
Applying Mutation Testing to ATL Specifications:
An Experimental Case Study

Yasser Khan and Jameleddine Hassine
Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
{yasera, jhassine}@kfupm.edu.sa

Abstract—Mutation testing is a well-established fault-based
technique for assessing and improving the quality of test suites.
In order to support mutation testing for model transformations,
we define a set of eleven mutation operators for the Atlas
Transformation Language (ATL). The effectiveness of the result-
ing operators, generated automatically using our prototype tool
MuATL, is evaluated using a case study of an ATL program that
refactors a given UML use case model. Our analysis shows that
the proposed operators can successfully detect inadequacies in a
given test suite.

Keywords-Model transformation; Model Driven Engineering;
mutation testing; mutation operators; Atlas Transformation Lan-
guage;

I. INTRODUCTION

Model transformations aim to automatically convert a
source model to a target model based on a set of transforma-
tion rules [1]. A rule defines how attributes of a source object
map to attributes of a target object. The source and target
models must each conform to well defined metamodels, which
specifies the language (syntax and semantics) of the mod-
els [2]. Apart from model refinement, model transformation
can greatly improve several software development activities;
including model refactoring, reverse engineering of models,
and applying design patterns [3].

Faults in model transformations may result in defective
models, and eventually defective code. Many approaches to
test model transformations have been proposed in the liter-
ature. Lamari [4] used a functional testing approach based
on a data partitioning technique that focuses on the struc-
ture of models in order to take into account the structural
aspect of models when generating input test models. González
and Cabot [5] and McQuillan and Power [6] have proposed
white-box test model generation approaches for ATL model
transformations. Fleurey et al. [7] investigated the problem
of test data generation for model transformations and pro-
posed the use of partition testing to define test criteria to
cover the input metamodels. Fiorentini et al. [8] have pro-
posed a uniform framework for treating metamodels, model
transformation specifications and the automation of test case
generation. Their proposed technique [8] is based on a black-
box testing approach of model transformations to validate
their adherence to given specifications. A gray-box testing
technique has also been used by Bauer and Küster [9] for
model transformations. Mottu et al. [10] have introduced the

application of mutation testing to model transformations. The
authors [10] have identified four semantic classes of faults
(navigation, filtering, output model creation, and input model
modification) for model transformations and they have defined
a set of generic mutation operators to cover these class faults.

The widespread interest in testing model transformation
programs provides the major motivation for this research. We,
in particular, focus on investigating the applicability of fault-
based testing to model transformations. To this end, this paper
has the following purposes:

• It extends our previous work [11] on designing mutation
operators for the ATL language [12], so that model trans-
formation developers can gain the benefits of mutation
testing.

• It evaluates the usefulness and the effectiveness of the
proposed operators using a case study of a UML use
case refactoring ATL specification.

The remainder of this paper is organized as follows. Our
proposed ATL mutation testing approach is presented in
Section II. Section III introduces a suite of 11 mutation
operators for the ATL transformation language. In Section IV,
we apply the defined mutation operators to an ATL program
that refactors a given use case model. Finally, conclusions are
drawn in Section V.

II. ATL MUTATION TESTING APPROACH

Mutation testing is a well-established fault based testing
technique, for assessing and improving the quality of test
suites. An ATL mutation operator defines how a particular
ATL artifact is altered in order to inject a single fault. The
resulting ATL program is known as a mutant. If a mutant is
syntactically incorrect, it is considered as an invalid mutant.

An ATL test suite consists of a synthesis of a number
test cases consisting of input models and expected models.
The original ATL program (i.e., ATL Spec S in Fig. 1)
and the generated mutants run on the test cases and the
results are compared using an oracle. Defining a test oracle
for model transformations is a challenging task [13]. ATL
Mutants are generated automatically using our prototype tool
MuATL (Mutation Toolkit for ATL). MuATL, a Microsoft .NET
C# based tool, is inspired by MuJava (Mutation System for
Java) [14] . The execution of the test suite and the oracle
function are performed manually. The automation of such
activities is out of the scope of this paper.

