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Abstract—Entire test suites are often used to conduct regres-
sion testing on subject applications even after limited angbrecise
changes performed during maintenance operations. Often,his
practice makes regression testing difficult and costly. To éal with
these issues, techniques to reduce test suites have beenposed
and adopted. In this paper, we present a multi-objective telenique
for test suite reduction. It uses information related to thecode and
requirements coverage, the past execution cost of each tesise
in the test suite, and traceability link among software artfacts.
We evaluated our proposal by testing three Java applicatios
and comparing the achieved results with those of some based
techniques. The results indicate that our proposal outpedrms
the baselines and that improvements are still possible.

Keywords—Regression Testing; Requirements, Testing; Test
Suite Reduction; Traceability Link Recovery.

I. INTRODUCTION

Regression testing is usually conducted after software I
maintenance operations to guarantee that the effect oé thes
operations does not compromise the expected behavior of
a software application. Relevant activities often conddct

during regression testing [1] aré) test selection(ii) test re-
duction (also named minimization); afid) test prioritization.

These activities are technical and business relevant becau
they might affect the success of a software project [2]. Agion
the activities above, test reduction reduces the numbesstf t

cases to be executed and should preserve the capability of

test suite in discovering faults.
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software artifacts (i.e., application code, test casesdyequire-
ments specifications) are needed. Traceability links arenof
not available or not up-to-date in the project documentatio
Then, we exploit Latent Semantic Indexing (LSI) [5] to infer
traceability links among software artifacts and to measued
strength. To assess the validity of MORE, we have conducted
an experimental evaluation on three Java applicationshig t
evaluation, we were mainly interested in assessing whéfieer
test suite reduced by applying our proposal may be effective
and efficient as the entire test suite.

Structure of the paper. In Section I, we discuss related
work, while the used traceability recovery approach is de-
scribed in Section Ill. In Section IV, we highlight the appoh
for test suite reduction, while the experiment is presered
Section V. Final remarks and future work conclude.

RELATED WORK

The greater part of the approaches for test suite reduction
is single-objective, [1][3]. However, multi-objectivedieniques
have been also proposed. They largely adopt evolutionary
algorithms by reformulating the test suite reduction peotl

as an optimization problem [15][16][17]. These approaches
consider either code or requirement coverage informatieh a
try balancing that information with the execution cost doftte
cases as followqi) explicitly optimize them as two objectives
(e.g., code coverage and execution co¢i); redefine the
multi-objective to a single-objective by using an optintiaa

To reduce test suites, existing techniques are mostly basddnction that conflates more objectives into only one. For
on a single dimension (e.g., code or requirements coveragepstance, Yooet al. [15] showed the benefits of the Pareto-
Few attempts exist to reduce test suites and apply multipléront optimality respectively for test case selection agst t

dimensions only considerirgructuralinformation (e.g., code
coverage and execution cost), thus ignoring fbactional

minimization. They, in fact, present a two-objective amio
in which code coverage and execution cost are explicitly

dimension [3][4]. Conversely, it could be relevant to reeluc considered when conducting test selection or minimizaffon
test suites by explicitly taking into account structuraldan reduce test suites, MAt al.[17] adopted an objective function

functional information, and the time (e.g., seconds) resli
to execute them.

that conflates code coverage and execution cost information
Furthermore, de Souzat al. [16] proposed the use of the
Particle Swarm Optimization (PSO) algorithm that consder

In this paper, we propose a novel reduction techniqugq gpjectives for test case selection: coverage of funefio
named MORE (Multi-Objective test cases REduction). It ISrequirements and execution cost.

multi-objective and selects a subset of a test suite (edyced

test suite), so decreasing the testing time while presgrvin

Differently from the paper discussed above, we propose a

the capability of the suite in exercising the applicatiord an technique to reduce test suites by explicitly considerinthb
detecting faults. The technique is based on a three-dimensi low- (e.g., code coverage) and high-level (e.g., requirgme
analysis of test cases. Th&ructural dimension concerns coverage) information about the test cases, as well as their

information regarding test cases under analysis (i.e., they
exercise the application under test), wHilactionaldimension

execution cost. We fill the gap between these kinds of infor-
mation by using LSI [5] to automatically recover traceapili

regards the coverage of users’ and system requirements. Theks among software artifacts. Moreover, conversely t@ ou
last dimension iscost and concerns the time to execute testprevious work [18], we investigated the problem of reducing
cases. To deal with these dimensions traceability linksragno large test suites and, to this aim, we formulated the prolalem
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a multi-objective optimization problem and adopted a dpeci experimental results, we did not perform here any analysis o
implementation of the NSGA-II algorithm [9]. the recovered links.

