applies through an

explicit call, the advice applies automatically in crosscutting
manner. This is why an advice doesn’t have an access
specifier and only the “around” advice includes return type.

C. Pointcut

Pointcut selects the joinpoints with a structural
description and has no relation with the dynamic behavior.
This is why we model it using the metaclass Property and we
add the constraint that the pointcut stereotype may be only
applied to classes that are stereotyped Aspect. Furthermore,
the metaclass Pointcut has additional attributes as follows:

 pointcutType: determines if the pointcut has a
name or is anonymous.

 A pointcut may be composite, including other
pointcuts using the OperatorPointcut
enumeration. This mechanism is specified using
a recursive association.

D. Static Crosscutting

Although advice alters the behavior of the system, static
crosscutting alters its static structure in a crosscutting manner
with structural specification. It is modeled using the
metaclass feature. It may be of different types, exception
softening, weave-time and warning declaration, or member
introduction. A constraint is added to ensure that the static

crosscutting stereotype is applied only to classes that are
stereotyped Aspect.

IV. CASE STUDY

In order to validate the applicability and efficiency of the
proposed profile, we have chosen a simple application that is
used frequently in the literature as a motivation example
[17]. The Line, Point and FigureElement classes as shown in
Figure 2, include the display.update() method as a
crosscutting behavior. AspectJ proposes a solution to localize
and separate this crosscutting concern by means of an
anonymous pointcut and an “after” execution advice as
follows:

after(): call(void FigureElement+.set* (..))
|| call(void FigureElement.moveBy(int, int)) {
Display.update();

Figure 2. The AspectJ solution for the crosscutting

Display.update()method.

In order to use the aspect-oriented paradigm at the design
level, we apply our profile to the model. The profile
metaclasses became stereotypes and their attributes became
tags values with the DisplayUpdating aspect, as shown in
Figure 3.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a UML profile as an
aspect-oriented modeling contribution based on AspectJ
language. Our proposal has several strength points:

 It is a complete specification of the AspectJ
language (aspect, advice, pointcut, static
crosscutting constructs) in terms of the UML
metamodel.

 Compliant with the XMI format, which means
that it is possible to manipulate and exchange
the profile between UML case tools.

Nevertheless, it remains open to future improvements,
namely:

594Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 Generating AspectJ code automatically from the
UML model, which is compliant with the XMI
standard and fully specified in terms of the
metamodel. This could be accomplished by
applying MDE/MDA tools and languages,

which are already available and mature.

 Demonstrate the applicability and benefits of
this profile in various areas. We intend to apply
it shortly in the Modeling and Simulation
domain.

Figure 3. The UML model after the application of the AspectJ profile.

REFERENCES

[1] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and G. W. Griswold, “An Overview of AspectJ,”
Proc. Of ECOOP'01 the 15th European Conference on
Object-Oriented Programming, Springer-Verlag
London, UK, pp. 327-353.

[2] R. Laddad, “AspectJ in Action”, Enterprise AOP with
Spring Applications. Manning Publications, Second
Edition, 2009.

[3] M. Forgáč and J. Kollár, “Static and Dynamic
Approaches to Weaving,” Proc. Of the 5th Slovakian-
Hungarian Joint Symposium on Applied Machine
Intelligence and Informatics, Poprad, Slovakia, January
25-26, 2007, pp. 201-210.

[4] Unified Modeling Language (UML), V2.4.
http://www.omg.org/spec/UML/2.4/. [retrieved:
September, 2013].

[5] I. Groher and T. Baumgarth, “Aspect-Orientation from
Design to Code,” Proc. Of the Early Aspects: Aspect-
Oriented Requirements Engineering and Architecture
Design Workshop In conjunction with 3rd International
Conference on Aspect-Oriented Software Development,
Lancaster, UK, March 22-26, 2004, pp. 63-68.

[6] O. Aldawud, T. Elrad, and A. Bader, “A UML profile
for aspect oriented modeling,” Workshop on Advanced
Separation of Concerns in Object-Oriented Systems at
OOPSLA2001, 2001, available at
http://www.cs.ubc.ca/~kdvolder/Workshops/OOPSLA2
001/submissions/26-aldawud.pdf.

[7] O. Aldawud, T. Elrad, and A. Bader, “UML Profile for
Aspect-Oriented Software Development,” 3rd
International Workshop on Aspect Oriented Modeling
at AOSD 2003, Boston, Massachusetts, March 2003.

[8] S. Dominik, S. Hanenberg, and R. Unland, “A UML-
based aspect-oriented design notation for AspectJ,”
Proc. Of the 1st International Conference on Aspect-
Oriented Software Development, AOSD 2002,
University of Twente, Enschede, The Netherlands.
ACM, April 22-26, 2002, pp. 106-112.

[9] M. A. Basch, “Incorporating Aspects into the Software
Development Process in Context of Aspect-Oriented
Programming”. UNF Theses and Dissertations, paper
112. University of North Florida, December 2012.
Available at: http://digitalcommons.unf.edu/etd/112.
[retrieved: September, 2013].

[10] J. Evermann, “A Meta-Level Specification and Profile
for AspectJ in UML,” Journal of Object Technology,

595Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://digitalcommons.unf.edu/etd/112.

Volume 6, no. 7, 2007, pp. 27-49, doi:
10.5381/jot.2007.6.7.a2.

[11] T. Gottardi, R. Aparecida, and V. V. Camargo, “A
Process for Aspect-Oriented Platform-Specific Profile
Checking,” Proc. Of the 2011 international workshop
on Early aspects (EA’11), Porto de Galinhas, Brazil,
March 21-25, 2011, pp. 1-5, doi:
10.1145/1960502.1960504.

[12] J. U. Júnior, V. V. Camargo, and C. V. Flach, “UML-
AOF, A Profile for Modeling Aspect-Oriented
Frameworks,” Proc. Of the 13th workshop on Aspect-
Oriented Modeling (AOM'09), Charlottesville, Virginia,
USA, 2009, pp. 1-6, doi: 10.1145/1509297.1509299.

[13] J. Evermann, A. Fiech, and F. E. Alam, “A Platform-
Independent UML Profile for Aspect-Oriented
Development,” Proc. Of the Fourth International
Conference on Computer Science and Software
Engineering (C3S2E’11), Montreal, Canada, May 16-
18, 2011, pp. 25-34.

[14] F. E. Alam, J. Evermann, and A. Fiech, “Modeling for
Dynamic Aspect-Oriented Development,” Proc. Of the
2nd Canadian Conference on Computer Science and
Software Engineering (C3S2E-09), Montreal, Canada,
May 19-21, 2009, pp. 109-113.

[15] V. Gowri, “Extending the UML metamodel to grant
prop up for crosscutting concerns”, International Journal
of Advanced Research in Computer Engineering &
Technology (IJARCET), Vol. 1, Issue 7, September
2012, pp. 193-198.

[16] MagicDraw Software:
http://www.nomagic.com/products/magicdraw.html.
[retrieved: September, 2013].

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and W. G. Griswold, “Getting started with
ASPECTJ,” Communications of the ACM 44 (10), New
York, NY, USA, 2001, pp. 59-65.

596Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://www.nomagic.com/products/magicdraw.html

