
Kongdroid: A proposal for a Cloud Service for Stress Testing on Android

Applications

Leonardo M. A. Sodré, Felipe Silva Ferraz, Gustavo Henrique da Silva Alexandre, Ana C. L. De Carvalho

CESAR

Centro de Estudos e Sistemas Avançados do Recife

Recife, Brazil

{lmas, fsf, ghsa, alcl}@cesar.org.br

Informatics Center

Federal University of Pernambuco

Recife, Brazil

{fsf3, ghsa}@cin.ufpe.br

Abstract – This work proposes a new and scalable service for

stress testing on Android applications. This tool is available

through cloud computing resources to support developers in

their applications validation, aiming robustness, stability and

compatibility, in different devices before commercial

deployment. The solution focuses on the generation of a certain

number of pseudo-random user interface events in the installed

application in an emulator. This emulator is created from real

images, of customized versions of the Android platform,

running in well known devices. This execution results in a

report containing the events that were successfully and those

that failed due to any specific reason.

Keywords-cloud computing; stress testing; remote testing;

mobile applications; Android

I. INTRODUCTION

The software development, for mobile devices, and the

conduction of large-scale experimental developing studies

using real person, have become easier through the creation

of app stores, and by using those stores as a mechanism for

a significant number of users, to publish applications they

have authored. An example of this was the emergence of the

Apple store, which popularized this type of service. Unlike

Apple's iOS platform, Google's Android open platform does

not impose restrictions on its operating system; thereby,

creating favorable conditions for various hardware

manufacturers to adopt these devices. However, this benefit

comes at a price: the challenge has become to develop

interactive applications that need to run on a variety of these

manufacturers’ items of hardware equipment, each with its

own customized version of the operating system, different

hardware resource capabilities and screen resolutions and

functionalities. Another relevant factor is the evolution of

the Android version, where the application needs to track

changes on the platform to keep operating properly.

Taking advantage of this benefit of the open platform

and manufacturers’ mass launch of more affordable Android

devices, according to a recent survey, last year, the Google

Store tripled in size, with its stock in 2013 amounting to

about 800 (eight hundred) thousand applications [1], and

recorded more than 25 (twenty five) billion downloads in

2012 [2].

Even though this demand has created the benefit of a

proliferation of applications, it has also presented the need

to address a growing issue: they have difficulty in

generating various user events to stress the application and

check if any exception occurs; in testing the capacities and

resolutions of Android devices on different models; and

there are few physical models available for testing. This

difficulty of having an insufficient number of devices is also

a reality faced by organizations.

Among the techniques used in this study was that of

using an Android emulator instead of the physical model.

This is because unlike the iOS simulator [3] and its resource

constraints, the emulator reproduces a real device

efficiently. This decision to use an emulator was further

strengthened when it became feasible to configure the

emulator, released by the manufacturer, with real versions

of the Android platform. Given the support of cloud

computing resources, it was possible to pre-configure these

emulators in a scalable environment, thus enabling it to be

used in parallel, so as to meet users’ requirements as to

running their application on several mobile devices. By

means of an Application Programming Interface (API)

accessed through an Internet browser, the user accesses this

cloud environment to subject his/her application to testing,

for which a script will be generated automatically to install

the app in the emulator and apply the stress command using

the Android Monkey tool, native to the platform. If the

processing of the test demands a high consumption of

infrastructure resources so as not to compromise the run

quality, a new instance may be used to balance these

resources in order to ensure the delivery of the results.

The program put forward in this paper to tackle these

difficulties is called a Kongdroid. This enables the

developer to use a prepared and configured environment in

which to conduct stress testing [4]. It is hoped that, by

having this facility, the knowledge of test development that

a developer needs will be reduced and that time will be

gained as there is no need to prepare an infrastructure since

this is provided by this service. As a result of using the

Kongdroid, it is estimated and it will permit the publication

of more robust applications that are compatible with various

Android device models, i.e., that it will indicate possible

areas for improvement, so as to anticipate corrections, while

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

the model is still in the development phase. Problems of the

type in which the application is unexpectedly closed are

among the situations that are not so easy to spot, unless

features such as the Android Monkey [5] are used.

This was a structured study, which began with the

authors deepening their knowledge of the technologies used

and a review of the literature so as to be able to cite related

studies. This introductory section draws attention to the

state of the art with the issues related to Kongdroid. Then

the proposed solution is detailed by describing the

techniques used to create the service and matters to be

careful about and points to consider. These strongly guided

the study while it was being developed. After recording the

approach to finding a solution, an account is given of the

planning, implementation and the comparison of two

experiments undertaken in which the solution was applied

so as to give evidence of how important it is to use it. To

summarize all the work done, the concluding section

indicates the improvements achieved in the state of the art,

the advantages and limitations of Kongdroid, its possible

applications and ideas on how it may evolve.