IIl. TRACEABILITY RECOVERY IV. TESTSUITE REDUCTION

In this paper, we applied an IR-based technique to recover e introduce our technique and the metrics used.
traceability links:(i) among high-level software artifacts (i.e.,

application requirements and test case specifications)oavnd . -
level software artifacts (i.e., source code of the appticeand - Code The fault detection capability of a test case and then of
test case implementations); a(ii) between pairs of high-level @ test suite represents the capability to detect faults imcgo
software artifacts (i.e., application requirements). e here ~ code. This cannot be known before executing test cases, Then
textual representationsf these artifacts. In the case of the testWe have to resort to the “potential” fault detection capigpbil
cases (implemented using special conceived framewors, e. of a test suite. It can be estimated considering the amount of
Junit), a preliminary analysis was performed to identifg th code covered by test cases. A test case that covers a larger
application code identifiers (e.g., method and attributeesy ~ Set of code statements at run-time has a higher potentiil fau
executed by test cases. The identifiers will constitute¢keinl ~ detection capability (i.e., more faults should be revepthen
representation of the test cases. We used here LSI [5] as tiffie test case that covers a smaller set of statements.

IR technique. The motivation for using LSl is that it has been

X . : Assuming to have test case implementations (e.g., Junit
successfully used in the traceability recovery field [6]. 9 P (e.g

test cases), we defin€Cov(t) as the amount of statements
exercised during the implementatitin
A. LSI and IR-Based Traceability Recovery

LS| assumes that there is some underlying or “latent struc-  CCov(t) = > { (1) ;ﬁgﬁﬁfomed 1)
ture” in word usage that is partially obscured by variapilit s€Statements
the word choices. To this end, a Singular Value Decompasitio
(SVD) is applied to am x n matrix (also named term-by-
document matrix), wheren is the number of terms, and
is the number of documents in the collection. SVD can b
geometrically interpreted: each term and artifact coulddpe
resented by a vector in thespace of the underlying concepts.
In traceability recovery field, the similarities betweenotw izl
documents or between a term and a document are computed cumCCou(t;) = Z CCou(t;) (2)
using the cosine between the vectors in the latent structure §=0
In this work, we applied this similarity measure. The larger
the value, more similar the vectors are. A value foshould
be large enough to fit all the real structure in the data, bu
small enough so that we do not also fit the sampling error o
unimportant details [5]. As default value, we udexB00.

where Statementss the set of source code statemer@sde-
Coveredis the set of statements covered by the execution
of the test casd, s is a code statement of the application.
€Given a test suit&composed of ordered test cases, we defined
cumCCov(}) as follows:

where t; is a test case of the suite. The cumulative code
goverage for¢; is computed by summing the single code
poverage (i.e., the code covered only by the test case) of all
those test cases fromg to ¢;_;.

- Requirements The capability of a test case to exercise

Differently from typical text retrieval problems (a user  and)/ X q d<ivnih
writes a textual query and documents that are similar to th&S€rs” and/or system requirements dependg(ipthe amount
of the requirements covered by the test calg; the rel-

query are shown), in IR-based traceability recovery a set o fth q . - i th .
source code artifacts (used as the query) are compared Withgyance of the covered requirements; &) the existing

; ; : a dency/relationship among requirements. We definéd an
set of target artifacts (even overlapping). Candidatecthitity =~ G€PENAENCY. p g req .
links (i.e., all the possible pairs of software artifactspa USedRCov(f)and a weighted varianVRCov(t) RCov(t) is

reported in a ranked list. Irrelevant links are removed gisin the_ measure of the requirements coverage for the testtcase
a threshold that selects only retrieved links (a subset pf to | NiS measure estimates the application requirementsiegerc
links). In this work, we use th€onstant Thresholdnethod: ~ during the execution of and it is computed by counting

