
Open Source Legality Compliance of Software Architecture
A Licensing Profile Approach

Alexander Lokhman, Antti Luoto, Imed Hammouda, and Tommi Mikkonen
Tampere University of Technology, Department of Pervasive Computing

Tampere, Finland
firstname.lastname@tut.fi

Abstract — The architecture of a software system is typically
described from multiple viewpoints, such as logical, process,
and development views. With the increasing use of open source
components, there is a new emerging view that should be taken
into account: the legality view. The legality view makes explicit
the legality concerns of software architecture such as
Intellectual Property Rights (IPR) issues and use/distribution
terms of the components. These issues are particularly
important, when they impose architecturally significant
requirements that may influence the architecture. In this
paper, we discuss the compliance of software architecture with
respect to the legality aspects of open source licenses, and
address the various facets of open source legality compliance.
We then propose a Unified Modeling Language (UML) profile-
based approach and tool to address the legality concerns of
open source at the level of software architecture. The technique
has been applied to express and analyze the legality view of an
industrial case study.

Keywords-UML profiles; open source software; licensing;
software architecture

I. INTRODUCTION

Software architecture has been standardized as the
fundamental organization of a system embodied in its
components, their relationships to each other and to the
environment, and the principles guiding its design and
evolution [26]. Commonly identified stakeholders of
software architecture include testers, product managers,
users, designers, marketing personnel, and so forth.
Architecturally significant requirements resulting from these
perspectives commonly include quality attributes such as
testability, scalability, understandability, modularity,
flexibility, and so on. Thus, the architecture of a software
system is represented by multiple views [11]. These views
vary in nature and are complementary to each other. Some
views show the organization of the code units (e.g., packages
and classes). Others show the runtime view of the system
(e.g., processes and threads). A third view is to explain how
the system is deployed on physical hardware (the
deployment view). Each architecture view defines the types
of elements and relations that can be represented in that
view, and provides means for reasoning about their
properties.

We claim that there is a new emerging view to any
software system that should be taken into account
increasingly often: the legality view. The goal of the legality

view is to make explicit the legality concerns of software
architecture – such as Intellectual Property Rights (IPR)
issues and use/distribution terms of the individual
components – in particular when legal aspects are
architecturally significant and should therefore influence the
architecture. In this spirit, the legality view should clearly
state how the legality constraints of the individual
architectural elements are satisfied by the overall
architecture.

So far, the legality view has been considered in designs
to some extent, for instance in terms of encryption and safety
requirements (as part of the non-functional view) or data
privacy issues (as part of the data view), just to list a few
examples. However, due to the increasing use of
Free/Libre/Open Source Software (FLOSS) systems freely
available on the Internet (e.g., [20]), where licensing issues
differ from the conventional proprietary setting and concern
the very core of software design, a more holistic view of
legality issues associated with open source components is
needed [1, 10, 23].

Within the wide spectrum of legality issues of software
architecture, the main focus of this paper is to examine open
source licenses as primary source for legality concerns in
software solutions that involve both proprietary and open
source components. We argue that the terms dictated by
open source licenses may constrain the architecture of a
software system and even act as an architectural driver
during design. For software architects, being aware of the
rights and duties of the licenses is crucial in producing an
acceptable system from the legality perspective. This is an
important yet often overlooked piece of the architecture
puzzle, which explicitly communicates the architecture’s
legality fitness for the purpose of providing all the
stakeholders with the confidence that the software system
does not suffer from licensing violations and shortcomings.

The contribution of the paper is threefold: First, we
review the main factors that shall be taken into consideration
when addressing the legality compliance issue of FLOSS
intensive systems. Second, we introduce the concept of a
licensing profile, which is a Unified Modeling Language
(UML) profile [13] used to capture the licensing rules and
constraints dictated by FLOSS licenses and expressed in
architectural design expressed in UML. Third, we present a
generic tool named Open Source Software Licensing
(OSSLI) [21] that allows for working with licensing profiles.