This paper is divided as follows: The first section

presents a short introduction, section II presents the state of

art about topics used in this paper, section III presents the

proposed solution and how it was developed, the

experiments and results used to validate the tool are

depicted in section IV, finally section V presents some

conclusions about this work.

II. STATE OF THE ART

A. Cloud Computing

Cloud Computing [6] is the representation of the
applications made available as a service on the Internet and
by software and hardware in the data centers that make these
services feasible [7]. There are many definitions of Cloud
Computing, but some features are held in common by most
of them, for example, virtualized environments and
providing computing resources on demand. This type of
service is commonly called a public cloud. A private cloud is
a center with data restricted to a specific company or of
limited access [8].

Cloud Computing is divided into three main types to
offer services, as shown in Figure 1: Software as a Service
(SaaS) [9], Platform as a Service (PaaS) [10], and
Infrastructure as a Service (IaaS) [11].

Figure 1. Cloud computing at different levels

Related to this work, there is a type of cloud computing
called Testing as a service (TaaS), which offers users testing
services, such as the automatic generation of test cases,
automated conduct of tests and evaluation of test results [12].
Testing tasks can be modeled using ontology techniques, and
they can be combined based on a shared ontology model,
along side with TaaS, there are, other subtypes:
Development as a Service (DaaS) [13], Communications as a
Service (CaaS) [14] and Everything as a Service (EaaS),
which are not part of this scope.

B. Android Platform

Android [15,16] is a platform for mobile devices that
runs on the nucleus of the Linux operating system but
developed into a structure external to this nucleus [17]. The
Android operating system was initially developed by Google
and later by the Open Handset Alliance (OHA), which is a
group of large companies in the telephone mobile market
such as HTC, LG, Motorola, Samsung, Sony Ericsson,
Toshiba, Nextel, China Mobile, T-Mobile, ASUS, Intel,
Garmin and others. OHA is led by Google and the group’s
goal is to define a single open platform for mobile phones;
thus, making consumers more satisfied with the final
product. Another goal of the group is to create a flexible
platform on which to develop applications. The birth of
Android came about based on these objectives for which
OHA is responsible for maintaining a standard platform
where all the new market trends are present in a single
solution [17, 18].

Android applications in [19] are built using Java
language; but, there is no Java virtual machine in the
operating system, only a virtual machine optimized for
mobile devices called Dalvik [20, 21].

C. Monkey Test

 Android Software Development Kit (SDK) [22] makes

a Monkey test tool available to generate pseudo-random

user events such as clicks, touches, or gestures and other

events at the system level. As the guide to the Android

platform itself says, "You can use the Monkey to stress-test

applications that you are developing, in a random yet

repeatable manner "[5].
The Monkey is a tool accessed via the command line that

can be run on an instance of the emulator or mobile device.
There are four main categories of options: basic
configuration, such as the definition of the number of
attempts for random events; operational restrictions, such as

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

restricting the test to a single package; event types and
frequencies; and debugging options [5]. During these events
the tool observes three conditions, which deal specifically
with the following: if it is restricted to execution in one or
more specific packages, it watches for attempts to browse for
other packages, and blocks them; if the application crashes or
receives any type of not-dealt-with exception, the Monkey
will stop and report the error, and if the application generates
an application not responding error, the Monkey will stop
and report the error [5]. Other types of behaviors of defects
that the Monkey does not detect can be mapped by other
types of smart Monkey tools [23]. Other related studies use
stress testing: AASanbox [24, 25] and model-based GUI for
Android applications [26].

D. Testdroid

The Testdroid is a useful tool for Android application
developers who can validate if their application is compatible
with several other types of devices [27, 28]. It is proposed to
perform a specific set of user actions on one or more real
device and collect and report test results. It is a service that is
available on the Internet, for which the steps: Record your
test, Run test on real devices and check reports.

III. PROPOSED SOLUTION

The proposed service is committed to providing a check
on the user’s application, using stress testing [4], based on
the native Monkey Test tool of the Android platform, to
validate the robustness and compatibility in various
telephone options and other mobile devices. After it has been
run, reports of the results are generated for data analysis and
emailed to the client. With such data, the client will obtain
valuable information to support improving the application
and ensuring quality, as shown in the proposed high-level
architecture in Figure 2. It will also lead to a better
understanding of the flow of the run and the entities
involved. In the following sections, this paper will describe
this solution in greater detail so as to understand its
methodology, structure and development decisions. Real
devices are dispensed with because the tests are run
exclusively on emulators.