0.1 is the default value used. We used this value to limit thd!® gumber of requir:ements exefrcised by the test %"’.‘58
possibility of loosing links by considering a larger number WRCOV()measures the coverage for a test case according to

of possible traceability links. There are also methods timat pre_deflned weights assngned to each application requiremen
not take into account the similarity values between sounce a 11iS coverage measure is computed as follows:

target software artifacts. For example, the metkfadable Cut

Point requires the specification of the percentage of links of WRCou(t) = Z { E)UT ztief;(_ggovered (3)

the ranked list to be considered as correctly retrievecheEit reRegs

relevant traceability links could be lost or irrelevantceability
links could be introduced by using methods not based o
similarity values.

RRegs is the set of requirements of the application under
test. ReqsCovereds the set of requirements covered by the
execution of the test cagewhile r is one of the application
As in traditional IR-based traceability recovery appraagsh  requirement andv, (0 < w, < 1) is the predefined weight
our solution retrieves links that are either correct or imect  associated to each requirement. Notice that if we considler a
so needing the human intervention to remove erroneouslyequirements equally (i.ew,=1), we resort toRCov(t) The
recovered links. To avoid that human factors may affect theequirements weightv, depends on the testing needs. In this
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work, we use as default values three weights associatedto thelationships with a high number of other requirementst tha

labelshigh, medium low [2]: is to the test cases exercising “key” requirements.
1 r € TesterRelevant, Given a test caseg £ S, we define:
wy, = ¢ 0.5 TesterPartialRelevant, (4) i
0 TesterNonRelevant, cumRCov(t;) = Z WRCouD() )
where TesterRelevant and TesterPartialRelevant are those =0

requirementsr selected by the tester as relevant or par- ) . .
tially relevant, instead the remaining requirements arel "€ cumulative requirements coverage for the test ¢ase

TesterNonRelevant However, alternative definition of the Ccomputed by summing the single requirements coverage (i.e.
weightw, can be considered. In fact, as in the code coveragh'® requirements covered only by the test case) of all those
case, the use of this weight, is expected to be useful (€St cases from to ;.

to customize the measurement of the requirements coveragesyecution cost The execution cost of a test case can be
according to the tester's need. Hence, requirements fiz&ti  5pproximated by the time required to its execution. If the
tion techniques [7] could be applied to autpmatlcally iafgnt implementation of the test cases is available, their exacut
requirements that are relevant for the tester’s purposgti@m  can he profiled to collect the information about the running
to be highly weighted when measuring the coverage. time. Alternatively, we can approximate the execution tinye

RCov(t)andWRCov(tdo not consider the existing relation- counting the number of software_ elements (e.g., code dasse.
ship among requirements: all the requirements are coresider Methods) expected to be exercised by the test case. In this
equally. This issue can lead to situations in which group&Vork, we assume to have the test implementation (e.g., Junit
of slightly connected requirements (i.e., those requirgme (€St cases), thus we defin&bst(t) as the estimated time
having a limited number of related requirements) are mgéd ~ reduired to execute the test case.

than the more connected ones. To deal with this issue, we Therefore, given a test sui whose test cases are ordered,
defineWRCovD(t) It takes into account existing relationships e computectumCost() as the sum of the execution costs of
among requirements. For sake of simplicity, in the follogin  {he test cases preceding the test dase S The overall cost
we applied the variant only t&/RCov(t)out the same could be ¢ the test cases of a suiBnamedCost(S) is the sum of the

done withRCov(t) To computeVRCovD(t) we need to mea-  gyecutions of all the test cases. We then defiverseCost()
sure the strength of each requirements relationship/dkgray

as follows:
(rD). This strength is computed as follows: .
WD (rl’ rm) _ Wreq ('f'la rm) ";wcode ('f'l, rm) (5) ITL’UCT'SGCOSt(ti, S) = Cost(S) — Zl COSt(tj) (10)
=

wherew, p(r, ) is the weight of the relationship inDs
between requirementsy; and 7,,,; w,p(r;,r,) tends tol  A. Measure for test reduction
if a strong relationship exists betweep and r,,, i.e., both
textual description and implementation strongly overlapile
wyp (7, ) tends to0 if no relationship exists between
andry,. Wyeq (77, 7m) aNdweode (11, 1) are the weights of the
relationship with respect to requirememisandr,, and their
implementation code, and are computed as follows:

