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Abstract—Entire test suites are often used to conduct regres-
sion testing on subject applications even after limited andprecise
changes performed during maintenance operations. Often, this
practice makes regression testing difficult and costly. To deal with
these issues, techniques to reduce test suites have been proposed
and adopted. In this paper, we present a multi-objective technique
for test suite reduction. It uses information related to thecode and
requirements coverage, the past execution cost of each testcase
in the test suite, and traceability link among software artifacts.
We evaluated our proposal by testing three Java applications
and comparing the achieved results with those of some baseline
techniques. The results indicate that our proposal outperforms
the baselines and that improvements are still possible.

Keywords—Regression Testing; Requirements; Testing; Test
Suite Reduction; Traceability Link Recovery.

I. I NTRODUCTION

Regression testing is usually conducted after software
maintenance operations to guarantee that the effect of these
operations does not compromise the expected behavior of
a software application. Relevant activities often conducted
during regression testing [1] are:(i) test selection;(ii) test re-
duction (also named minimization); and(iii) test prioritization.
These activities are technical and business relevant because
they might affect the success of a software project [2]. Among
the activities above, test reduction reduces the number of test
cases to be executed and should preserve the capability of a
test suite in discovering faults.

To reduce test suites, existing techniques are mostly based
on a single dimension (e.g., code or requirements coverage).
Few attempts exist to reduce test suites and apply multiple
dimensions only consideringstructural information (e.g., code
coverage and execution cost), thus ignoring thefunctional
dimension [3][4]. Conversely, it could be relevant to reduce
test suites by explicitly taking into account structural and
functional information, and the time (e.g., seconds) required
to execute them.

In this paper, we propose a novel reduction technique
named MORE (Multi-Objective test cases REduction). It is
multi-objective and selects a subset of a test suite (i.e., reduced
test suite), so decreasing the testing time while preserving
the capability of the suite in exercising the application and
detecting faults. The technique is based on a three-dimension
analysis of test cases. Thestructural dimension concerns
information regarding test cases under analysis (i.e., howthey
exercise the application under test), whilefunctionaldimension
regards the coverage of users’ and system requirements. The
last dimension iscost and concerns the time to execute test
cases. To deal with these dimensions traceability links among

software artifacts (i.e., application code, test cases, and require-
ments specifications) are needed. Traceability links are often
not available or not up-to-date in the project documentation.
Then, we exploit Latent Semantic Indexing (LSI) [5] to infer
traceability links among software artifacts and to measuretheir
strength. To assess the validity of MORE, we have conducted
an experimental evaluation on three Java applications. In this
evaluation, we were mainly interested in assessing whetherthe
test suite reduced by applying our proposal may be effective
and efficient as the entire test suite.

Structure of the paper. In Section II, we discuss related
work, while the used traceability recovery approach is de-
scribed in Section III. In Section IV, we highlight the approach
for test suite reduction, while the experiment is presentedin
Section V. Final remarks and future work conclude.

II. RELATED WORK

The greater part of the approaches for test suite reduction
is single-objective, [1][3]. However, multi-objective techniques
have been also proposed. They largely adopt evolutionary
algorithms by reformulating the test suite reduction problem
as an optimization problem [15][16][17]. These approaches
consider either code or requirement coverage information and
try balancing that information with the execution cost of test
cases as follows:(i) explicitly optimize them as two objectives
(e.g., code coverage and execution cost);(ii) redefine the
multi-objective to a single-objective by using an optimization
function that conflates more objectives into only one. For
instance, Yooet al. [15] showed the benefits of the Pareto-
front optimality respectively for test case selection and test
minimization. They, in fact, present a two-objective approach
in which code coverage and execution cost are explicitly
considered when conducting test selection or minimization. To
reduce test suites, MAet al. [17] adopted an objective function
that conflates code coverage and execution cost information.
Furthermore, de Souzaet al. [16] proposed the use of the
Particle Swarm Optimization (PSO) algorithm that considers
two objectives for test case selection: coverage of functional
requirements and execution cost.