Figure 2. High-level definition of the architecture proposed

A. Definition of the architecture based on the cloud

After a detailed study of the necessary functionalities of

the solution, it became very clear that to meet the user

demand, the architecture should have the following quality

attributes:

 Availability: The system will be available 7 days a

week and 24 hours a day;

 Integrity/security [29, 30]: Only users with access

privileges may configure and run tests. Every

application transferred to the service and tested will

be discarded at the end;

 Interoperability: The solution should be able to

operationalize its being implemented in different

modules, management and others, to conduct testing

processes, running on different operating systems,

Windows and Linux, respectively;

 Usability: A new user should be able to conduct a

test of an application without the need for guidance,

only with the support of tips on the filter options of

the commands;

 Scalability [31]: The service should scale computing

resources whenever there is a need to ensure the

correct balancing of the processing of users’

requests.

 Use of standards [32, 33]: The solution should

support pre-established script models for running

tests, so that they are dynamically created from the

selection of the options of mobile devices.

To meet these requirements, an infrastructure benchmark
on the market was adopted and widely used by several
companies, Amazon Web Services (AWS) [34]. AWS offers
a variety of cloud services, of which the one that stands out
is Amazon Elastic Computer Cloud (EC2) [35], which
permits the rental of instances of virtual servers that can be
scalable to the extent that the solution needs both processing
and to place limitations on software.

B. Definition of the standards used

In order to structure a better service, it was very
important to define models and nomenclature standards and
the target of the resources. In the presentation of the solution
to the user, there is the possibility of selecting more than one
type of mobile device. This feature led to a considerable
complexity, since the architecture should be flexible enough
to allow the addition of new devices without causing the
work developed to be reworked. In meeting this
functionality, for each model made available, a base script
model to carry out the commands of the test is defined. After
the executive action of the user, this standard model is used,
based on the filters selected by the user, to generate
dynamically the final script for conducting the test.

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

1) Nomenclature of commands and resources

First of all, the target folder for each authenticated user

was identified, named by his/her identification in the

system. In this folder, what are stored are all the resources to

be used such as: application to be tested; test script

commands for mobile and log files of the relevant events,

commonly called a log.

A unique identifier is assigned to each mobile device

option. Thus, the identifier is used for all command scripts

generated. For the identifier "001", the script will have to be

generated with the following format:

Script_Monkey_001.bat. It is also used to generate the

logcat (relevant phone events) with the following format:

LogCat_001.log and generation of the Monkey test log

(relevant events of the stress test command) with the

following format: LogMonkey_001.txt.

One of the commands carried out by the command script

is the startup of an Android Virtual Device (AVD) to start

the emulator. For each type of mobile device, an AVD was

created with the following format: avd [identifier], ie, for

the device with the ID "001", the nomenclature is avd001.

C. Preparation of the environment

As cited in the definition of the architecture, the AWS
infrastructure was chosen to make the service available in the
cloud. For this setting to work properly, an extensive level of
knowledge of managing servers or operating system
processes was not required, but some settings are essential so
it works correctly.

1) EC2 Structure
 For this study, a new account was created on the AWS

and the EC2 service used to create the instance of the
"t1.micro" type on the platform of the Windows operating
system, Server 2008 R2. This type of instance has limited
resources (CPU and RAM memory) and its use is free for
one year, i.e., payment for its use is not required unless use
exceeds some preset limits. When the instance is available,
access can be gained through a Domain Name System (DNS)
with a dynamic IP (internet protocol) address. This is not the
best option because at every reboot of the instance, this
address is modified. To overcome this drawback, the EC2
service has an elastic IP resource, i.e., for the public DNS, it
is assigned a static IP address, thus ensuring there is always
access to the same address.

2) Configuration of the Android platform

To use the Android emulator platform and to carry out

the Monkey commands, the Android Software Development

Kit (SDK), version 21, and the Java Runtime Environment

(JRE), version 1.7 have to be installed in the AWS.

Environment variables were created:

"ANDROID_SDK_HOME" containing the path of the

Android SDK and "JAVA_HOME", containing the path to

the JRE.

After properly installing the Android, the Android SDK

Manager had to be run to complete the upgrades of

associated tools. Among these updates, one requires special

attention, namely, the Google APIs Add-On. The add-on

provides system images compatible with Android that runs

on the Android emulator, thus enabling the application to be

debugged, run and tested before publishing it to users.

Several mobile phone manufacturers have these images on

their web pages targeted on application developers. For this

study, the images used were from the Motorola

manufacturers: Atrix 2 and Razr and LG 3D Optimus model

[36,37].

3) Configuration of the Microsoft platform
To implement the solution developed in ASP.NET MVC

4 [38], it was necessary to install the Internet Information
Service (IIS) version 7.5 and the Microsoft. NET Framework
4.5 in the AWS. For IIS, it was necessary to create an
application called "monkey", where the implementation of
the solution was stored and the right of full access to the
folder called "Content" of the application was assigned to
the user of the IIS (DefaultAppPool), so that “Content”
allows the resources used to be stored and altered.