For each test casg in the test suiteS, the measures
cumCCov(f), cumRCov(), andInverseCost() are computed
considering the position of; in S. Then, for each measure
above, we computed the area of the curves obtained by pottin
in a Cartesianplan the values of the metric (oK axes) with
respect to the test casessnites (Y axes). To get a numerical

Wyeq(T1,7m) = IRSimilarity (ry, ) (6)  approximation of that area, we used thepezoidalrule [8].
It computes the area of a curve as the area of a linear function
_ overlapClasses (1, 7m) that approximates that curve.
Weode (7'17 Tm) — (7)

totalCl . . .
otalClasses(r1,Tm) For a test suiteS and each defined cumulative mea-

Wreq (71, 7 ), iNferred by LSI, provides an indication about the sure, the area AUC in the following) estimates: the
possible link between the application requirementandr,,, code coveragdAUCcumCCoW), the requirements coverage
while weoge (1,7 ) cOMputes the portion of code that is in AUCcumRCoW), and the execution costUClnverseCosK).
common between the implementation of the requirements The area indicates how fast the test suiteconverges. The
andr,,. larger AUC, the better is.

The final requirement coverage bfs computed as:

WRCOUD(t) = Z Wy * ( Z Wreqs (T7 Tl)) (8)

r€Reqs ri#reReqs

B. Multi-Objective Reduction

The evaluation of all the possible test case subsets on
the three dimensions could be expensive even if in case of
wherew, is the predefined weight associate to each requirenon-large test suites. Hence, we propose the use of a multi-
ment. The weight of the dependencies between the currewbjective optimization to prioritize test cases accordiog
requirementr and the other requirements of the applica-the three identified measures. Specifically, we rely on the
tion are computed by the formuld,  cp.,.w-p(r,7).  Non-dominated Sorting Genetic Algorithm 1l (NSGA-II [9]).
WRCouD(t;) is expected to give more relevance thafR-  Even if different evolutionary algorithm could be used, we
Cov(t) to the test cases covering requirements having strongesort to NSGA-II since it lets us optimize several, potalhti
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conflicting, objectives. It has been also widely and sudadlgs  (Full); (ii) test suites reduced according to their capability of
used in research work goals similar to ours [10][11]. covering the code (CC) of the target application: CC reduces
a test suiteS by prioritizing its test cases applying additional
tode coverage (additional code coverage evaluates each tes
. ; ; . : case of a suite according the code portion that is uniquely
of candidate solutions (i.e., reduced test suites). Th&ugga .0 req by it [3]) and then selecting the top-ranked testsas

is guided by an objective function (called fitness function)y, pe part of the reduced suite [3]; atid) test suites reduced
that evaluates the quality of each candidate solution albag randomly (RA) [12]. '

considered dimensions. In each iteration, Bareto front of
the best alternative solutions is generated from the edolve _ )
population. The front contains the set of non-dominated soA. Experimental Objects

lutions, i.e., those solutions that are not inferior to alyeo In the study, we used three Java applications AveCalc
solution inall considered dimensions. Population evolution is| 2 1a77a and iT’rust. All applications are distributed oelin '

iterated until the maximum number of iterations is reached. and have been already used in the literature for different pu

The Pareto front represents the optimal trade-off betweeR0SeS [13]. AveCalc manages electronic record books fer stu
the structural, functional, and cost dimensions. The testa ~ dents: it has 8 classes for 1827 LOCs (excluding commetts); i
inspect the Pareto front to find the best compromise betweel§ distributed with 10 textual users’ requirements, and4iitl
having a test case ordering that balance code coveragéaequ test cases. Latazza is a coffee maker management appiicatio
ments coverage, and execution cost or alternatively haming it has 18 classes for 1121 LOCs (excluding comments); it is
test case ordering that maximizes one/two dimension/slpenadistributed with 10 textual users’ requirements, and 33iUn

izing the remaining one/s. This depends on the testing neediest cases. iTrust Medical Care is a medical application: it
has 232 classes for 15495 LOCs (excluding comments); it is

