
Camera Trajectory Evaluation in Computer Graphics
Based on Logarithmic Interpolation

Mikael Fridenfalk
Department of Game Design

Uppsala University Campus Gotland
Visby, Sweden

mikael.fridenfalk@speldesign.uu.se

Abstract—A new technique is presented within the field of
multimedia software applications, based on a logarithmic shape-
preserving piecewise cubic Hermite interpolant for evaluation
of camera trajectories in mathematically generated large-scale
geometries, such as 3D fractals, with the ability to eliminate the
oscillations that currently are associated with interpolation of
exponential zooms.

Keywords-fractal space; logarithmic; LPCHIP; PCHIP; spline

I. INTRODUCTION

Piecewise cubic Hermite splines are presently used for high-
end interpolation of the trajectories of cameras and 3D objects
in computer graphics [2,6,7], such as computer games, but
also for computer-controlled cameras in film production.

On an implementation level, the standard method to control
a camera in computer graphics is by an object called the target
camera [8], defined by camera position, a look-at position and
the orientation of the camera around the vector pointing from
the position of the camera to the look-at position (called roll).
To avoid causing the viewer disorientation or nausea, roll is
often set to a constant value.

Presently, the spline interpolation techniques that are used in
computer graphics are as a rule not based on shape-preserving
ones, here defined as interpolants that are both harmonic and
monotonic, such as the Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP) in MATLAB [1,4,5], which could be
a better choice for camera trajectory control, since PCHIP
eliminates the overshooting effects that are associated with the
regular variant, see Figure 1 (left), thereby increasing the level
of control in camera trajectory design without any practical
downside, see Figure 1 (right). A reason for this could be that
MATLAB, which is the application that introduced PCHIP to
a wider audience, is presently not widely used in systems for
generation of motion picture, but rather applications such as
image processing.

In Figures 1-2 (left), the trajectories of two sets of break-
points are evaluated by a regular piecewise cubic Hermite
interpolant. While the implementation of the harmonic mean in
Figure 1 (middle), eliminates the overshooting effects of the
regular interpolant, Figure 2 shows that the harmonic mean
does not always work properly, unless the tangents (or slopes)
m1 and m2 are limited by locally monotonic constraints, see
Figures 1-2 (right).

The main difference between a regular and a shape-
preserving piecewise cubic Hermite interpolant is that here,
the tangents m1 and m2 in the regular interpolant are functions
of the mean values of the differences of adjacent breakpoints
(or keyframes), while the shape-preserving version is based
on locally monotonic functions of the harmonic mean of the
same, see LPCHIP (for Logarithmic Piecewise Cubic Hermite
Interpolation Polynomial) in Figure 12 for the example that
was used for the generation of the graphs in this paper.
LPCHIP in a non-logarithmic mode (i.e., with the argument
lg set to false), henceforth called the PCHIP equivalent, is not
identical to the MATLAB function PCHIP, but a simplified
version. The principal difference is that the PCHIP equivalent
is designed specifically for a constant step size between the
breakpoints. However, by the addition of separate interpolation
along the horizontal axis, as shown in Figures 1-2, the step
size between the breakpoints becomes automatically variable.

In Figure 3 (left), the effect of camera trajectory evaluation
is demonstrated using the regular mean value for the evaluation
of m1 and m2 in LPCHIP (with mode set to REGULAR) and
in Figure 3 (middle), with the adjustments of m1 and m2 by
multiplication with a factor of 0.25 instead of 0.5. As shown,
while in the latter figure the overshooting effect of the camera
position trajectory is reduced compared with the former, at the
same time the look-at position trajectory has become rougher.
This issue may be addressed by adaptive control, but is by
default solved by the application of the PCHIP equivalent, see
Figure 3 (right).

This paper consists of the presentation of a new technique
and a comparison with standard techniques presently used in
computer graphics, represented by the term regular interpo-
lation. In Section 2, the application of a logarithm is studied
in context with camera trajectory interpolation in exponential
zooms, to eliminate the oscillating effects that were discovered
using standard interpolation. In Section 3, a detailed solution
to the oscillation problem is offered, including the evaluation
of interpolation points as a function of arbitrary points in time.
This solution was further visually verified by implementation
in a computer graphics application primarily designed for
visualization of 3D fractals.

551Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 1: Regular (left), harmonic (middle), harmonic and monotonic (right). As shown in this example, the regular interpolant causes a
slight overshoot between the second and the third breakpoints.

Figure 2: Regular (left), harmonic (middle), harmonic and monotonic (right). While harmonic interpolation solves the overshooting problem
of the example in the previous figure, to work properly for all cases, it has to be monotonic.

Figure 3: Regular (left), regular with adjusted weights (middle) and the PCHIP equivalent (right).

(2, 9.9)

(12, 9.4 · 105)

lin

log

Figure 4: Regular interpolation (dotted) versus LPCHIP (solid) in an even exponential zoom.