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Mutants

ATL Spec S

ATL Mutation
Operators

Apply the operators on the
Original ATL Spec

Test
Suite

Input models

Input m
odels

Result on S
(output model)

Result on S
Result on SResults on

mutants
(output models)

Test
Oracle

Killed ATL
mutants

Alive non-
equivalent

ATL mutants

Equivalent
ATL

mutants

Compute
adequacy

score

Not Acceptable

Acceptable

Improve the test suite

Using
MuATL tool

Fig. 1. ATL Mutation Process

A given test case, part of the test suite, is said to kill
a mutant if the output model produced by the mutant is
different from the expected model produced by the original
ATL specification. Hence the test case is good enough to
detect the change between the original and the mutant ATL
program. A test case cannot distinguish between a mutant and
the original ATL program if both produce the same output
model(s) for the same input model. If a mutant is not killed
(called alive) by a test suite, this usually means that the test
suite is not adequate. However, it may also be that the mutant
keeps the program’s semantics unchanged-and thus cannot be
detected by any test case. Such mutants are called equivalent
mutants. Equivalent mutants detection is, in general, one of
biggest obstacles for practical usage of mutation testing [15].
Fig. 1 illustrates our mutation testing process for the ATL
language [12].

The effectiveness of a test suite is determined by running it
on all mutants and computing its mutation adequacy score, that
is the ratio of killed mutants to total number of non-equivalent
mutants.

AdequacyScore =
Mk

Mt −Me
(1)

where Mk is the number of killed ATL mutants, Mt is the total
number of generated ATL mutants, and Me is the number of
ATL equivalent mutants. If the score is not acceptable, the
test suite should be improved by adding additional test cases
and/or modifying the existing ones.

III. ATL MUTATION OPERATORS

In this section, we briefly present the eleven proposed ATL
mutation operators.

A. Matched to Lazy (M2L)

The M2L operator converts a matched rule to a lazy rule
(which is an imperative rule). The consequence of applying
the M2L operator is that a mutant rule will never be executed,
since lazy rules must be explicitly invoked; thus, resulting in

loss of information. If an input model contains at least one ob-
ject on which the mutant rule is applicable, the corresponding
M2L mutant will be killed. Otherwise, the mutant rule will
not be exercised by the test case; therefore, resulting in an
alive M2L mutant. An example of a mutation performed by
applying the M2L operator is shown in Fig. 2(a). The M2L
operator prepends the rule AtoB by the lazy modifier in the
mutant rule AtoB’.

B. Lazy to Matched (L2M)

The L2M operator does the opposite of the M2L operator; it
converts a lazy rule into a matched rule. Matched rules cannot
be explicitly invoked; therefore, a runtime failure will occur
when a L2M mutant rule is called. However, a L2M mutation
cannot be detected if the mutant rule is not invoked during the
execution. An example of a mutation performed by applying
the L2M operator is shown in Fig. 2(b). The L2M operator
deletes the lazy modifier of rule AtoB in the mutant rule AtoB’.

C. Delete Attribute Mapping (DAM)

The DAM operator deletes an attribute mapping from the
definition of a particular rule. It is based on the CACD operator
in [10]. The consequence of applying the DAM operator on a
rule is that the attribute, whose mapping is deleted, will not
participate in the transformation process, resulting in a loss of
information. However, a DAM mutation will not be detected
when the source attribute does not have a specified value. The
DAM operator can be applied on matched, lazy and mapping
called rules. An example of a mutation performed by applying
the DAM operator is shown in Fig. 2(c). The DAM operator
deletes the mapping of attribute b2 in the mutant rule AtoB’.

D. Add Attribute Mapping (AAM)

The AAM operator adds a useless attribute mapping from
a source object to a target object in a given rule. It is based
on the CACA operator in [10]. The consequence of applying
the AAM operator on a rule is that unnecessary complexity is

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

lazy rule AtoB’ {
 from s : A
 to t: B (
 ……………
)
}

(a) Example of a M2L mutation

Original Program Mutant Program
lazy rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

rule AtoB’ {
 from s : A
 to t: B (
 ……………
)
}

(b) Example of a L2M mutation

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

rule AtoB’ {
 from s : A
 to t: B (
 b1 <- s.a1
)
}

(c) Example of a DAM mutation

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 b1 <- s.a1
)
}

rule AtoB’ {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

(d) Example of a AAM mutation

Original Program Mutant Program
rule AtoB {
 from s : A (
 s.a1 > 0
)
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

rule AtoB’ {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

(e) Example of a DFE mutation

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

rule AtoB’ {
 from s : A (
 s.a1 > 0
)
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