Differently from the paper discussed above, we propose a
technique to reduce test suites by explicitly considering both
low- (e.g., code coverage) and high-level (e.g., requirements
coverage) information about the test cases, as well as their
execution cost. We fill the gap between these kinds of infor-
mation by using LSI [5] to automatically recover traceability
links among software artifacts. Moreover, conversely to our
previous work [18], we investigated the problem of reducing
large test suites and, to this aim, we formulated the problemas
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a multi-objective optimization problem and adopted a specific
implementation of the NSGA-II algorithm [9].

III. T RACEABILITY RECOVERY

In this paper, we applied an IR-based technique to recover
traceability links:(i) among high-level software artifacts (i.e.,
application requirements and test case specifications) andlow-
level software artifacts (i.e., source code of the application and
test case implementations); and(ii) between pairs of high-level
software artifacts (i.e., application requirements). We use here
textual representationsof these artifacts. In the case of the test
cases (implemented using special conceived frameworks, e.g.,
Junit), a preliminary analysis was performed to identify the
application code identifiers (e.g., method and attribute names)
executed by test cases. The identifiers will constitute the textual
representation of the test cases. We used here LSI [5] as the
IR technique. The motivation for using LSI is that it has been
successfully used in the traceability recovery field [6].

A. LSI and IR-Based Traceability Recovery

LSI assumes that there is some underlying or “latent struc-
ture” in word usage that is partially obscured by variability in
the word choices. To this end, a Singular Value Decomposition
(SVD) is applied to am × n matrix (also named term-by-
document matrix), wherem is the number of terms, andn
is the number of documents in the collection. SVD can be
geometrically interpreted: each term and artifact could berep-
resented by a vector in thek space of the underlying concepts.
In traceability recovery field, the similarities between two
documents or between a term and a document are computed
using the cosine between the vectors in the latent structure.
In this work, we applied this similarity measure. The larger
the value, more similar the vectors are. A value fork should
be large enough to fit all the real structure in the data, but
small enough so that we do not also fit the sampling error or
unimportant details [5]. As default value, we usedk=300.

Differently from typical text retrieval problems (a user
writes a textual query and documents that are similar to the
query are shown), in IR-based traceability recovery a set of
source code artifacts (used as the query) are compared with a
set of target artifacts (even overlapping). Candidate traceability
links (i.e., all the possible pairs of software artifacts) are
reported in a ranked list. Irrelevant links are removed using
a threshold that selects only retrieved links (a subset of top
links). In this work, we use theConstant Thresholdmethod:
0.1 is the default value used. We used this value to limit the
possibility of loosing links by considering a larger number
of possible traceability links. There are also methods thatdo
not take into account the similarity values between source and
target software artifacts. For example, the methodVariable Cut
Point requires the specification of the percentage of links of
the ranked list to be considered as correctly retrieved. Either
relevant traceability links could be lost or irrelevant traceability
links could be introduced by using methods not based on
similarity values.

As in traditional IR-based traceability recovery approaches,
our solution retrieves links that are either correct or incorrect
so needing the human intervention to remove erroneously
recovered links. To avoid that human factors may affect the

experimental results, we did not perform here any analysis on
the recovered links.

IV. T EST SUITE REDUCTION

We introduce our technique and the metrics used.

- Code. The fault detection capability of a test case and then of
a test suite represents the capability to detect faults in source
code. This cannot be known before executing test cases. Then,
we have to resort to the “potential” fault detection capability
of a test suite. It can be estimated considering the amount of
code covered by test cases. A test case that covers a larger
set of code statements at run-time has a higher potential fault
detection capability (i.e., more faults should be revealed) than
one test case that covers a smaller set of statements.

Assuming to have test case implementations (e.g., Junit
test cases), we defineCCov(t) as the amount of statements
exercised during the implementationt:

CCov (t) =
∑

s∈Statements

{

1 s ∈ CodeCovered
0 otherwise

(1)

whereStatementsis the set of source code statements.Code-
Covered is the set of statements covered by the execution
of the test caset, s is a code statement of the application.
Given a test suiteScomposed of ordered test cases, we defined
cumCCov(ti) as follows:

cumCCov (ti) =
i−1
∑

j=0

CCov (tj) (2)

where ti is a test case of the suite. The cumulative code
coverage forti is computed by summing the single code
coverage (i.e., the code covered only by the test case) of all
those test cases fromt0 to ti−1.