Specifically, the technique is set-up as follows: distributed with 15 textual users’ requirements and witl® 91
1. Solution Encoding: A solution is a possible reduced test junit test cases.
suitereds of the application under test. Thieds represents
an execution order for a subset of the test cases of the wholg Procedure
test suiteS. The solution space for the test reduction problem~"
is given by all the permutations of all the possible subséts 0  For each experimental object, we applied the following
the test suite. A reduced test suite is represented as arsagjue experimental procedure:
of integers, where each integer represents a test casdigtent 1. Collecting the artifacts: requirements specificationsirse
and the size of the reduced suite can be set-up by the testebde, and test cases.
The maximum number of test cases per suite is a parameter of Recovering the traceability links among such software
the algorithm that the tester can customize (e.g., 30% of thartifacts. As mentioned before, we used the following set-u
whole test suite). for LSI: k=300; constant threshokd0.1.
2. Initialization: We randomly initialize the starting popula- 3. Applying the test reduction techniques (i.e., RA, CC and
tion by selecting subsets of test cases among all the pessibMORE) to get subsets of the whole test suite, i.e., Full. To
of test case subsets. balance the number of test cases in the reduced suites, we
3. Genetic Operators:NSGA-II resorts to three genetic oper- fixed the size of the reduced test suites (e.g., 30% of Full).
ators for the evolution of the population: mutation, cra®o  Note that we ran MORE with the following set-upopulation
and selection. The standard operators typically applied fosize=2*“test suite size”;crossover probability0.9; mutation
subset of (permutation-based) encoding of solutions ag€.us probability=1/test suite size”. We executed different runs of
As mutation operator, we used the bit-flip mutation: oneMORE considering different iterations, that is framax itera-
randomly chosen element of the solution is changed. Th@ons=1k tomax iterations100k. We, moreover, executed both
adopted crossover operator is the one-point crossover, IMIORE and RA several times (4 and 20 times, respectively)
which a pair of solutions is recombined by cutting the twoand evaluated all solutions generated by them. This lets us
solution representations randomly chosen (intermed@i@)t  analyze the average behavior of the techniques (reporting
and swapping the tails of the two cut solutions. We usediescriptive statistics about the obtained values). MORE ha
binary tournament as the selection operator: two soluteses been also executed by weighting the requirements coverage
randomly chosen and the fitter of the two is the one tha{i.e., using WRCovDas the measure for the requirements
survives in the next population. coverage) according to a requirements prioritization eefin
4. Fitness Functions: The objective is to maximize the by one tester not involved in the rest of the study.
three considered dimensions. Then, each candidate solutial, Injecting faults in the source code of the application. We
in the population (each reduced test suite) is evaluatethjected 15, 15 and 21 faults in AveCalc, LaTazza, and iTrust
by our objective function based omAUCcumCCov(red),  respectively. This task was accomplished by an author not
AUCcumRCov(reg), and AUCInverseCost(reg). The larger involved in the rest of the study. Further details are not
these values, the faster a reduced test suite converges. provided for space reason (see also [18]).
5. Executing all the test suites in the faulty applications and
collecting information about the different evaluationteria.
6. Repeating the experiment considering several size of the
To assess the validity of both the technique and theeduced suites: 10%, 20%, 30% and 40% of Full and also after
prototype, we conducted an experiment in which we comparetaving perturbed the traceability links recovered by MORE
test suites reduced with MORE againg}: whole test suites (i.e., robustness evaluation).

NSGA-II uses a set of genetic operators (i.e., crossove
mutation, selection) to iteratively evolve an initial pdgtion

V. EXPERIMENT

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-304-9 21



ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

C. Measures Used for the Comparison (the strings are completely different). Given two testingsets
Redl; and Red) for a suite S with a fixed numbem of
st casesDiv is computed as:

- Size (Size(S)): What is the size of the reduced suites? Div(Redlg, Red2s) = (Ld(RedlS’RedIS)
Size(S) estimates the test effort required to execute the suite n
S. It is computed as the number of test cases of

The comparison has been performed with respect to th
following evaluation criteria and metrics:

) %100 (13)