The rest of the paper is structured as follows. In Section
2, we give a discussion on the legality tensions that arise in

571Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

FLOSS intensive systems and discuss the significance of
representing legality concerns in architectural designs. In
Section 3, we discuss in detail the concept of licensing
profiles. A concrete tool environment for licensing profiles is
then presented in Section 4. In Section 5, we introduce a
real-life design, where the legality view has been
incorporated in development from the very beginning to
demonstrate the feasibility of the approach. In Section 6, we
discuss our approach related to existing works. Finally, in
Section 7, we conclude and point out directions for future
work.

II. MANAGING OPEN SOURCE LICENSE IN
ARCHITECTURAL DESIGN MODELS

In this section, we review licensing constraints dictated
by open source licenses and their significance to
architectural design.

A. Legality Tension of FLOSS Intensive Systems
When addressing the legality compliance issue of FLOSS

intensive systems, there are a number of factors that must be
taken into account. These factors not only stem from the
nature and terms of the licenses themselves, but also are
related to the way the subject software is implemented,
packaged, and deployed.

There are plenty of licenses and license models. A
straightforward observation when working with open source
licenses is that there are many of them – the Open Source
Initiative (OSI) [18] lists about 70 licenses. Popular licenses
include the GNU General Public License (GPL), the Lesser
GNU General Public License (LGPL), the Apache license,
the Massachusetts Institute of Technology license (MIT),
and the Berkeley Software Distribution license (BSD). The
terms of different licenses vary considerably. To give an
example, some licenses such as MIT are classified as
permissive, granting very broad rights to licensees and
allowing almost unlimited use of the licensed code. Other
licenses such as GPL are classified as strong copyleft,
requiring that works based on the licensed code be published
and relicensed to others on the same terms of the initial
license. In the middle are weak copyleft licenses such as
LGPL, which is a compromise between permissive licenses
and strong copyleft. The LGPL grants flexibility to users
when linking to licensed software libraries. However, any
modifications to the original library should be contributed
back on the same terms of the license. Moreover, some
licenses have several versions, and there are subtle changes
between different versions. A good example is the case of
GPL v2 and GPL v3, which are not fully compatible with
each other. In addition, the list is by no means complete, and
new licenses can be introduced if so desired. For example, a
new license can add some minor differences to an earlier
one, thus generating a discrepancy between the licenses, or a
completely new license can be introduced.

Licenses can be conflicting [5, 8]. To give an example of
possible legal incompatibilities between software
components, Table I presents a number of open source
licenses and their compatibility properties (across open
source components themselves) categorized into three cases:

mixing and linking is permissible, only dynamic linking is
permissible, and completely incompatible.

As an example, a software component under the terms of
GPL cannot be directly linked with another under the terms
of the Apache license. In this case, the main reason is that
GPL’ed software cannot be mixed with software that is
licensed under the terms of a license that imposes stronger or
additional terms, in this case the Apache license. The Apache
2.0 license allows users to modify the source code without
sharing modifications, but they must sign a compatibility
pledge promising not to break interoperability, which
fundamentally contradicts GPL terms.

TABLE I. EXAMPLE OPEN SOURCE LICENSES AND THEIR
COMPATIBILITY

PHP Apache IPL SSPL Artistic
GPL 3 3 3 1 3

LGPL 2 2 2 1 2
BSD 1 1 1 1 1

1- Mixing and linking permissible
2- Only dynamic linking is permissible
3- Completely incompatible

Is it derived or combined work? When integrating third
party open source components, possibly together with own
work, the restrictions and obligations, which the used
licenses impose, may depend on whether the work is
considered as derived (derivative) or combined (collective)
[6]. A simple example of derived work is a modified version
of the original software. However, the distinction between
derived and combined works becomes trickier when
producing new work by combining or linking multiple
software components, possibly distributed under the terms of
different licenses. Take the example of a software system S,
which is the result of linking together an open source
component C1 and an own developed component C2. A
common interpretation is that system S is considered to be
derived work if C1 and C2 link statically (linked during
compile or build time) and that S is considered to be
combined work if C1 and C2 link dynamically (the two
libraries are loaded into a client program at runtime). In a
typical case, however, the judge in a court of law makes the
final decision. As a matter of fact, the court decision might
depend on the specific legal framework of the jurisdiction, in
which the case arises, resulting in even more complex
legality issues for software developers.