D. Model of Monkey script

 As previously mentioned, to make the service flexible

as to replacing and/or adding new options for mobile

devices, a script model was created to run the commands

needed to perform the stress test. This stage of the project

required close attention and simulations to determine the

optimal sequence of actions to ensure better efficiency in the

results hoped for. The use of Android emulators involves a

series of difficulties when they are in an automation process,

since the ability to foresee the time needed to trigger each

command is not precise, and, therefore, auxiliary actions

were used to minimize this uncertainty. Other resources

were also taken advantage of to have the emulator perform

better, since there was not the need for a graphical display.

The automated commands in this script can be run manually

in the user’s environment, but they involve complexity in

configuring the necessary tools and environment variables.

The identifier of each mobile device option was

parameterized in this model so that all resources accessed

and generated are easily referenced, based on the data

selected by the user, the script is easily generated and

applied in the environment of the solution.

1) Selection of port

For this automation would function properly, the

environment was totally controlled, i.e., for each script

generated a known number of the network port is generated

and later will be attributed to the Android emulator. This

strategy is of fundamental importance to free the memory of

the emulator at the end of the test. The generation of the port

number is made at random between 5554 and 5584, this

range being reserved for this type of program. By default, if

the port does not specify it, it is associated with the

generating the numbers 5554 and 5555 (this second port is

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

reserved for the android debug bridge (ADB)) and should

another emulator be run in parallel, the next port is that of

the number 5556, and so on, successively.

The following is an example of a command linking port

5558 to the emulator:

In the example below, there is a sample command for a

specific emulator, for the installation of the user’s APK on

the emulator:

2) Estimate of time for each step

When using the mobile device or emulator, the focus of

this study, in a process of stress test automation [39], the

time it is estimated time for each command to be executed

should be taken into account. If there is not enough time left

over for the next command to be applied under favorable

conditions, the procedure, as a whole, will be compromised

and aborted. To ensure the efficiency of the script actions,

possible points of delay were identified and auxiliary

commands were defined in order to be used following these

main ones, i.e., promoting a longer time so that the

environment is in a fit state for the next step. One difficulty

found was that the operating system does not provide a

specific command for this situation, where, to solve this

limitation, another command was used to obtain the same

result. The following is an example:

For an operating system with a TCP/IP client, the PING

command can be used to delay the run by a number of

seconds. If specified (-w), the PING will wait for a number

of milliseconds between two pings before giving a time

limit. The environment variable, represented by (% timer%),

contains the time that the action will imply.

This feature was used to overcome three points of

slowness:

 Running the Emulator: Estimated time of 240,000

(two hundred forty thousands) milliseconds;

 Installing the Android Application Package (APK):

Estimated time of 20,000 (twenty thousand)

milliseconds;

Conduct of the Monkey test: Estimated time of 120,000

(one hundred and twenty thousand) milliseconds. A fixed
value was used due to the project being limited to 500 (five
hundred) random events. In an environment with a high
processing infrastructure, without limitation on events, this
estimate would need to use a formula such that the time
might vary proportionally.

3) Tool for recovering the APK package

In order for the command for the stress test to be able to

restrict the target application, it is fundamental to know the

name of the package that will be used as a parameter. For

the purposes of promoting a better experience for the user,

when using the service to enter and select data to perform

the test, there is no need to register this package in order to

avoid errors when typing manually.

To meet this situation, a tool called android-apktool was

used. This is a tool available in the repository of Google

projects under the Apache License 2.0, which undertakes

reverse engineering on Android APK files. It can decode

resources to nearly their original form and rebuild them after

some modifications have been made. Thus it was possible,

starting with the APK user, to decode the information of the

package and use it as a parameter in the command of the

stress test.

4) Definition of variables

When defining the script model definition, some

temporary environment variables were created to make it

possible when the script was generated to have a specific

one for the mobile device model and for the dynamic use of

information in the commands to be executed.

The example below better illustrates the need to use

these variables:

The same command used in session 3.5.1 to install the

user’s APK, but this time the variable %_adbPath% was
used, which identifies the path of the Android ADB program
to carry out the commands, %_serialEmulator%, which
identifies the serial or port in which the emulator is running,
and %_apkPath%, which identifies the path of the user’s
APK stored on the server.