] ] - - Robustnesg Robu(S)): How “noise” in the recovered trace-
- Effectiveness (Effect(S)): What is the capability of the apility links impacts on the capability of the suites rectiitey
reduced suites in discovering (injected) faultdfffect(S)  MORE in revealing faultsRobu(S) measures the capability of
measures the capability df to reveal (injected) faults. It is  the test reduction technique to adequately work in presefice
evaluated by considering two metricBuault(S), the number jncomplete or spurious/wrong traceability links (i.e.pfse”).
of revealed faults; andF'DC(S), the fault detection capability |t js evaluated by randomly perturbing the traceabilitykéin

rate of S. rF'DC(S) is computed as follows: identified by MORE and re-computing the evaluation criteria
5 FRY(S) for the obtained suites (e.g., effectiveness, efficiency).
rFDC(S) = fETF| El (11) - Settings How the MORE parameter settings can influence

the obtained suites in revealing faulté#?gives an indication
FRf(S) is the set of test cases ifi that reveals the faulf. about how to set-up MORE to make it effective and efficient in
F is the set of all known faultsrtFDC(S) gives us an idea revealing faults. With the aim of studying how MORE works in
about the capability in revealing faults of the test casethef different settings we considered, in particular, diffénenmber
suite S. The higher the value of botRuult(S) andrFDC(S),  of iterations of the evolutionary algorithm implemented by
the greater the capability to find faults of the suftds, that ~MORE and different size of the test suites reduced.
indicates a highly effective suite.

- Sensitivity (Sens(S)): What is the capability of the reduced D- Results

suites of discovering faults affecting top-relevant aggtion Table | summarizes the achieved results in terms of:
requirements?Sens(S) provides an indication of the capa- minimal, median, and maximal values for some of the col-
bility of .S in revealing faults having a high severity and |ected measures (e.g., effectiveness, sensitivity) ferttee
relevance with respect to the application requirementsieds  applications. On the other hand, Figure 1 plots the number of
as the application businesSens(S) is evaluated by means fayits revealed by each technique for the three application
of Fault'(S) applied to the subset of the injected faults thatnotice that these results are for the reduced suites canggin
affect relevant application requirements. 30% of Full suites. However, similar results and plots have

- Efficiency (Effic(S)): What is the efficiency of the reduced Peen collected also for reduced suites having differerd, siz
suites in discovering faultsBffic(S) estimates the capability 1-€-» 10%, 20%, 40% of Full suites. Figure 2 shows the

of S in early detecting the faults and it is measured as: distribution of code coverage and discovered faults forQale
at increasing size of the reduced suite (i.e., from 10% to
Effic(S) = Fault(S) (12) 40% of the Full suite); similar plots have been obtained

ECost(S) for all considered metrics and applications. Finally, Feg3

Effic(S) is the efficiency computes as the number of detecte(i\hows the distributions of discovered faults and efficiefury

L X . veCalc by considering: (i) the reduced suite that is coutstd
faults Fault(S) divided the time spent to do £Cost(S) (i.e., P e ; ;
the time to run the test cases of the sute The larger the by 30% of the Full size; and (i) different iterations of oeist

value. the more efficient the approach is reduction algorithm: 1k, 4k, 10k and 100k. Similar plots @dav
' PP ' been obtained for all metrics and applications.

- Artifact coverage: What is the capability of the reduced . . .
suites of covering the applications artifacté?gives an idea Effectiveness Table | (values in bold) and the corresponding

about how the test suite covers both the application codBOtS for AveCalc, LaTazza and iTrustin Figure 1 show that th
(Code_Cov(S)) and requirementsegs_Cou(S)). In detail Suites reduced with MORE overcome, in most of the cases, the

ones reduced by CC and RA while, in few cases, its result is
omparable with the best suites obtained from CC and RA.
he results achieved by CC and RA are generally worse.
&/e observe that the capability in revealing faults of suites
reduced with MORE (and using 30% of the Full test cases)
is, at least, double with respect to the other reduced suites
- Diversity (Div(S1,52)): How differ the reduced suites considering the minimal number of revealing bugs per stite.
are? Div(S1,52) estimates the difference of the test casesparticular, the suites reduced with RA have an highly vdeiab
composing the reduced suitéd and S2. It is measured by capability of revealing faults, with respect to those acbie
the Levenshtein edit distance [14]d). This distance indicates by MORE. This suggests also that MORE can improve the
the minimum number of operations (insert, delete, and oep)la capability of test suites reduced by CC and RA in revealing
to transform a source string into a target string both buiihg  faults by explicitly optimizing them with respect to codedan
the same alphabet (i.e., representing test cases of $llitesd  requirements coverage and execution time as well. However,
S2 reduced fromS). The values of Ld range from O (the two the good results achieved in few cases by RA, in terms of
strings are the same) to the maximum length of the two stringsevealed faults, indicates that improvements are stilsjtde.