(f) Example of a AFE mutation

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

rule AtoB’ {
 from s : C
 to t: B (
 ……………
)
}

(g) Example of a CST mutation

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

rule AtoB’ {
 from s : A
 to t: C (
 ……………
)
}

(h) Example of a CTT mutation

Original Program Mutant Program
lazy rule AtoB {
 from s : A
 to t: B (
 ……………
)
 do {
 ……………
 t;
 }
}

lazy rule AtoB’ {
 from s : A
 to t: B (
 ……………
)
 do {
 ……………
 }
}

(i) Example of a DRS mutation

Original Program Mutant Program

module A;

create OUT : UML from
IN : UML;

uses B;
uses C;

module A’;

create OUT : UML refining
IN : UML;

uses C;

(j) Example of a DUS mutation

Original Program Mutant Program
module A;
create OUT : UML

from IN : UML;

module A’;
create OUT : UML

refining IN : UML;

(k) Example of a CEM mutation

Fig. 2. Code examples of the proposed mutation operators

added to the output model. AAM mutants may also cause
a runtime failure if the source and target attributes types
are incompatible. An example of a mutation performed by
applying the AAM operator is shown in Fig. 2(d). The AAM
operator adds the useless mapping “b2 <– s.a2” in the mutant
rule AtoB’.

E. Delete Filtering Expression (DFE)

Filtering expressions constrain the input objects on which a
particular rule can be applied. If a filtering statement evaluates
to true for a given input object, its corresponding rule will be
executed. This can only be applied on matched rules, as they
allow filtering of input objects. The DFE operator deletes the
filtering statement specified in the definition of a rule. It is
based on the CFCD operator in [10]. The consequence of
applying the DFE operator is that the mutant rule will be
executed for incorrect objects of its source type. DFE operator
may cause filtering expressions of multiple rules to evaluate to
true for one source instance. In this case, a runtime failure will
occur. An example of a mutation performed by applying the

DFE operator is shown in Fig. 2(e). The DFE operator removes
the filtering expression s.a1 > 0 in mutant rule AtoB’.

F. Add Filtering Expression (AFE)

Based on the CFD operator in [10], we define the AFE
operator which performs the opposite of the DFE operator. It
adds an unnecessary filtering expression to a matched rule. The
consequence of applying the AFE operator is that some objects
of the input model will not participate in the transformation
process, thus resulting in a loss of information. In order to
apply the AFE operator on a rule, the source object must have
at least one attribute. If this condition is satisfied, a numerous
AFE mutants can be created for a given matched rule. Input
Space Partitioning [16] can be applied on each source attribute
to produce a set of mutant filtering expressions.

An example of a mutation performed by applying the AFE
operator is shown in Fig. 2(f). The AFE operator adds the
filtering expression s.a1 > 0 in mutant rule AtoB’.

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

G. Change Source Type (CST)

The CST operator changes the source type of a given rule.
It can be applied on matched and lazy rules. The consequence
of applying the CST operator is that incorrect transformations
may be performed. Indeed, the application of the CST operator
on a rule may cause a runtime failure if the new source
type does not contain the attributes which are specified to
be mapped, or if multiple rules are associated with the new
source type. An example of a mutation performed by applying
the CST operator is shown in Fig. 2(g). The source type of
rule AtoB is changed from A to C in the mutant rule AtoB’.

H. Change Target Type (CTT)

The CTT operator changes the target type of a given rule.
It can be applied on matched, lazy and mapping called rules.
The consequence of applying the CTT operator is that the
objects in the input model will be transformed into objects of
incorrect type in the output model. An example of a mutation
performed by applying the CTT operator is shown in Fig. 2(h).
The target type of rule AtoB is changed to C in the mutant
rule AtoB’.

It should be noted that CST and CTT do not produce
syntacticly incorrect mutants.