5) Command to optimize the emulator

To avoid overloading the server, should more than one

instance of the emulator be run, unnecessary features in an

environment may be discarded without interacting with the

user. Thus, the options of initial animation, graphical and

audio interface were disregarded. The following is an

example of the command:

6) Command to instal the Apk

After the above command to run the emulator, the next

to be auctioned is to install the user’s APK. The ADB

provides an option so that this action occurs only when the

emulator is "ready", thus avoiding error and the script being

interrupted. The following is an example of the command

used:

emulator -ports 5558,5559 -avd avd001

adb -s emulator-5558 install helloWorld.apk

ping 1.1.1.1 -n 1 -w %_timer% >NUL

%_adbPath% -s %_serialEmulator% install

%_apkPath%

emulator -ports 5554,5555 -no-boot-anim -no-window -

noaudio -avd avd001

adb -s emulator-5558 -e wait-for-device install -r

helloWorld.apk

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

7) Command to unblock the screen

During the period of testing the solution it was realized

that the emulator on being started, by default, is left with its

screen blocked. Thus the command of the stress test was

discarded. To resolve this issue, a command was included in

the script to send a screen unblock event. Below is an

example of the command used:

8) Command to conduct the Monkey

For the main action of the script, the following

command to run the stress test was specified:

The arguments-v-v promote greater information in the

tests run. The %_apkPackage% variable stores the name of

the package, extracted as described in section 3.5.3. The

monkeyParameters development variable stores the set of

options for user-selected parameters. The

%_monkeyEvents% environment variable stores the number

of interface pseudo events reported by the user. The

%_logMonkeyPath% variable stores the service path to

record the results of the stress test.

E. Conduct of the test

To run the tests it was defined that the service should

possess a modularized and simplified flow. Using few steps,

the application meets a demand and then has the capacity to

quickly return to the initial state for a new request from the

user.

As shown in Figure 3, after the user obtains his/her

authentication, he/she is directed to the starting point of the

service. The first piece of information requested is the

submission of the application package to be tested, the Apk

Android. This transfer is performed securely and at the end

of the process it should be discarded. Still on the main

screen the user will need to provide other important pieces

of information, such as the email to, which results should be

sent, to select which application of the device models should

be validated, the number of pseudo events and other

optional choices regarding the stress test, these being

Monkey event options and Monkey debugging options.

After completing the data and confirming the start of the

operation, the system will validate them and if there is no

criticism, the service will be started.

Figure 3. Main flow of the conduct of the test

From this point on, the system has already allocated the

user´s physical space and the Apk Android is available for

use in the emulator, such that the script should be generated

and executed by the device model chosen. After each run of

this script has been concluded, an email will be sent to the

user and the result attached.

Figure 4 below shows each step of the test run by the

model of the device selected. This process is performed in

parallel so that the service does not take up the hardware

resources of the AWS infrastructure for a lengthy period of

time. Each run of an emulator requires a high level of

processing and memory, in which the orchestration of these

elements monitors the need to allocate more resources, i.e.,

whether another server will need to be initialized to balance

and ensure the quality of the system.

Figure 4. Secondary flow of the test per device

 In the flow of Figure 4, the first step is to check and

select the port number of the server where the emulator will

be allocated. This port is one of the parameters used for the

next step, the creation of the script. At this point, what are

defined are the times between each execution of a command

are defined, the parameters entered by the user to compose

the command Android Monkey command, the physical path

in the server of the user’s location to generate the results and

the path for the Apk of the target application of the tests.

During this run, a log file of the events generated from the

emulator and another log file of the events of the stress test

are generated with the test result. The flow is finalized with

the validation of these files.

Figure 5 below shows the sequence of the commands

that make up the test script. The run starts by using

environment variables used during actions in the emulator.

Via the android-apktool tool, the name of the Apk package

is recovered and stored in an environmental variable to be

used later in the command of the stress test. The next step is

to run the emulator, in which, to ensure optimum

performance, parameters are used to bypass the startup

animation, the audio and screen. At this point, the

adb -s emulator-5558 shell input keyevent 82

%_adbPath% -s %_serialEmulator% shell monkey -v -v

-p %_apkPackage% " + monkeyParameters + "

%_monkeyEvents% > %_logMonkeyPath%

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

generation of events of the emulator is also triggered. The

next action is to install the Apk of the application which, via

the wait-for-device parameter, is only run after the emulator

is found in the device state, i.e., its instance is prepared to

respond to the user’s actions. After the Apk has been

installed, but before running the stress test command, the

screen must be unblocked, since without this step the

pseudo events of the Monkey android are prevented from

interacting with the application. From this point on, the

emulator has the necessary condition for the stress test to

start and to record on file the events in order to compose the

result, whether there was a failure or success.

Figure 5. Secondary flow of the execution of the test script

After all the commands have been carried out, the Apk

application is uninstalled and deleted and the instance of the

emulator is closed.

F. Summary of the solution

Figure 6 illustrates the architecture of the solution at a

more detailed level, where the user, via a web browser,

submits his/her application and informs the proposed cloud

service of the parameters desired, which are loaded to run

and scale in an orchestrated way all the resources required,

such as to ensure the expected results.

Figure 6. Low-level definition of the architecture proposed

As Figure 6 shows, the first instance used of a virtual

server is that of a Windows Server, which is responsible for

starting the service and using the data selected by the user, it

dynamically generates scripts, per device, to be run. In the

second moment, another instance of a virtual server is

initialized, but this time is used for the option of a Linux

Ubuntu machine. The scripts of the stress test are run in

parallel in this new instance; should it be necessary, another

instance with the same settings can be used without

compromising the total flow of the solution. After finalizing

the conduct of the stress test, a report is stored and sent to

the user so he/she can analyze it.