we measure two metric€’ode_Cov(S) is measured in terms
of executed code statements exercised at least once bysthe t
cases of the suite whil®egs_Cov(S) is measured in terms
of number of requirement exercised at least once by the te
cases of the suite.
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TABLE I. SUMMARY OF THE ACHIEVED RESULTS FOR THE REDUCED SUITES HAVINGIZE 30% OF THE SUITES FULL
T AveCalc | LaTazza | iTrust
[ Ful T RA T CCTMORE [ Ful [ RATT CC TMORE]J Ful [ RA [ CC [ MORE
Size (%)
[[ 100 ] 30 100 30 [ TI00 ] 30
Effectiveness
Fault,,irn 15 6 6 15 2 6 5 21 T 7 3
Fault,,cq - - 8 - 4 - 6 - 4 - 6
Fault, oo - - 10 - 8 - 8 - 11 - 10
rFDC,in 0.053 | 0.009 [ 0.05 0.05 0.044 [ 0.01 | 0.05 0.04 0.0019 | 0.0002 | 0.0019 [ 0.0007
rFDC,ea - 0.004 - 0.08 - 0.04 - 0.05 - 0.0014 - 0.0014
rFDChax - 0.08 0.09 - 0.07 0.07 0.0026 0.0024
Sensitivity
Fault,,in 6 0 4 2 6 0 3 2 12 T 7 2
Fault',,cq - 3 - 3 - 2 - 3 - 5 - 5
Fault',,, o0 4 4 - 4 4 7 10
Efficiency
EffiCin 0.83 0.8 0.95 15 0.62 0.8 2.2 19 0.075 0.0IT 0.076 0.04T
ffiCimed - 1.1 - 2 - 1.5 - 2.4 - 0.059 - 0.083
Efficiax 1.7 2.5 - 2.6 - 3.2 0.132 0.133
Artifact Coverage
Code CovVyyin 426 114 426 419 316 230 | 301 233 7772 4602 7430 4690
Code CoV,,eq - 420 - 424 - 284 - 296.5 - 4998.5 - 5681
Code Covian - 426 - 426 - 308 - 312 - 5422 - 6095
ReqsCoV,,in 7 7 6 5 3 5 b 14 14 14 14
ReqsCov,,cq - - 7 - 5 - 5 - 14 - 14
ReqsCov,,qq 7 - 5 5 14 14
Robusiness
Fault,,ir 15 6 15 - 6 21 2
Fault,,.q - 7 - 7 - 4
Fault,, oo 8 8 7
Faul Fault Fault Faults Efficiency
3 T I A - N e [ — gl s s
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Fig. 2. AveCalc: results at increasing suite size. The doliel indicates the

T
40% Size

result of Full, the dashed one the result of CC.

MORE overcome the ones reduced by CC and RA in terms of
minimal number of severe faults impacting top-three raféva
requirements (identified by one tester not involved in thet re

of the study), and for iTrust also in terms of maximum numberthe high value of the minimal diversity (i.e., 42%), achidve

of revealed faults.

T
30% 40%

Size

terms of efficiency in revealing faults, i.e., they have rieeg
less time to reveal each fault.
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Fig. 3. AveCalc: results at increasing iterations. Thedsbiie indicates the

result of Full, the dashed one the result of CC.

MORE achieved a good coverage degree of the application
artifacts, i.e., code and requirements. In particular, \&e c
observe that in the considered applications, reduced ssuite
composed of 30% of test cases of the Full suites have the capa-
bility to cover: (i) almost all the application requiremsnised

in the study (i.e., more than 60% of requirements); and (ii) a
relevant portion of the application source code (i.e., nibas
59% of requirements). By manually inspecting test suita an
application requirements, we observed that the suitesagont
redundant test cases, that is test cases that exercisertige sa
portion of code but using different input values and oradies

addition, some of the used textual application requiresient

represent quite high-level descriptions of requirememd a
they do not present too many details, thus they shown high

- Sensitivity. Table | shows that the suites reduced withSimilarity with several test cases, according to LSI.