I. Delete Return Statement (DRS)

The last statement of a do block in a mapping called rule
must return the target object. It is optional to specify a return
statement in the do block of matched and lazy rules. The DRS
mutation operator deletes the return statement of a do block.
An example of a mutation performed by applying the DRS
operator is shown in Fig. 2(i). The DRS operator deletes the
return statement “t;” of the do block of rule AtoB in mutant
rule AtoB’.

J. Delete Use Statement (DUS)

An ATL module can import functions from a reusable
library via the uses keyword. We define, the DUS operator
which deletes an import statement from a given module. Since
the ATL compiler does not check whether external functions
are imported or not, the DUS operator does not produce an
invalid mutant. If no external function is invoked by a test case,
a DUS mutant will remain alive. An example of a mutation
performed by applying the DUS operator is shown in Fig. 2(j).
The DUS operator deletes the import statement of library B
in mutant module A.

K. Change Execution Mode (CEM)

ATL modules can execute in two modes, default and re-
fining. Default mode is the default execution mode of ATL
transformations and it is specified by the from keyword. The
refining mode allows developer to specify rules only for those
objects that need to be transformed; remaining objects will be
implicitly copied into the output model. It should be added that
refining mode applies only when the source and target models
conform to the same metamodel. We define the CEM operator
which switches the execution mode of an ATL module from

default to refining mode, or vice versa. In default mode, a
CEM mutation may cause useless objects to be copied into the
output model; whereas, in refining mode, it will cause loss of
information. If a module contains imperative code, which is
not allowed in refining mode, application of the CEM operator
will result in an invalid (i.e., syntactically incorrect) mutant.
An example of a mutation performed by applying the CEM
operator is shown in Fig. 2(k). The CEM operator changes the
execution mode of module A to refining mode in the mutant
module A’.

IV. CASE STUDY: UML USE CASE MODEL REFACTORING

The case study pertains to an ATL module, which im-
plements a use case model refactoring. This refactoring is
based on use case antipattern a1, which is introduced in [17].
Antipattern a1 occurs when an actor is associated with a
generalized use case in order to enable indirect access to a
framework of services, which are implemented by specialized
use cases. A generalized use case is often incomplete because
it contains parts of common behavior required by the special-
ized use cases. Therefore, initiation of such a generalized use
case will result in incomplete meaningless behavior. A given
use case is involved in this antipattern if it:

• is a concrete generalized use case
• neither includes nor extends any use case
• not extended by any other use case
• is directly or indirectly associated with an actor
For a given input use case model, the transformation detects

the model elements involved in a1, and performs the Con-
creteToAbstract refactoring, which converts the generalized
use case to an abstract use case. The semantics of abstract use
cases are similar to the semantics of an abstract entity in the
OO paradigm. Setting a use case as abstract indicates that it
cannot be solely performed. Therefore, one of the specialized
use cases will be performed. This guarantees that a complete
and meaningful service will be delivered to the actor. If a1 is
not detected, the refactoring is not performed. Fig. 3 shows the
subject ATL module, which is implemented in refining mode.
It references three reusable libraries: UseCase, Association,
and Actor. The filtering expression specified in the from
clause of matched rule AbstractGeneralizedUC implements
the detection conditions for a1. If a use case satisfies all of
these detection conditions, its isAbstract property is set.

The case study contains 9 test cases which satisfy the
Correlated Active Class Coverage (CACC) criteria [18], a
logic coverage testing criteria that tests individual clauses
in a logical expression. Each test case includes the input
model and the expected output model. For instance, Fig. 4 and
Fig. 5 illustrate the input model and the expected output model
relative to test cases TC1 and TC2, respectively. In the input
model of TC1, use case Apply Special Offer is involved in
antipattern a1; therefore, it is set abstract in the output model.
It should be noted that the antipattern a1 is not detected in
TC2; hence, no refactoring is performed.