There are thousands of open source components with
different risk levels depending on their usage scenario. The
number of open source components has grown at an
exponential rate during the last decade. This has given
software developers a jump on creating software based on
existing code. However, many companies are reluctant to use
open source software due to the legal risks associated with
the use of those components. There have been attempts to
classify open source components according to their risk level
[7, 28]. Table II gives an example categorization. Four usage
scenarios are identified: using the component as a
redistributable product, as part of service offering, as a
development tool, and for internal use. Three levels of risks
have been proposed, as described in the following.

572Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

According to von Willebrand and Partanen, [28], valid
means that the package can be used as instructed and that no
risk has been identified. Possible risk means an interpretation
question has been found. This type of issues can be solved
by either 1) removing/replacing the problematic files or 2)
acquiring additional permissions from the respective right
holder or 3) not using the package at all or 4) based on the
particular company’s risk preferences in such project, a
company could accept the risk. Legally, an interpretation
question means that an eventual realizing risk would be civil
law risk, e.g., monetary (not criminal). Clear risk means that
a risk that cannot be interpreted in a way that would not
include the risk has been found. This type of issues can be
solved only by 1) removing/replacing the problematic files or
2) acquiring additional permissions from the respective right
holder or 3) not using the package at all. A company
normally cannot accept this type of risk, since it means the
possibility of not only civil law risks, but criminal risks. As
an example, component Agent++ can be used internally with
no risk, has a possible risk when used as a development tool,
but exhibits a clear risk when used as part of service offering
or a redistributable product.

TABLE II. EXAMPLE SOFTWARE COMPONENTS AND THEIR RISK
LEVELS

Comp. License Redistri
bution

Service
offering

Develo
pment

tool

Intern
al use

Agent++ Agent++
license

3 3 2 1

SwingX LGPL 3 3 3 3
Libxml2 MIT 1 1 1 1

Cglib Apache 2 1 1 1

(1) Valid (2) Possible risk (3) Clear risk

Open Source legality interpretations are subject to the
way software is implemented, packaged, and deployed [8,
16]. The legality requirements imposed by FLOSS licenses,
such as the requirement to publish source code (i.e. the
copyleft rule of GPL), may depend for instance on the
interaction type of the components (data-driven versus
control-driven communication). In the case of mere data
exchange between components, there is no copyleft
obligation as the two components are considered as separate
programs. Also, the copyleft obligation of GPL does not hold
if the FLOSS component (or a modified version of it) is
deployed as a hosted service. However, if the hosted code is
licensed under the terms of AGPL (Affero General Public
License) [29], the copyleft requirement does hold, but only
in the case of user interaction with the hosted service (in
contrast to service to service interaction). In addition, the
copyleft requirement of GPL may not hold in case of
interactions through standardized interfaces such as the use
of operating system public Application Programming
Interface (API), in contrast to system hacks that make the
two communication components strongly coupled. Finally,
compatibility concerns among different licenses may be
circumvented if the packaging of components is done by the
user instead of building the entire system at the vendor site.