- Requirements. The capability of a test case to exercise
users’ and/or system requirements depends on:(i) the amount
of the requirements covered by the test case;(ii) the rel-
evance of the covered requirements; and(iii) the existing
dependency/relationship among requirements. We defined and
used RCov(t) and a weighted variantWRCov(t). RCov(t) is
the measure of the requirements coverage for the test caset.
This measure estimates the application requirements exercised
during the execution oft and it is computed by counting
the number of requirements exercised by the test caset.
WRCov(t)measures the coverage for a test case according to
predefined weights assigned to each application requirement.
This coverage measure is computed as follows:

WRCov(t) =
∑

r∈Reqs

{

wr r ∈ ReqsCovered
0 otherwise

(3)

Reqs is the set of requirements of the application under
test. ReqsCoveredis the set of requirements covered by the
execution of the test caset, while r is one of the application
requirement andwr (0 ≤ wr ≤ 1) is the predefined weight
associated to each requirement. Notice that if we consider all
requirements equally (i.e.,wr=1), we resort toRCov(t). The
requirements weightwr depends on the testing needs. In this
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work, we use as default values three weights associated to the
labelshigh, medium, low [2]:

wr =

{

1 r ∈ TesterRelevantr

0.5 TesterPartialRelevant r

0 TesterNonRelevantr

(4)

where TesterRelevantr and TesterPartialRelevantr are those
requirementsr selected by the tester as relevant or par-
tially relevant, instead the remaining requirements are
TesterNonRelevantr. However, alternative definition of the
weight wr can be considered. In fact, as in the code coverage
case, the use of this weightwr is expected to be useful
to customize the measurement of the requirements coverage
according to the tester’s need. Hence, requirements prioritiza-
tion techniques [7] could be applied to automatically identify
requirements that are relevant for the tester’s purposes and then
to be highly weighted when measuring the coverage.

RCov(t)andWRCov(t)do not consider the existing relation-
ship among requirements: all the requirements are considered
equally. This issue can lead to situations in which groups
of slightly connected requirements (i.e., those requirements
having a limited number of related requirements) are privileged
than the more connected ones. To deal with this issue, we
defineWRCovD(t). It takes into account existing relationships
among requirements. For sake of simplicity, in the following,
we applied the variant only toWRCov(t)but the same could be
done withRCov(t). To computeWRCovD(t), we need to mea-
sure the strength of each requirements relationship/dependency
(rD). This strength is computed as follows:

wrD(rl, rm) =
wreq(rl, rm) + wcode(rl, rm)

2
(5)

wherewrD(rl, rm) is the weight of the relationship inrDs
between requirements:rl and rm; wrD(rl, rm) tends to 1
if a strong relationship exists betweenrl and rm, i.e., both
textual description and implementation strongly overlap,while
wrD(rl, rm) tends to0 if no relationship exists betweenrl

andrm. wreq(rl, rm) andwcode(rl, rm) are the weights of the
relationship with respect to requirementsrl andrm and their
implementation code, and are computed as follows:

wreq(rl, rm) = IRSimilarity(rl, rm) (6)

wcode(rl, rm) =
overlapClasses (rl, rm)

totalClasses(rl, rm)
(7)

wreq(rl, rm), inferred by LSI, provides an indication about the
possible link between the application requirementsrl andrm,
while wcode(rl, rm) computes the portion of code that is in
common between the implementation of the requirementsrl

andrm.

The final requirement coverage oft is computed as:

WRCovD(t) =
∑

r∈Reqs

wr ∗ (
∑

rl 6=r∈Reqs

wreqs(r, rl)) (8)

wherewr is the predefined weight associate to each require-
ment. The weight of the dependencies between the current
requirementr and the other requirements of the applica-
tion are computed by the formula:

∑

rl 6=r∈Reqs wrD(r, rl).
WRCovD(ti) is expected to give more relevance thanWR-
Cov(t) to the test cases covering requirements having strong

relationships with a high number of other requirements, that
is to the test cases exercising “key” requirements.

Given a test case ti ∈ S, we define:

cumRCov (ti) =

i−1
∑

j=0

WRCovD(tj ) (9)

The cumulative requirements coverage for the test caseti is
computed by summing the single requirements coverage (i.e.,
the requirements covered only by the test case) of all those
test cases fromt0 to ti−1.