II. LOGARITHMIC EXTENSION

We developed a camera trajectory control system using
Apple Xcode [9], based on a PCHIP equivalent during the
NASA International Space Apps Challenge 2013, for the
production of a video within the Ad Infinitum project on
the challenge Why We Explore. Although the control system
worked perfectly well within local room dimensions, yet the
exponential zoom from microcosm to macrocosm showed to

work less than satisfactory due to an uneven change of the
experienced zooming speed.

This effect is demonstrated in Figures 4-8 by the dotted
curves. In Figure 4, the effect is best shown using a regular
cubic Hermite interpolant with six breakpoints defined by
the function 3.146x, which was the largest base with three
decimals that could be used before the interpolant caused a
singularity. In this context, x represents the linear horizontal
axis in Figures 4-10. As shown in Figures 5-8 (dotted curves),

552Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

(2, 102)

(12, 1012)

lin

log

Figure 5: The PCHIP equivalent (dotted) versus LPCHIP (solid) in an even exponential zoom.

(2, 102)

(12, 1012)

lin

log

Figure 6: The PCHIP equivalent (dotted) versus LPCHIP (solid) in a dynamic exponential zoom.

(4, 104)

(16, 1016)

lin

log

Figure 7: The PCHIP equivalent (dotted) versus LPCHIP (solid) in a moderately scaled exponential zoom.

553Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

(4, 1064)

(16, 10256)

lin

log

Figure 8: The PCHIP equivalent (dotted) versus LPCHIP (solid) in a large-scale exponential zoom.

where Figure 8 displays a zoom using the function 1016x,
the PCHIP equivalent did not cause any singularities. In this
context, it is possible to increase the robustness of the regular
interpolant by weight adjustments, although as previously
demonstrated at a tangible cost. The conclusion from Figures
7-8 is that it is possible to minimize the oscillation effects
of PCHIP (and its equivalent) in exponential camera zooms,
if the breakpoints are placed closely enough. The problem is
however that the whole idea using interpolation is to eliminate
the manual generation of the finer details of a trajectory. Thus,
PCHIP (and its equivalent) fails to operate properly if the
distance between the breakpoints are exponentially increased.

III. RESULTS

The solution to this problem showed to be that the inter-
polant that was implemented in the Ad Infinitum project, had
to be redefined to be able to map the distance between the
look-at and the camera position into logarithmic space (and
back after the interpolation was performed), which is done by
setting the LPCHIP argument lg to true in Figure 12. Thus,
the solid lines in Figures 4-8 are obtained, which are identical
to the desired trajectory we initially wanted the regular and
the PCHIP equivalent interpolants to follow.

This new interpolant is called Logarithmic PCHIP
(LPCHIP), a name inspired by the MATLAB PCHIP function.
However, in order to work properly, the new interpolant has to
be implemented with some caution, since any position value
equal or less than zero exceeds the range of the function.

The solution is therefore not to apply LPCHIP (in logarith-
mic mode) directly on camera trajectory breakpoints, one for
each of the six dimensions (three degrees of freedom for the
camera position and three for the look-at position), but rather
only to interpolate the distance between the camera and the
look-at position, since by definition, this distance can never
be equal or less than zero. Thus, the arguments x0 to x3
of LPCHIP in Figure 12 do not have to be limited by any
safeguards.

Cam_LPCHIP in Figure 13 shows how the new technique is
implemented in practice. Briefly expressed, the interpolation
is performed the conventional way by separation of the men-
tioned six degrees of freedom. However, the difference here
is that using LPCHIP, the distance between the look-at point
and the camera is modified so that it follows a logarithmic
trajectory instead of a Euclidean.

In the sample code in C++ that is presented in Figures 12-
15 (which in this specific case was assessed to be as clear
and succinct as pseudocode for this level of detail, but more
straightforward to implement), mCamCoords is a matrix of
the type double of size mCamCoordsN × 7, where each row
consists of a breakpoint and the first column consists of the
time associated with each breakpoint followed by the camera
position (columns 2-4) and the look-at position (columns 5-7).

A question in this context is how LPCHIP affects inter-
polation where the distance between the breakpoints are rela-
tively constant (or more specifically non-exponential). Figure 9
shows that the deviation between the PCHIP equivalent and
LPCHIP is in this specific example too small to be visually
detectable in this graph. In Figure 10, the difference between
the PCHIP equivalent and LPCHIP (in Figure 9) has been
magnified, which for this example gives a peak and mean
deviation equal to 0.0043 versus 0.0011. This is relatively
insignificant and hardly even noticeable for camera trajectory
control applications, since the deviation is a smooth curve
without any discontinuities.