The proposed mutation operators are automatically applied
on the subject module using our prototype tool MuATL, and

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

module ConcreteToAbstract;
create OUT : UML refining IN : UML;

uses UseCase;
uses Association;
uses Actor;

rule AbstractGeneralizedUC {
 from s: UML!UseCase (
 s.isGeneralization() and
 s.isConcrete() and
 not (
 s.isIncluder() or
 s.isExtension() or
 s.isExtended()
)
 and (
 (s.isAssociatedWithActor() and
 not s.isIncluded()) or
 s.isIndirectlyAssociatedWithActor()
)
)
 to t: UML!UseCase (
 isAbstract<-true
)
}

Fig. 3. Excerpt of the Use Case refactoring model transformation

(a) Input Use Case Model

(b) Expected Output Use Case Model

Fig. 4. Input and expected output models of TC1

result in 47 mutant modules. In addition to the proposed
operators, the Conditional Operator Replacement (COR) [16],
Unary Operator Deletion (UOD) [16], and the Non-Void
Method Call (NVMC) [19] operators are also applied. These
additional operators are used because they will target the
filtering expression of rule AbstractGeneralizedUC.

Fig. 5. Input and expected output models of TC2 (they are the same)

The rule AbstractGeneralizedUC contains 6 unmapped
source attributes (name, isAbstract, include, extend, gener-
alization, subject) and 5 unmapped target attributes (name,

DAM AAM DFE CST CTT CEM DUS COR UOD NVMC
Equivalent 0 11 0 0 9 0 0 1 0 0
Live 0 17 0 0 9 0 0 1 0 0
Killed 1 13 1 9 0 1 3 28 2 8

0
5
10
15
20
25
30
35
40
45

N
um

be
r o

f M
ut
an

ts

Mutants Statistics for the Use Case Refactoring Case Study

Fig. 6. Live, killed, and equivalent mutants for the ConcreteToAbstract model
transformation program

(a) Input Model for TC10

(b) Expected output Model for TC10

Fig. 7. Input and expected output models for TC10

(a) Input model for TC11

(b) Expected output model for TC11

Fig. 8. Input and expected output models for TC11

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

include, extend, generalization, subject); therefore, the appli-
cation of the AAM operator resulted in 30 mutants. One DAM
mutant was created for the mapping statement “isAbstract <-
true”. 10 source classes, and 10 target classes participate in the
model transformation; therefore, 9 CST and 9 CTT mutants
are created. It should be noted that these sets of source and
target classes are the same. One DFE mutant corresponds
to the filtering expression of AbstractGeneralizedUC. The
AFE operator could not be applied on AbstractGeneralizedUC
because it already contained a filtering expression. The M2L
and L2M operators are also not applicable because the subject
module is specified in refining mode. The module imports 3
reusable libraries; therefore, a DUS mutant is created for each
import statement.

The results of the mutation analysis, presented in Fig. 6,
reveal that 66 mutants are killed by the 9 test cases, and
27 mutants are kept alive. 1 DAM, 13 AAM, 5 CST, and
3 DUS mutants are killed as a result of runtime failures. 1
DFE, 4 CST, 1 CEM, 28 COR, 2 UOD, and 8 NVMC are
killed because they produce incorrect output models. The 9
live CTT mutants are equivalent mutants; they cannot be killed
by any test case. The single live COR mutant resulted in errors
states for several test cases; however, these error states did not
propagate into a failure. Moreover, for this mutant, no test case
can be designed which will result in a failure; therefore, it was
concluded as equivalent.

The nine test cases give an adequacy score of 91.67%.
The obtained results show that the AAM operator determined
inadequacies in the subject test suite. The 6 live non-equivalent
AAM mutants (i.e., 17-11 = 6) can be killed by adding new
test cases. We add TC10 and TC11, each of which kills 3 live
AAM mutants, to the subject test suite. This enhanced test
suite gives a 100% adequacy score. The input models of TC10
and TC11 are shown in Fig. 7(a) and Fig. 8(a), respectively.

V. CONCLUSIONS

In order to support mutation testing for ATL language, we
have defined a set of eleven mutation operators. Our approach
has been validated using a use case model refactoring program.
The results have shown that the operators successfully detected
inadequacies in the subject test suite.

As a future work, we are planning to further enhance
our prototype tool MuATL to include a test case execution
engine and a test oracle. In addition, we aim at conducting
an empirical study to better assess the usefulness and the
effectiveness of the proposed ATL operators.