- Execution cost. The execution cost of a test case can be
approximated by the time required to its execution. If the
implementation of the test cases is available, their execution
can be profiled to collect the information about the running
time. Alternatively, we can approximate the execution timeby
counting the number of software elements (e.g., code classes,
methods) expected to be exercised by the test case. In this
work, we assume to have the test implementation (e.g., Junit
test cases), thus we definedCost(t) as the estimated time
required to execute the test case.

Therefore, given a test suiteS, whose test cases are ordered,
we computedcumCost(ti) as the sum of the execution costs of
the test cases preceding the test caseti ∈ S. The overall cost
of the test cases of a suiteS (namedCost(S)) is the sum of the
executions of all the test cases. We then defineInverseCost(ti)
as follows:

InverseCost(ti, S) = Cost(S) −

i
∑

j=1

Cost(tj) (10)

A. Measure for test reduction

For each test caseti in the test suiteS, the measures
cumCCov(ti), cumRCov(ti), and InverseCost(ti) are computed
considering the position ofti in S. Then, for each measure
above, we computed the area of the curves obtained by plotting
in a Cartesianplan the values of the metric (onX axes) with
respect to the test cases insuiteS (Y axes). To get a numerical
approximation of that area, we used theTrapezoidalrule [8].
It computes the area of a curve as the area of a linear function
that approximates that curve.

For a test suiteS and each defined cumulative mea-
sure, the area (AUC in the following) estimates: the
code coverageAUCcumCCov(S), the requirements coverage
AUCcumRCov(S), and the execution costAUCInverseCost(S).
The area indicates how fast the test suiteS converges. The
largerAUC, the better is.

B. Multi-Objective Reduction

The evaluation of all the possible test case subsets on
the three dimensions could be expensive even if in case of
non-large test suites. Hence, we propose the use of a multi-
objective optimization to prioritize test cases accordingto
the three identified measures. Specifically, we rely on the
Non-dominated Sorting Genetic Algorithm II (NSGA-II [9]).
Even if different evolutionary algorithm could be used, we
resort to NSGA-II since it lets us optimize several, potentially
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conflicting, objectives. It has been also widely and successfully
used in research work goals similar to ours [10][11].

NSGA-II uses a set of genetic operators (i.e., crossover,
mutation, selection) to iteratively evolve an initial population
of candidate solutions (i.e., reduced test suites). The evolution
is guided by an objective function (called fitness function)
that evaluates the quality of each candidate solution alongthe
considered dimensions. In each iteration, thePareto front of
the best alternative solutions is generated from the evolved
population. The front contains the set of non-dominated so-
lutions, i.e., those solutions that are not inferior to any other
solution inall considered dimensions. Population evolution is
iterated until the maximum number of iterations is reached.

The Pareto front represents the optimal trade-off between
the structural, functional, and cost dimensions. The tester can
inspect the Pareto front to find the best compromise between
having a test case ordering that balance code coverage, require-
ments coverage, and execution cost or alternatively havinga
test case ordering that maximizes one/two dimension/s penal-
izing the remaining one/s. This depends on the testing needs.

Specifically, the technique is set-up as follows:
1. Solution Encoding: A solution is a possible reduced test
suite redS of the application under test. ThisredS represents
an execution order for a subset of the test cases of the whole
test suiteS. The solution space for the test reduction problem
is given by all the permutations of all the possible subsets of
the test suite. A reduced test suite is represented as a sequence
of integers, where each integer represents a test case identifier
and the size of the reduced suite can be set-up by the tester.
The maximum number of test cases per suite is a parameter of
the algorithm that the tester can customize (e.g., 30% of the
whole test suite).
2. Initialization: We randomly initialize the starting popula-
tion by selecting subsets of test cases among all the possible
of test case subsets.
3. Genetic Operators:NSGA-II resorts to three genetic oper-
ators for the evolution of the population: mutation, crossover,
and selection. The standard operators typically applied for
subset of (permutation-based) encoding of solutions are used.
As mutation operator, we used the bit-flip mutation: one
randomly chosen element of the solution is changed. The
adopted crossover operator is the one-point crossover, in
which a pair of solutions is recombined by cutting the two
solution representations randomly chosen (intermediate)point
and swapping the tails of the two cut solutions. We used
binary tournament as the selection operator: two solutionsare
randomly chosen and the fitter of the two is the one that
survives in the next population.
4. Fitness Functions: The objective is to maximize the
three considered dimensions. Then, each candidate solution
in the population (each reduced test suite) is evaluated
by our objective function based on:AUCcumCCov(redS),
AUCcumRCov(redS), and AUCInverseCost(redS). The larger
these values, the faster a reduced test suite converges.