Diversity. Table Il shows the values collected fbriv. The
test suites reduced by MORE seems to be highly different
from the ones reduced with the other techniques. In padicul

in all the applications by the suites reduced with MORE and

- Efficiency. Table | shows that the suites reduced with MORECC, suggests a substantial difference of the composition of
always overcome all the other suites (reduced and full oines) the test suites reduced by MORE with respect to the ones
generated by the single-objective (i.e., CC) techniqueil&Vh

the high value of the minimal diversity (i.e., 85%), achiéve
all the applications by the suites reduced with MORE and RA,
- Artifact coverage. Table | shows that the suites reduced with suggests that some of the suites reduced by RA are strongly
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TABLE II. AVERAGE RESULTS ABOUTDIV . . .
the coverage of source code and application requiremends, a
DIV AveCalc LaTazza iTrust the cost to execute test cases. An IR-based traceabilityeeg
MORE - RA | 92.4 5100 | 85100 | 99.1+100 approach has been defined and applied to link software etgifa
MORE - CC 42 =100 42.7 + 100 98.2 + 100

(i.e., requirements specifications, source code, and &s&sg.

A reduced test suite is then determined by using a multi-
objective optimization, implemented in terms of NSGA-II.
Our technique has been evaluated using Java applications
and results are promising. Future work is, however, needed
- Robustness: Table | shows that the suites reduced withto further assess MORE on bigger software applications and

similar to the ones generated by MORE.

MORE revealed less faults, on average, than the correspgndi Compare our solution with additional test reduction teqhes.

suites reduced using the actual traceability links recedry
MORE. However, for LaTazza the number of revealed faults
increases of few points, this indicates the existence oé#hil- [
ity links incorrectly recovered. Further experimentatiwegeds

to be devoted to evaluate and detect such links. 2
- Settings: Figure 2 shows, as example, the results of the
suites reduced with MORE for AveCalc at different suite size [3]
respectively for the code coverage measure (left figure) and
for the discovered faults (right figure). Similar plots hdeen [4]
computed for all evaluation criteria and applications. riro
these plots, we observe that the suites reduced with MORE at
20,30% of Full suite size achived results almost comparable[S]
to the same Full suites, in terms of artifacts coverage, and
reasonably high results in terms of effectiveness and eiffagi.
Conversely, the MORE suites built using less than 20% of Full [6]
performed better, in terms of revealed faults, than CC. We
argue that this is mainly due to the fact that the suites rediuc
with MORE by considering, e.g., 10% of Full size have a quite [7]
limited coverage of the application artifacts, than CC (iFe2-

left the plot of code covered by MORE and CC). Furthermore
about the technique settings, Figure 3 shows that incredisen (g
maximum number of iterations of the evolutionary algorithm
implemented by MORE does not allow achieving better results[o]
in term of discovered faults and suite efficiency (see thésplo
of all the three applications).

[10]
- Final remarks. In conclusion, the results achieved in the
experiment show thati) consistently with the existing litera-
ture [15], the multi-objective optimization is overall effive  [11]

in reducing test suites by balancing different dimensioms a

(i) MORE achieves good results and it tends to outperform CC
and RA, even when a non-trivial suite reduction (e.g., 230 [12]
of the full suite) is considered.

. [13]
E. Threats to Validity

A possible threat that might affect the validity of the
achieved results is represented by the injection of faults i
the application code and their distribution. Differentssef
faults can potentially lead to different results. To redtits 45
threat, one of the authors (not involved in the rest of the
study) injected faults in the application code. An otheuéss
could be also represented by the non-deterministic behavid!6]
of the reduction techniques used. To reduce these biases, we
applied MORE and RA several times and then evaluated all the
generated solutions to study the average trend. Finallyh bo [17]
the size and complexity of the considered applications may
threaten the validity and the generalization of our results (18]

VI.

In this paper, we proposed a multi-objective technique to
reduce test suites. The technique reduces test suite eoimgjd

CONCLUSIONS ANDFUTURE WORK
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