IV. EXPERIMENTS AND RESULTS

To prove the correct functioning of the entire solution,

two examples run on Kongdroid will be described. The

input parameters and the expected result will be specified,

as well as a comparative analysis to prove why using the

tool as a support tool for developers of applications is

important before publication to future users.

A. Experiment undertaken

In the selection of the applications, the following

strategy was used: both should appear as published in the

Google Store (Google Play), an example of a simpler

application with a satisfactory result, and another example

of an application of more moderate complexity with a fault

in the test of the application not responding (ANR) type.

For the simple application, one was selected from the

calculator type, categorized as a utility, called Shake Calc. It

is proposed to be a scientific calculator with the following

features: accelerometer to finalize the calculation, basic

vision for access to the more frequently used functions and

more complex calculations; it can switch to an advanced

mode of exhibition with a touch from the user, as shown in

Figure 8. For the application of moderate complexity, one

was selected of the type with tables, categorized as

children's games, called Smart Bubbles. Figure 7 shows the

mentioned game that is proposed to be a math table with the

following features: a game to learn the tables in a fun way,

during the game, equations and bubbles with numbers are

presented; for each equation, a bubble appears with the

correct result and some others with wrong results.

Figure 7. The first two figures represent Shake Calc and the last two Smart

Bubbles

The Kongdroid was started after being informed of the

following input parameters: Choice of the APK of the

application to send to the service, the email to receive the

results, the target device of the stress test selected (for the

Shake Calc, the Motorola Atrix 2 model was used and for

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

the Smart Bubbles,the Motorola Razr was used). It was also

informed of 500 (five hundred) pseudo random events, 300

millisecond gaps between each event, to ignore crashes, to

ignore timeouts and to ignore security exceptions. These

latter three parameters are generally used to provide for the

test being run completely, unless it is finalized by the

operating system.

B. Metrics used

To better measure and condition the comparison of the

results for a more realistic analysis, the metrics were defined

of the total number of events per the number of events run

and the number of application runs by the number of

applications successfully tested.

C. Results

After submitting the APK application to Kongdroid and

informing it of the input parameters for each application of

the experiment, the cloud service will process the stress test.

This step takes less than ten (10) minutes, since every action

has a maximum time configured to be run on the application

installed on the Android emulator for greater efficiency in

allocating and releasing resources, as well as in the response

time of the results to the user. Upon completion of the due

tests, an email is created with the log files of the

environment and the Monkey with a text attached, whether

the test was successful or not, and sent to the user´s email

address so he /she may investigate and analyze the results.

In the most significant part of the Monkey log file of the

stress test done on the Shake Calc application, it is observed

that the test was successfully completed by the text "//

Monkey finished", where all five hundred pseudo random

events were run without an exception having occurred.

In the most significant part of the Monkey log file of the

stress test done on the Smart Bubbles application, as cited

when planning the experiment, the log highlights the failure

of the test by the ANR type of error that occurred, where the

application on receiving a given pseudo random user event,

a certain time without a response which leads the operating

system to cause the error in the application and to close it

immediately so as not to compromise other functionalities

of the device. If another type of error occurred in the

application, it would also be recorded on the Monkey log.

D. Comparison of the results

Metrics were applied with the following evidence:

 Number of events per total number of events run:

For the Shake Calc application of the five hundred

pseudo random events programmed all were

successfully run. For the Smart Bubbles application

of the five hundred scheduled events only twenty-

five were run successfully. As shown in the graph

in Figure 8:

Figure 8. Number of random pseudo events

Number of applications per number of applications

successfully tested: Two applications selected for the

experiment, where one had a successful test (Shake Calc),

and one had a failure in the test (Smart Bubbles).

By using the results of the metrics, very different

scenarios and conclusions can be obtained. While it was

attested that the experiment conducted with the Shake Calc

application, after subjecting it to a significant load of user

events, its stability responded effectively, thus ensuring that

its publication and other devices running on Android had

greater reliability, in the experiment conducted with the

Smart Bubbles application, it was proven that it does not

have the efficiency to withstand a greater number of User

Interface events, in which when a severe ANR error occurs,

the application needed to be finalized by the operating

system.

This type of error could be avoided in the development

phase by using a tool like Kongdroid, so that the credibility

of the application is not threatened. This is a real threat

given that the application is published and the user on

downloading it could come across the kind of situation

where he/she may suddenly be impeded from continuing to

use it and which may easily cause that the application can

no longer be used.