V. EXPERIMENT

To assess the validity of both the technique and the
prototype, we conducted an experiment in which we compared
test suites reduced with MORE against:(i) whole test suites

(Full); (ii) test suites reduced according to their capability of
covering the code (CC) of the target application: CC reduces
a test suiteS by prioritizing its test cases applying additional
code coverage (additional code coverage evaluates each test
case of a suite according the code portion that is uniquely
covered by it [3]) and then selecting the top-ranked test cases
to be part of the reduced suite [3]; and(iii) test suites reduced
randomly (RA) [12].

A. Experimental Objects

In the study, we used three Java applications AveCalc,
LaTazza and iTrust. All applications are distributed online
and have been already used in the literature for different pur-
poses [13]. AveCalc manages electronic record books for stu-
dents: it has 8 classes for 1827 LOCs (excluding comments); it
is distributed with 10 textual users’ requirements, and 47 JUnit
test cases. Latazza is a coffee maker management application:
it has 18 classes for 1121 LOCs (excluding comments); it is
distributed with 10 textual users’ requirements, and 33 JUnit
test cases. iTrust Medical Care is a medical application: it
has 232 classes for 15495 LOCs (excluding comments); it is
distributed with 15 textual users’ requirements and with 919
JUnit test cases.

B. Procedure

For each experimental object, we applied the following
experimental procedure:
1. Collecting the artifacts: requirements specifications, source
code, and test cases.
2. Recovering the traceability links among such software
artifacts. As mentioned before, we used the following set-up
for LSI: k=300; constant threshold=0.1.
3. Applying the test reduction techniques (i.e., RA, CC and
MORE) to get subsets of the whole test suite, i.e., Full. To
balance the number of test cases in the reduced suites, we
fixed the size of the reduced test suites (e.g., 30% of Full).
Note that we ran MORE with the following set-up:population
size=2*“test suite size”;crossover probability=0.9; mutation
probability=1/“test suite size”. We executed different runs of
MORE considering different iterations, that is frommax itera-
tions=1k tomax iterations=100k. We, moreover, executed both
MORE and RA several times (4 and 20 times, respectively)
and evaluated all solutions generated by them. This lets us
analyze the average behavior of the techniques (reporting
descriptive statistics about the obtained values). MORE has
been also executed by weighting the requirements coverage
(i.e., using WRCovD as the measure for the requirements
coverage) according to a requirements prioritization defined
by one tester not involved in the rest of the study.
4. Injecting faults in the source code of the application. We
injected 15, 15 and 21 faults in AveCalc, LaTazza, and iTrust,
respectively. This task was accomplished by an author not
involved in the rest of the study. Further details are not
provided for space reason (see also [18]).
5. Executing all the test suites in the faulty applications and
collecting information about the different evaluation criteria.
6. Repeating the experiment considering several size of the
reduced suites: 10%, 20%, 30% and 40% of Full and also after
having perturbed the traceability links recovered by MORE
(i.e., robustness evaluation).
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C. Measures Used for the Comparison

The comparison has been performed with respect to the
following evaluation criteria and metrics:

- Size (Size(S)): What is the size of the reduced suites?
Size(S) estimates the test effort required to execute the suite
S. It is computed as the number of test cases ofS.