B. Significance of Legality Concerns in Architectural
Design
This work advocates for the usefulness of representing

open source legality concerns in architectural design. This
would allow addressing the licensing issues early in the
development process. Accordingly, we foresee the
following benefits of the approach:

Raising the awareness of licensing issues for software
architects. This could be achieved by offering a
communication medium for software architects with
respect to legality matters.
Using architectural models as an early simulation
medium with respect to license integrity and validity,
which allows the possibility to detect possible violations.
Aligning and keeping source code and architectural
design in sync from the viewpoint of software licenses.
This prevents architectural erosion with respect to
licensing decisions.
Legality constraints can be exploited in a forward
engineering scenario, for instance to suggest possible
architectural solutions to overcome detected license
violations. In addition, the constraints can be used to
provide guidelines for component selection with respect
to possible licenses that can be used.
Allowing the ability to organize architectural design into
license independent models and license specific models
to better analyze the effect of licensing decisions.
Providing a better way of visualizing license violations
and their context. It is beneficial to view the violations in
graphical models rather than textual source code.
Studying how the terms of software licenses can
influence quality attributes like scalability (e.g., number
of users), which are often considered at the architectural
level.

According to these points, we propose a visual modeling
based approach that enables analyzing license related
problems in early development phases while reusing
existing models. The approach is designed to work with and
support architectural design made in UML.

III. A PROFILE BASED APPROACH

In this section, we present our approach for documenting
the legality view of software architecture, assuming that the
design model is expressed in UML. Accordingly, we
introduce the concept of licensing profiles in detail and
illustrate the concept with two example profiles. We start
with a brief introduction to UML profiles.

A. UML Profiles
The generality of UML constrains its applicability for

modeling narrow-scaled domains or problem fields.
However, UML offers mechanisms for extending the
language. With the help of these mechanisms, it is possible
to create an extension that adds more expression power to
UML on a certain field or environment. In addition,

573Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

traditional UML can be hidden on a lower level so that only
relevant properties are displayed.

One of the extension mechanisms in UML is the light-
weight profile mechanism, which is based on meta-modeling
[13]. Profiles are packages that contain stereotypes, tagged
values, and constraints. Stereotypes are a special kind of
meta-classes while tagged values are meta-attributes of those
classes. Meta-class is a type defined by UML specification.
Based on these features, it is possible to define a Domain
Specific Modeling Language (DSML) for a certain
application field. Profiling is a mechanism of UML, and thus
the definitions do not necessarily reflect the actual
implementation of the problem but provide a way to express
issues conveniently. For example, it is difficult to say how a
stereotyped class is implemented in real life, but as a
modeling tool it is a convenient way to visualize information.

B. Licensing Profiles
A licensing profile is a UML profile used to attach IPR

related information to UML models. Licensing profiles
introduce concepts related to the properties of open source
licenses in the form of stereotypes and meta-attributes. This
allows the user to create a UML model that takes into
account what licenses each component is associated with.
For example, a software package could be annotated with
information such as copyright holder, license type, and the
risks associated with its use in different usage scenarios.

Figure 1. CC REL profile

Figure 1 depicts a licensing profile that is partly based
on the specification of the Creative Commons Rights
Expression Language (CC REL), a semantic ontology for
modeling licenses [2]. The profile makes use of Resource
Description Framework (RDF) descriptions for modeling
licenses. In addition, the profile introduces concepts,
attributes and stereotypes not found in the original CC REL.
This is reflected in the naming strategy of the profile – ”cc:”
refers to CC REL concepts whereas “ossli” refers to other
concepts developed in this work.

For example, the profile defines a stereotype named
cc:work that corresponds to CC REL class Work. The class
is defined as “a potentially copyrightable work” in CC REL

description. Table III shows the tagged values of cc:work.
As an example of concepts outside CC REL, the profile
defines one stereotype for dependencies. The stereotype is
named ossli:linksTo and contains one tagged value called
ossli:LinkType. The tagged value's range is defined in
enumeration ossli:LinkType. With this tagged value, it is
possible to choose a linking type from multiple common
types such as static, dynamic, remote procedure call, etc.
With the help of CC REL profile, it is possible for example
to tell why two open source licenses are conflicting by
examining the RDF definition of the license.