To better attest the efficiency of this work, another ten

(10) applications from the Google Play store were selected,

all of which were downloaded by a significant number of

users. The tests were performed on three device models

offered by Kongdroid, LG Optimos 3D, Motorola Atrix 2

and Motorola Razr. The following Figure 9 shows the

results of the stress tests:

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 9. Results in another 10 applications

Among the related studies presented in this paper and other

test automation tools surveyed, characteristics similar to

those in Kongdroid were not found. Due to this, it was

difficult making it possible to compile a valid comparison

test to attest to its efficiency. This is why the focus of the

experiments and results was on validating the quality of

existing applications in the Google Play store when

subjected to stress tests in different mobile device models.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the Kongdroid, a cloud

computing service to automate stress testing so as to analyze

Android applications. It is shown how the Android emulator

can be used to run applications in an isolated and pre-

configured environment with real images of versions of

operating systems released by device manufacturers. The

main purpose of this solution is to enable developers to

subject their application to a high number of pseudo random

user events in various Android devices to assure their

effectiveness as to the correct conduct of the functionalities.

Its importance is due to the fact that of its offering a

thorough knowledge of stress testing techniques, where the

developer will be able to use a pre-prepared environment to

validate his/her application in various device models with

different capacities and resolutions.

The advantages of using this service are obtained

because of the detailed results of the environment and

events performed being sent more speedily to the user for

his/her analysis. This makes it an important tool in

supporting development in order to pinpoint quickly areas to

be improved before publication in the Apps store. The

previous limitation that the developer had due to restricted

use for testing on devices no longer exists.

Among the limitations of the service, there is the

difficulty of repeating the test effectively, restricting the

stress test to one application screen, the difficult of closing a

specific instance of the Android emulator in the Windows

environment, the absence of images of the Android platform

for a given mobile device model and the high consumption

of memory and the limit of instances of the emulator.

The results obtained from the experiments undertaken

show there is no effective control by the Google Store as to

effective compatibility of their applications in the different

models found in the market. In this case, the assurance

needs to come from the very author of the application using

a tool such as Kongdroid.

One of the main contributions of this paper was that of

permitting the developer the facility of lessening his/her

need to acquire extensive knowledge of test development.

Without requiring complexity when preparing a test

environment, the service offers simplicity when generating a

considerable number of the user´s interface events in the

target application. This initiative enables the publication of

the application to be more robust and compatible with

various models of Android devices. Another important point

is to anticipate improvements and corrections during the

development phase, because what are avoided are problems

of the type in which the application is ended unexpectedly

during use. Besides costing less to correct before

publication, this does not adversely affect the credibility of

the author of the application.

For future research studies, we plan: adding new options

for device models; a new mechanism for freeing the

emulator at the end of the test for the Windows

environment; a real-time listing of events being run; a test

result in a more professional format; comparative results

between devices tested; improving the performance of the

emulator and; creating an orchestrator to manage cloud

computing resources more efficiently

REFERENCES

[1] I. Paul. http://www.rssphone.com/google-play-store-800000-

apps-and-overtake-apple-appstore/. Accessed in February

2013.

[2] Z. Lutz. http://www.engadget.com/2012/09/26/google-play-

hits-25-billion-app-downloads/. Accessed in November 2012.

[3] M. Goadrich and M. Rogers. Smart smartphone development:

iOS versus Android. In SIGCSE, volume 42, 2011.

[4] Ham K.H., Park, Y.B. 2011. Mobile Application Compatibility

Test System Design for Android Fragmentation. CCIS 257, pp.

314-320.

[5] UI/Application Exerciser Monkey,

http://developer.android.com/guide/developing/tools/monkey.h

tml. Accessed in February 2013.

[6] Parkhill, D. The Challenge of the Computer Utility.

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

[7] A. Bechtolsheim. Cloud Computing and Cloud Networking.

talk at UC Berkeley, December 2008.

[8] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.

Zaharia. Above the Clouds: A Berkeley View of Cloud

Computing. UC Berkeley, February, 2009.

[9] Candan, K. S., Li, W.-S., Phan, T., and Zhou, M. Frontiers in

Information and Software as Services. In Proceedings of the

25th IEEE International Conference on Data Engineering

(ICDE2009), pp. 1761-1768, 2009.

[10] D. Cheng. PaaS-onomics: A CIO’s Guide to using Platform-

as-a-Service to Lower Costs of Application Initiatives while

improving the Business Value of IT. Technical Report,

LongJump, 2008.

[11] S. Bhardwaj, L. Jain, and S. Jain, “Cloud computing: A study

of infrastructure as a service (IAAS)”, International Journal of

engineering and information Technology, vol. 2, no. 1, 2010,

pp.60-63.

[12] L. Yu, S. Su, J. Zhao, et al, “Performing Unit Testing Based

on Testing as a Service (TaaS) Approach”, Proceedings of

International Conference on Service Science (ICSS) 2008, pp.

127-131.