- Effectiveness (Effect(S)): What is the capability of the
reduced suites in discovering (injected) faults?Effect(S)
measures the capability ofS to reveal (injected) faults. It is
evaluated by considering two metrics:Fault(S), the number
of revealed faults; andrFDC (S), the fault detection capability
rate ofS. rFDC (S) is computed as follows:

rFDC (S) =

∑

f∈F
FRf (S)

|S|

|F |
(11)

FRf (S) is the set of test cases inS that reveals the faultf .
F is the set of all known faults.rFDC (S) gives us an idea
about the capability in revealing faults of the test cases ofthe
suiteS. The higher the value of bothFault(S) andrFDC (S),
the greater the capability to find faults of the suiteS is, that
indicates a highly effective suite.

- Sensitivity (Sens(S)): What is the capability of the reduced
suites of discovering faults affecting top-relevant application
requirements?Sens(S) provides an indication of the capa-
bility of S in revealing faults having a high severity and
relevance with respect to the application requirements, aswell
as the application business.Sens(S) is evaluated by means
of Fault′(S) applied to the subset of the injected faults that
affect relevant application requirements.

- Efficiency (Effic(S)): What is the efficiency of the reduced
suites in discovering faults?Effic(S) estimates the capability
of S in early detecting the faults and it is measured as:

Effic(S) =
Fault(S)

ECost(S)
(12)

Effic(S) is the efficiency computes as the number of detected
faultsFault(S) divided the time spent to do itECost(S) (i.e.,
the time to run the test cases of the suiteS). The larger the
value, the more efficient the approach is.

- Artifact coverage: What is the capability of the reduced
suites of covering the applications artifacts?It gives an idea
about how the test suite covers both the application code
(Code Cov(S)) and requirements (Reqs Cov(S)). In detail,
we measure two metrics:Code Cov(S) is measured in terms
of executed code statements exercised at least once by the test
cases of the suite whileReqs Cov(S) is measured in terms
of number of requirement exercised at least once by the test
cases of the suite.

- Diversity (Div(S1, S2)): How differ the reduced suites
are? Div(S1, S2) estimates the difference of the test cases
composing the reduced suitesS1 and S2. It is measured by
the Levenshtein edit distance [14] (Ld). This distance indicates
the minimum number of operations (insert, delete, and replace)
to transform a source string into a target string both built using
the same alphabet (i.e., representing test cases of suitesS1 and
S2 reduced fromS). The values of Ld range from 0 (the two
strings are the same) to the maximum length of the two strings

(the strings are completely different). Given two testing subsets
(Red1S and Red2S) for a suiteS with a fixed numbern of
test cases,Div is computed as:

Div(Red1S , Red2S) = (
Ld(Red1S, Red1S)

n
) ∗ 100 (13)

- Robustness(Robu(S)): How “noise” in the recovered trace-
ability links impacts on the capability of the suites reduced by
MORE in revealing faults?Robu(S) measures the capability of
the test reduction technique to adequately work in presenceof
incomplete or spurious/wrong traceability links (i.e., “noise”).
It is evaluated by randomly perturbing the traceability links
identified by MORE and re-computing the evaluation criteria
for the obtained suites (e.g., effectiveness, efficiency).

- Settings: How the MORE parameter settings can influence
the obtained suites in revealing faults?It gives an indication
about how to set-up MORE to make it effective and efficient in
revealing faults. With the aim of studying how MORE works in
different settings we considered, in particular, different number
of iterations of the evolutionary algorithm implemented by
MORE and different size of the test suites reduced.

D. Results

Table I summarizes the achieved results in terms of:
minimal, median, and maximal values for some of the col-
lected measures (e.g., effectiveness, sensitivity) for the three
applications. On the other hand, Figure 1 plots the number of
faults revealed by each technique for the three applications.
Notice that these results are for the reduced suites containing
30% of Full suites. However, similar results and plots have
been collected also for reduced suites having different size,
i.e., 10%, 20%, 40% of Full suites. Figure 2 shows the
distribution of code coverage and discovered faults for AveCalc
at increasing size of the reduced suite (i.e., from 10% to
40% of the Full suite); similar plots have been obtained
for all considered metrics and applications. Finally, Figure 3
shows the distributions of discovered faults and efficiencyfor
AveCalc by considering: (i) the reduced suite that is constituted
by 30% of the Full size; and (ii) different iterations of our test
reduction algorithm: 1k, 4k, 10k and 100k. Similar plots have
been obtained for all metrics and applications.