TABLE III. TAGGED VALUES OF CC:WORK

Tagged value Type Description

rdf:about String A standard way in RDF for defining the
resource being described. (Uniform
Resource Identifier) URI.

cc:license String URI to RDF definition of the license.
cc:attributionName String The name the creator of a Work would

prefer when attributing re-use.
cc:attributionURL String The Uniform Resource Locator (URL)

the creator of a Work would prefer
when attributing re-use.

ossli:copyright ossli:co
pyright

Copyright status of the package defined
by enumeration ossli:copyright.

A more advanced licensing profile, named OSSLI
profile, is depicted in Figure 2. The profile is based on the
specification of Software Package Data Exchange (SPDX)
[25], recommendations by OSI and other de facto rules for
package compliance review [28].

TABLE IV. TAGGED VALUES OF LICENSEDPACKAGE

Tagged value Type Description

Copyright String Copyright information in free text
format.

Description String Description of the package in free
text format.

License LicenseType One or more licenses.
Redistribution Validity Validity for redistributing the

package.
Development

Tool
Validity Validity for using the package as a

development tool.
Service Validity Validity for offering functionality

as a service.
Internal Use Validity Validity for using the package

internally.
ID Integer Identification for the package.

Ownership OwnershipType Ownership of the package.

A fundamental concept in the profile is the stereotype
LicensedPackage, which extends the standard UML
package. LicensedPackage has multiple tagged values that
are introduced in Table IV. The Tagged values with the type
Validity are based on package compliance review [28].
Enumeration Validity is defined using four values: Valid,
Possible Risk, Clear Risk and Unknown. The supported
licenses are listed in LicenseType enumeration, which

574Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

includes Unknown for packages with unknown license or
unexpressed license information. OwnershipType is defined
in the profile as an enumeration with three values: Own,
ThirdParty, PublicDomain and Unknown.

Figure 2. OSSLI profile

The profile shows that LicensedPackage is composed of
classes that are stereotyped as File, which have own tagged
values. In addition, the profile defines three dependency
stereotypes. Linking stereotype consists of one tagged value
named Type, which tells whether the linking between
packages is static or dynamic. Thus, Type is defined by
enumeration LinkingType with values Static or Dynamic.
Control stereotype describes control type between packages,
such as if the packages communicate with each other using
API or remote procedure calls. Compatibility is a stereotype
designed to mark the compatibility mode of licenses as
described previously in Table I.

Figure 3. Illustrative example model using OSSLI profile

An illustrative example model using the OSSLI
licensing profile is shown in Figure 3. The example consists
of four software packages, of which two are owned
packages (Package0, Package1) and two are third party
packages (Apache Xalan C++, Apache Xalan Java).
Package0 is linked to all the other packages. The profiled
model exhibits licensing information such as license used
and linking type information between packages.

IV. OSSLI TOOL ENVIRONMENT
In order to illustrate the use of licensing profiles, a tool

named OSSLI [21] has been developed on top of Papyrus
modeling environment [22]. The tool is capable of
documenting licensing information and managing open
source legality concerns in architectural design. In OSSLI,
design models are expressed as profiled UML package
diagram. Figure 4 depicts the user interface of OSSLI
showing the example design model introduced in Figure 3
(middle part of the figure). The left part of Figure 4 shows
the selection of the OSSLI licensing profile selected for
application.

Figure 4. OSSLI user interface

In addition, the bottom part of Figure 4 shows a scenario
of running a risk evaluator for product redistribution on the
example model. Figure 5 shows the results of the risk
evaluation. Package0 has been reported as risky (marked
with red color) while all other packages are without risks
(marked with green color). Alternatively, the user could run
risk evaluation with respect to service offering, development
tool or internal use. The analysis is based on the information
of LicensedPackage's tagged values included in the OSSLI
profile and introduced in Table II.

575Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 5. Example risk evaluation of packages

Figure 6. Example of conflict detection

The user could also perform license conflict detection on
the profile model. A license conflict occurs when
connecting components to each other. This is illustrated in
Figure 6. Detected conflicts are presented to the user and are
highlighted in the UML diagram in red color. In the figure,
Package0 is reported as conflicting with packages Apache
Xalan C++ and Apache Xalan Java. The conflict is reported
based on the compatibility values shown in Table 1 and
represented using the Compatibility stereotype in the OSSLI
profile.

V. CASE STUDY: SOLA
The proposed legality view to software architecture has

been incorporated in the development of a real-life open
source system known as Solutions for Open Land
Administration (SOLA) [3]. The project, which is supported
by Food and Agriculture Organization (FAO), aims to
implement an open source land registration and
administration system that will be deployed in at least three
developing pilot countries – Nepal, Ghana, and Samoa. The
role of the authors of this paper is to provide open source
consulting support related to the development of the system,
software review, and community building.

The development of the system has been organized in
two main phases, a generic phase where the core components
of the system are developed by a closed team, and an
application phase where the system is adapted to the contexts
of the three countries and released to the open source
community for further development. A basic project
requirement was to reuse the maximum number of existing
open source components. This has led to the adoption of tens
of open source components with different open source
licenses. In addition, a number of other components have

been developed by the project team. Figure 7 depicts a
fragment of the SOLA system architecture.

As part of the software review task, we have assessed the
system architecture from a legality perspective. Example
questions we had to address include:
1. Could a GPL'ed icons library be used in the presentation

layer?
2. How should the components developed by FAO be

licensed? Both individually and as the whole SOLA
package?

3. Are there any compliance violations among component
interactions?

4. Could the SOLA components be used in proprietary
products? If not, how to circumvent this issue?

5. Are there any legality problems related to software
compliance with the national e-gov strategies of the pilot
countries?

 As example answers to the above questions, it was
deemed risky to use a GPL’ed icons library as this would
trigger the copyleft obligations of GPL, which would be a
problem in case the software is used in proprietary systems.
Therefore, the library has been discarded.
 Figure 8 shows a compliance exercise session for SOLA
design model in the OSSLI tool. Analyzing the components
interactions and their licenses, several important findings
have been observed. First, we identified all possible legality
incompatibilities. In Figure 7, a possible risk is mixing
LGPL’ed JasperReports library and Apache Licensed
Barcode4J. According to the terms of the licenses developers
should use dynamic linking in order to achieve more
independence among these components. Other conflict
detection risks are highlighted in Figure 8.
 As for the components written by the FAO team, we
proposed the use of the modified BSD license because it is
compatible with all other internally used licenses. Another
option we have discussed is to use to use GPL v2. However,
the latter option would bring clear risks when combining
GPL’ed packages with Apache Licensed libraries (e.g.,
Dozer, MyBatis). This is because Apache License and GPL
are completely incompatible.
 Finally BSD license was also proposed as the main
license of the entire SOLA system. This minimizes the
legality risks when adopting the software in the pilot
countries, and allows commercial companies to develop
proprietary software on top of the SOLA system and its
components. Furthermore, no conflicts were found between
the proposed license scheme and the guidelines of the
national strategies of the pilot countries.

VI. RELATED WORK

The fashion FLOSS components are allowed to interact
with each other and proprietary software has become an
important architectural concern. Present design approaches
optimized for the technical aspects of software architecting,
such as scalability, reusability, and testability and tend to
diminish or even completely overlook the legality dimension

576Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 7. The SOLA Project Legality View

Figure 8. Risk evaluation and conflict detection in SOLA model

that is becoming increasingly important to manage legal
dependencies of open source components.