Furthermore, we will investigate the addition of mutation
operators of traditional programming languages that are rel-
evant to ATL. The idea of mutation testing will also be
explored for other model transformation languages, such as
QVT, Tefkat, and Epsilon.

ACKNOWLEDGMENT

The authors would like to acknowledge the support provided
by the Deanship of Scientific Research at King Fahd Univer-
sity of Petroleum & Minerals (KFUPM) for funding this work
through project No. IN121009.

REFERENCES

[1] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model
Driven Architecture: Practice and Promise. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[2] J. M. Favre, “Towards a basic theory to model model driven engineer-
ing,” in In Workshop on Software Model Engineering, WISME 2004,
joint event with UML2004, 2004.

[3] S. Sendall and W. Kozaczynski, “Model transformation: The heart and
soul of model-driven software development,” IEEE Softw., vol. 20, no. 5,
pp. 42–45, Sep. 2003.

[4] M. Lamari, “Towards an automated test generation for the verification
of model transformations,” in Proceedings of the 2007 ACM symposium
on Applied computing, ser. SAC ’07. New York, NY, USA: ACM,
2007, pp. 998–1005.

[5] C. A. González and J. Cabot, “Atltest: a white-box test generation
approach for ATL transformations,” in Proceedings of the 15th interna-
tional conference on Model Driven Engineering Languages and Systems,
ser. MODELS’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 449–
464.

[6] J. A. Mc Quillan and J. F. Power, “White-Box Coverage Criteria
for Model Transformations.” in 1st International Workshop on Model
Transformation with ATL, Jul 2009, p. 63.

[7] F. Fleurey, J. Steel, and B. Baudry, “Validation in model-driven engineer-
ing: testing model transformations,” in Model, Design and Validation
(MoDeVa 2004), Rennes, France, nov. 2004, pp. 29 – 40.

[8] C. Fiorentini, A. Momigliano, M. Ornaghi, and I. Poernomo, “A con-
structive approach to testing model transformations,” in Proceedings of
the Third international conference on Theory and practice of model
transformations, ser. ICMT’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 77–92.

[9] E. Bauer and J. M. Küster, “Combining specification-based and code-
based coverage for model transformation chains,” in Proceedings of
the 4th international conference on Theory and practice of model
transformations, ser. ICMT’11. Springer-Verlag, 2011, pp. 78–92.

[10] J.-M. Mottu, B. Baudry, and Y. Le Traon, “Mutation analysis testing
for model transformations,” in Proceedings of the Second European
conference on Model Driven Architecture: foundations and Applications,
ser. ECMDA-FA’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
376–390.

[11] Y. Khan and J. Hassine, “Mutation operators for the atlas
transformation language,” in Proceedings of the 2013 IEEE Sixth
International Conference on Software Testing, Verification and
Validation Workshops, ser. ICSTW ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 43–52. [Online]. Available:
http://dx.doi.org/10.1109/ICSTW.2013.13

[12] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Sci. Comput. Program., vol. 72, no. 1-2, pp. 31–39,
Jun. 2008.

[13] J.-M. Mottu, B. Baudry, and Y. Le Traon, “Model transformation testing:
oracle issue,” in IEEE International Conference on Software Testing
Verification and Validation Workshop (ICSTW), april 2008, pp. 105 –
112.

[14] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class
mutation system: Research articles,” Softw. Test. Verif. Reliab., vol. 15,
no. 2, pp. 97–133, Jun. 2005.

[15] Y. Jia and M. Harman, “An analysis and survey of the development
of mutation testing,” IEEE Trans. Software Eng., vol. 37, no. 5, pp.
649–678, 2011.

[16] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed. New
York, NY, USA: Cambridge University Press, 2008.

[17] M. El-Attar and J. Miller, “Improving the quality of use case models
using antipatterns,” Software & Systems Modeling, vol. 9, no. 2, pp.
141–160, 2010.

[18] P. Ammann, J. Offutt, and H. Huang, “Coverage criteria for logical
expressions,” in 14th International Symposium on Software Reliability
Engineering), 17-20 November 2003, Denver, CO, USA, ser. ISSRE ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 99–107.

[19] PIT, “PIT mutation testing,” http://pitest.org/quickstart/mutators/, last
accessed, August 2013.

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