- Effectiveness. Table I (values in bold) and the corresponding
plots for AveCalc, LaTazza and iTrust in Figure 1 show that the
suites reduced with MORE overcome, in most of the cases, the
ones reduced by CC and RA while, in few cases, its result is
comparable with the best suites obtained from CC and RA.
The results achieved by CC and RA are generally worse.
We observe that the capability in revealing faults of suites
reduced with MORE (and using 30% of the Full test cases)
is, at least, double with respect to the other reduced suites,
considering the minimal number of revealing bugs per suite.In
particular, the suites reduced with RA have an highly variable
capability of revealing faults, with respect to those achieved
by MORE. This suggests also that MORE can improve the
capability of test suites reduced by CC and RA in revealing
faults by explicitly optimizing them with respect to code and
requirements coverage and execution time as well. However,
the good results achieved in few cases by RA, in terms of
revealed faults, indicates that improvements are still possible.
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TABLE I. SUMMARY OF THE ACHIEVED RESULTS FOR THE REDUCED SUITES HAVINGSIZE 30% OF THE SUITES: FULL

AveCalc LaTazza iTrust
Full RA CC MORE Full RA CC MORE Full RA CC MORE

Size (%)
100 30 100 30 100 30

Effectiveness
Faultmin 15 1 6 6 15 2 6 5 21 1 7 3
Faultmed - 5 - 8 - 4 - 6 - 4 - 6
Faultmax - 8 - 10 - 8 - 8 - 11 - 10
rFDCmin 0.053 0.009 0.05 0.05 0.044 0.01 0.05 0.04 0.0019 0.0002 0.0019 0.0007
rFDCmed - 0.004 - 0.08 - 0.04 - 0.05 - 0.0014 - 0.0014
rFDCmax - 0.08 - 0.09 - 0.07 - 0.07 - 0.0026 - 0.0024

Sensitivity
Fault’min 6 0 4 2 6 0 3 2 12 1 7 2
Fault’med - 3 - 3 - 2 - 3 - 5 - 5
Fault’max - 4 - 4 - 4 - 4 - 7 - 10

Efficiency
Efficmin 0.83 0.8 0.95 1.5 0.62 0.8 2.2 1.9 0.075 0.011 0.076 0.041
Efficmed - 1.1 - 2 - 1.5 - 2.4 - 0.059 - 0.083
Efficmax - 1.7 - 2.5 - 2.6 - 3.2 - 0.132 - 0.133

Artifact Coverage
Code Covmin 426 414 426 419 316 230 301 233 7772 4602 7430 4690
Code Covmed - 420 - 424 - 284 - 296.5 - 4998.5 - 5681
Code Covmax - 426 - 426 - 308 - 312 - 5422 - 6095
Reqs Covmin 7 6 7 6 5 3 5 4 14 14 14 14
Reqs Covmed - 7 - 7 - 5 - 5 - 14 - 14
Reqs Covmax - 7 - 7 - 5 - 5 - 14 - 14

Robustness
Faultmin 15 - - 6 15 - - 6 21 - - 2
Faultmed - - - 7 - - - 7 - - - 4
Faultmax - - - 8 - - - 8 - - - 7

Fig. 1. Boxplots of Faults for AveCalc (left), LaTazza (center) and iTrust
(right). The solid line indicates the result of Full.

Fig. 2. AveCalc: results at increasing suite size. The solidline indicates the
result of Full, the dashed one the result of CC.

- Sensitivity. Table I shows that the suites reduced with
MORE overcome the ones reduced by CC and RA in terms of
minimal number of severe faults impacting top-three relevant
requirements (identified by one tester not involved in the rest
of the study), and for iTrust also in terms of maximum number
of revealed faults.

- Efficiency. Table I shows that the suites reduced with MORE
always overcome all the other suites (reduced and full ones)in
terms of efficiency in revealing faults, i.e., they have required
less time to reveal each fault.

- Artifact coverage. Table I shows that the suites reduced with

Fig. 3. AveCalc: results at increasing iterations. The solid line indicates the
result of Full, the dashed one the result of CC.