The legality challenge of FLOSS has been partly
addressed using so-called license analysis techniques and
tools (Table V). Some of the tools provide functionality to
identify the licenses through source code analysis. Examples
of these tools are Fossology [4], Automated Software
License Analysis (ASLA) [27], and Ninka [17]. LChecker
[12] provides a similar functionality but takes a slightly
different approach. It utilizes Google Code Search service to
check if a local file exists in a FLOSS project and if the
licenses are compatible. In addition to license identification,

Open Source License Checker (OSLC) [19] also provides
support for license conflict detection in source code.
Dependency Checker Tool (DCT) [14] focuses on detecting
compliance problems at static and dynamic linking level on
binaries, based on predefined linking and license policies.

TABLE V. A COMPARISON OF OPEN SOURCE LICENSE
MANAGEMENT TOOLS

. Source
analysis

License
identification

Design
analysis

Conflict
detection

Ninka Yes Yes No No
ASLA Yes Yes No No

Fossology Yes Yes No No
LChecker Yes Yes No No

OSLC Yes Yes No Yes
DCT No No No Yes

Qualipso No No OWL Yes
ArchStudio4 No No Custom Yes

OSSLI No No UML Yes

Compared to the OSSLI tool, the above technique are
mostly useful in analyzing ready packaged software systems
but give little guidance, with respect to licensing issues, for
software developers during the development activity itself. A
number of other tools, such as [23] and [1] do provide
support for analyzing license conflicts at the architectural
level. However, these tools generate own architectural views
and have limited integration with the artifacts that software
architects work with. The former uses Web Ontology
Language (OWL) for modeling open source licenses and the
latter uses a custom formal approach. Furthermore, these
tools fall short in their ability to support a number of
important practices related to license compliance checking.
For example, decisions made during the process of fixing the
legality compliance problems in the software architecture
could also be recorded for future recommendations [15].

577Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

There are a number of ontologies and standards proposed
for documenting the legal rules and constraints of software
systems. Examples include Legal Knowledge Interchange
Format (LKIF) [9], Software Package Data Exchange
(SPDX) [25], and QualiPSo Intellectual Property Rights
Tracking (IPRT) [23]. These works could contribute to the
foundation of the proposed legality view, but nevertheless
should be enhanced for better ties with the work processes
and methods of software architects.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new perspective to the
software architecture, the legality view. The goal of the view
is to make explicit the legality concerns of software
architecture such as IPR issues and use/distribution terms of
the components, which are often important concerns in all
software, but need to be further emphasized in open source
development due to the different licensing schemes. The
view is particularly important in cases where the legality
view introduces architecturally significant requirements. In
the paper, the benefits of the view were first demonstrated by
a small illustrative example and a real-life design, where the
different FLOSS related concerns play an important role in
the design of architecture.

The consequences of the introduction of a new view to
software architecture are many. To begin with, the
complexity of legal issues and their effect in software design
becomes visible. While making such issues explicit on one
hand helps designers to take them into account, on the other
hand the design methods and practices must be revised to
precisely reflect the new view in an integrated fashion.

In order to express the discussed legality view in a
practical fashion, we have proposed the concept of licensing
profile, an adaptation of the UML profile concept for the
modeling of open source licensing rules and constraints. We
then presented tool support for working with licensing
profiles.

As future work, we plan to use licensing profiles as a
basis for building novel techniques to devise optimal
architectural solutions taking into consideration the legality
constraints. This could be achieved, for instance, through the
use of genetic algorithms [24].

REFERENCES

[1] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi, “Analyzing
Software Licenses in Open Architecture Software Systems,” Proc.
FLOSS 2009, 2009, pp. 54–57.

[2] Creative Commons. Describing Copyright in RDF.
http://creativecommons.org/ns. Last accessed June 2013.

[3] FAO. Solutions for Open Land Administration. http://flossola.org/.
Last accessed June 2013.

[4] FOSSology. http://fossology.org/. Last accessed June 2013.
[5] D. M. German, M. Di Penta, and J. Davies, “Understanding and

Auditing the Licensing of Open Source Software Distributions,” Proc.
ICPC 2010, 2010, pp. 84–93.