[13] K. Matsumoto, S. Kibe, , M. Uehara, and H. Mori. “Design of

Development as a Service in the Cloud” Network-Based

Information Systems (NBiS), 15th International Conference

on, (2012). Kawagoe, Japan 2012.

[14] L. Youseff, M. Butrico, and D. Da Silva. Toward a unified

ontology of cloud computing. In Grid Computing

Environments Workshop, 2008. GCE’08.

[15] S. Brahler, Analysis of Android architecture. Karlsruher

Institut für Technologie,

http://os.ibds.kit.edu/downloads/sa_2010_braehler-

stefan_android architecture.pdf, accessed Nov 14, 2010,

Outubro 2010.

[16] Android, www.android.com. Accessed in February, 2013.

[17] Google Android, Ricardo R. Lecheta, 2a Edição, Novatec,

Junho/2010.

[18] Professional Android Application Development, Reto Meier,

Wiley Publishing, Inc., 2009.

[19] How many lines of code does it take to create the Android

OS? http://www.gubatron.com/blog/2010/05/23/how-many-

lines-of-code-does-it-take-to-create-the-android-os/. Accessed

in February 2013.

[20] Dalvik, code.google.com/p/dalvik. Accessed in February 2013

[21] David Ehringer. The dalvik virtual machine architecture.

Technical report, Google, March 2010.

[22] Android Application Development, Rick Rogers et al,

O'Reilly, 2009.

[23] N. Nyman, “Using monkey test tools,” Software Testing and

Quality Engineering magazine, vol. 29, no. 2, pp. 18–21, 2000.

[24] A.-D. Schmidt, H.-G. Schmidt, L. Batyuk, J. H. Clausen, S. A.

Camtepe, S. Albayrak, and C. Yildizli. Smartphone malware

evolution revisited: Android next target? In Proceedings of the

4th IEEE International Conference on Malicious and

Unwanted Software (Malware 2009), pp. 1–7. IEEE, 2009.

[25] T. Bläsing, L. Batyuk, and A. Schmidt. An Android

Application Sandbox System for Suspicious Software

Detection. In 5th International Conference on Malicious and

Unwanted Software, Berlin, Germany, 2010.

[26] T. Takala, and M. Katara. Experiences of System-Level

Model-Based GUI Testing of an Android Application. In

Fourth IEEE International Conference on Software Testing,

Verification and Validation, Finland, 2011.

[27] Kaasila, J. Ferreira, D. Kostakos, V & Ojala, T (2012).

Testdroid: automated remote UI testing on Android.

Proceedings of the 11th International Conference on Mobile

and Ubiquitous Multimedia – MUM ’12: Art. 28.

[28] Robotium, 2010. It’s like Selenium, but for Android.

Retrieved on 19th January, 2012 from

http://code.google.com/p/robotium/.

[29] T. Mendhe, P. Kamble and A. Thakre, “Survey on Security,

Storage, and Networking of Cloud Computing”, International

Journal on Computer Science and Engineering (IJCSE), vol. 4,

no. 11, (2012) November, ISSN : 0975-3397.

[30] R. Byyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic.

Cloud Computing and Emerging IT Platforms: Vision, Hype,

and Reality for Delivering Computing as the 5th Utility. Future

Generation of Computer Systems. vol. 25. no. 6. pp. 599- 616.

2009.

[31] L. Jain and S. Bhardwaj, “Enterprise Cloud Computing: Key

Considerations for Adoption” International Journal of

Engineering and Information Technology Vol 2 , (2010). IJEIT

2010, 2(2), 113-117 ISSN 0976-0253 (Online).

[32] M. Fowler, UML Distilled. Addison-Wesley, 1997.

[33] A. Leff, and J. Rayfield. “Web-Application Development

Using the Model-View-Controller Design Pattern,”

Proceedings of the 5th IEEE Enterprise Distributed Object

Computing Conference, 2001, pp. 118-124.

[34] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, et al.

Performance Analysis of High Performance Computing

Applications on the Amazon Web Services Cloud. In

CloudCom, pp. 159–168. IEEE, 2010.

[35] W. Vogels. A Head in the Clouds—The Power of

Infrastructure as a Service. In First workshop on Cloud

Computing and in Applications (CCA ’08), October 2008.

[36] Motorola Solutions Developer,

developer.motorolasolutions.com. Accessed in October 2013.

[37] LG Developer, developer.lge.com. Accessed in October 2013.

[38] ASP.NET MVC 4, http://www.asp.net/mvc/mvc4. Accessed

in February 2013.

[39] M. Grechanik, Q. Xie, and C. Fu, “Creating GUI testing tools

using accessibility technologies,” in Proc. IEEE International

Conference on Software Testing, Verification, and Validation

Workshops. Washington, DC, USA: IEEE Computer Society,

2009, pp. 243–250.

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://www.asp.net/mvc/mvc4