MORE achieved a good coverage degree of the application
artifacts, i.e., code and requirements. In particular, we can
observe that in the considered applications, reduced suites
composed of 30% of test cases of the Full suites have the capa-
bility to cover: (i) almost all the application requirements used
in the study (i.e., more than 60% of requirements); and (ii) a
relevant portion of the application source code (i.e., morethan
59% of requirements). By manually inspecting test suites and
application requirements, we observed that the suites contain
redundant test cases, that is test cases that exercise the same
portion of code but using different input values and oracles. In
addition, some of the used textual application requirements
represent quite high-level descriptions of requirements and
they do not present too many details, thus they shown high
similarity with several test cases, according to LSI.

- Diversity. Table II shows the values collected forDiv. The
test suites reduced by MORE seems to be highly different
from the ones reduced with the other techniques. In particular,
the high value of the minimal diversity (i.e., 42%), achieved
in all the applications by the suites reduced with MORE and
CC, suggests a substantial difference of the composition of
the test suites reduced by MORE with respect to the ones
generated by the single-objective (i.e., CC) technique. While,
the high value of the minimal diversity (i.e., 85%), achieved in
all the applications by the suites reduced with MORE and RA,
suggests that some of the suites reduced by RA are strongly
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TABLE II. A VERAGE RESULTS ABOUTDIV

DIV AveCalc LaTazza iTrust
MORE - RA 92.4 ÷ 100 85 ÷ 100 99.1 ÷ 100
MORE - CC 42 ÷ 100 42.7 ÷ 100 98.2 ÷ 100

similar to the ones generated by MORE.

- Robustness:. Table I shows that the suites reduced with
MORE revealed less faults, on average, than the corresponding
suites reduced using the actual traceability links recovered by
MORE. However, for LaTazza the number of revealed faults
increases of few points, this indicates the existence of traceabil-
ity links incorrectly recovered. Further experimentationneeds
to be devoted to evaluate and detect such links.

- Settings:. Figure 2 shows, as example, the results of the
suites reduced with MORE for AveCalc at different suite size,
respectively for the code coverage measure (left figure) and
for the discovered faults (right figure). Similar plots havebeen
computed for all evaluation criteria and applications. From
these plots, we observe that the suites reduced with MORE at
20,30% of Full suite size achived results almost comparable
to the same Full suites, in terms of artifacts coverage, and
reasonably high results in terms of effectiveness and efficiency.
Conversely, the MORE suites built using less than 20% of Full
performed better, in terms of revealed faults, than CC. We
argue that this is mainly due to the fact that the suites reduced
with MORE by considering, e.g., 10% of Full size have a quite
limited coverage of the application artifacts, than CC (Figure 2-
left the plot of code covered by MORE and CC). Furthermore
about the technique settings, Figure 3 shows that increasing the
maximum number of iterations of the evolutionary algorithm
implemented by MORE does not allow achieving better results
in term of discovered faults and suite efficiency (see the plots
of all the three applications).

- Final remarks. In conclusion, the results achieved in the
experiment show that:(i) consistently with the existing litera-
ture [15], the multi-objective optimization is overall effective
in reducing test suites by balancing different dimensions and
(ii) MORE achieves good results and it tends to outperform CC
and RA, even when a non-trivial suite reduction (e.g., 20/30%
of the full suite) is considered.

E. Threats to Validity

A possible threat that might affect the validity of the
achieved results is represented by the injection of faults in
the application code and their distribution. Different sets of
faults can potentially lead to different results. To reducethis
threat, one of the authors (not involved in the rest of the
study) injected faults in the application code. An other issue
could be also represented by the non-deterministic behavior
of the reduction techniques used. To reduce these biases, we
applied MORE and RA several times and then evaluated all the
generated solutions to study the average trend. Finally, both
the size and complexity of the considered applications may
threaten the validity and the generalization of our results.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a multi-objective technique to
reduce test suites. The technique reduces test suite considering

the coverage of source code and application requirements, and
the cost to execute test cases. An IR-based traceability recovery
approach has been defined and applied to link software artifacts
(i.e., requirements specifications, source code, and test cases).
A reduced test suite is then determined by using a multi-
objective optimization, implemented in terms of NSGA-II.
Our technique has been evaluated using Java applications
and results are promising. Future work is, however, needed
to further assess MORE on bigger software applications and
compare our solution with additional test reduction techniques.
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