[6] D. M. German and A. E. Hassan, “License Integration Patterns:
Addressing License Mismatches in Component-based Development,
“ Proc. ICSE 2009, May. 2009, pp. 188–198.

[7] F. P. Gomez and K. S. Quiñones, “Legal Issues Concerning
Composite Software, “ Proc. ICCBSS 2008, 2008, pp. 204–214.

[8] I. Hammouda, T. Mikkonen, V. Oksanen, and A. Jaaksi, “Open
Source Legality Patterns: Architectural Design Decisions Motivated
by Legal Concerns”, Proc. AMT 2010, Tampere, Finland, ACM
Press, October. 2010, pp. 207–214.

[9] R. Hoekstra, J. Breuker, M. Di Bello, and A. Boer, “The LKIF Core
Ontology of Basic Legal Concepts, “ Proc. LOAIT 2007, 2007, pp.
43–63.

[10] International Free and Open Source Software Law Review.
http://www.ifosslr.org. Last accessed June 2013.

[11] P. Kruchten, “Architectural Blueprints — The “4+1” View Model of
Software Architecture, “ IEEE Software 12 (6), November. 1995, pp.
42–50.

[12] lchecker A License Compliance Checker.
http://code.google.com/p/lchecker/. Last accessed June 2013.

[13] F-F. Lidia and A. Vallecillo-Moreno, “An introduction to UML
profiles”, UML and Model Engineering, vol. V, no. 2, April. 2004,
pp. 6–13.

[14] Linux Foundation. Dependency Checker Tool
http://www.linuxfoundation.org/sites/main/files/publications/lf_foss_
compliance_dct.pdf. Last accessed June 2013.

[15] A. Lokhman, A. Luoto, S. Abdul-Rahman, and I. Hammouda,
“OSSLI: Architecture Level Management of Open Source Software
Legality Concerns, “ Proc. OSS 2012, 2012, pp. 356–361.

[16] B. Malcolm, “Software Interactions and the GNU General Public
License, “ IFOSS L. Rev, 2(2), 2010, pp. 165–180.

[17] Ninka, a License Identification Tool for Source Code.
http://ninka.turingmachine.org/. Last accessed June 2013.

[18] Open Source Initiative. http://www.opensource.org. Last accessed
June 2013.

[19] OSLC, Open Source License Checker.
http://sourceforge.net/projects/oslc. Last accessed June 2013.

[20] Sourceforge.net. http://sourceforge.net/. Last accessed June 2013.
[21] OSSLI project. http://ossli.cs.tut.fi/. Last accsedd June 2013.
[22] Papyrus. http://www.eclipse.org/modeling/mdt/papyrus/. Last

accessed June 2013.
[23] Qualipso project. http://www.qualipso.org/licenses-champion. Last

accessed June 2013.
[24] O. Räihä, Hadaytullah, K. Koskimies, and E. Mäkinen, “Synthesizing

Architecture from Requirements: A Genetic Approach, ” Relating
Software Requirements and Architecture (eds. P. Avgeriou, J.
Grundy, J. G. Hall, P. Lago, and I. Mistrik), Chapter 18, Springer,
2011, pp. 307–331.

[25] Software Package Data Exchange (SPDX). http://spdx.org/. Last
accessed June 2013.

[26] Systems and Software Engineering – Architecture Description.
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000), 2011, pp. 1–46.

[27] T. Tuunanen, J. Koskinen, and T. Kärkkäinen, “Automated Software
License Analysis, “ Automated Software Engineering 16 (3-4),
December. 2009, pp. 455–490.

[28] M. von Willebrand and M. P. Partanen, “Package Review as a Part of
Free and Open Source Software Compliance, ” IFOSS L. Rev, 2(2),
2010, pp. 39–60.

[29] AGPL, Gnu Affero General Public License.
http://www.gnu.org/licenses/agpl-3.0.html. Last accessed September
2013.

578Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