This example is however only a near best case and in
real applications the deviation should be usually quite visible.
As an example, in Figure 11, the corresponding average
deviation was estimated to 0.14 (or 2.4%), which is a more
realistic number. A large number, such as this, is however
not necessarily a disadvantage for LPCHIP compared with the
PCHIP equivalent but could rather be a measure of the discrep-
ancy of the latter compared with a well-designed interpolant
specifically developed for camera trajectory evaluation.

554Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Regarding the evaluation of t in Cam_Auto in Figure 14,
to be accurate, a reverse interpolant has to be used. Although
such interpolant can be derived symbolically, the solution
showed to be relatively complex. This is why a more
pragmatic approach was adopted by the application of
Newton’s method [3], where h′k for any k denotes the
derivative of hk in:

ti+1 = ti −
h1x1 + h2x2 + h3m1 + h4m2 − y

h′1x1 + h′2x2 + h′3m1 + h′4m2
(1)

The InvPCHIP method in Cam_Auto in Figure 14, takes y
as an argument and returns t. This method is obtained by the
addition of (1) inside a loop after the evaluation of hk and
h′k in the PCHIP equivalent (with an iteration start value of
t0 = 0.5). Figure 11 shows an example of the application of
LPCHIP as a function of time, using inverse time interpolation
to obtain a smooth trajectory based on six breakpoints using
identical start and end-points with totally 500 interpolation
line segments. In the example in Figure 11, it took in average
4.08 versus 4.72 iterations to find a solution within an error
interval in Newton’s method of 10−6 versus 10−9. In this case,
when the time is measured in seconds, this is equal to accuracy
levels in the order of microseconds versus nanoseconds.

Note that for correct performance, the current implementa-
tion of this camera trajectory evaluation technique requires a
continuously increasing time value along the first column of
mCamCoords.

IV. CONCLUSION

The new camera control system suggested in this paper
showed to exceed current systems used in computer graphics.
This new system is categorized by (1) utilization of a local
monotonic function of the harmonic mean for the evaluation
of the tangents of the piecewise cubic Hermite interpolator (in
similarity with PCHIP), in combination with (2) operation in
logarithmic space instead of Euclidean regarding the evalua-
tion of the distance between the camera and the look-at point,
thereby eliminating trajectory oscillations associated with in-
terpolation of exponential zooms using present techniques.

ACKNOWLEDGMENTS

Many thanks to the NASA International Space Apps Chal-
lenge 2013, where the mathematical problem solved in this
paper was first identified. In addition, special thanks to Ellinor
Dahl at Almi Gotland and Mikael von Dorrien at Almi Väst
for the encouragement that led to this work.

REFERENCES

[1] C. de Boor, K. Höllig, and M. Sabin, “High accuracy geometric Hermite
interpolation”, Computer Aided Geometric Design, vol. 4 (1987), no. 4,
pp. 269-278.

[2] M. Christie, P. Olivier, and J. Normand, “Camera Control in Computer
Graphics”, Computer Graphics, vol. 27 (2008), no. 8, pp. 2197-2218.

[3] P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance
and Adaptive Algorithms, Springer, 2011.

[4] F. N. Fritch and R. E. Carlson, “Monotone Piecewise Cubic Interpola-
tion”, SIAM Journal on Numerical Analysis, vol. 17 (1980), no. 2, pp.
238-246.

(1, 1)

a

b

(6, 6)

Figure 9: In a non-exponential zoom, the PCHIP equivalent and
LPCHIP virtually coincide in this example.

a

ε̂

b

Figure 10: The difference between the PCHIP equivalent and LPCHIP
in previous figure, gives a peak value of ε̂ = 0.0043.

(0, 4)

(4, 6)

(5, 10)

(7, 4)

Figure 11: An example of LPCHIP interpolation as a function of
time during 7 seconds. To obtain the correct parameter value t in
Cam_Auto, an inverse version of the PCHIP equivalent is used.

[5] C. Moler, Numerical Computing with MATLAB, Society for Industrial
and Applied Mathematics, 2010.

[6] T. Mullen, Mastering Blender, John Wiley & Sons, 2010.
[7] T. Palamar and E. Keller, Mastering Autodesk Maya 2012, Sybex,

Hoboken, NJ, USA, 2011.
[8] H. Smith, Foundation 3ds Max 8: Architectural Visualization, Dreamtech

Press, 2007.
[9] Xcode, Apple Inc. <https://developer.apple.com/xcode/> [retrieved: Au-

gust 7, 2013].

555Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

double GFX::LPCHIP(double x0, double x1, double x2, double x3,
double t, int mode, bool lg){

if (lg){x0 = log(x0); x1 = log(x1); x2 = log(x2); x3 = log(x3);}

double epsilon = 1e-20;
double den, m1, m2, d0, d1, d2, t2, t3, h1, h2, h3, h4, y;
d0 = x1 - x0; d1 = x2 - x1; d2 = x3 - x2;
bool a0 = mode == SHAPE_PRES && (d0 * d1 < 0.);
bool a1 = mode == SHAPE_PRES && (d1 * d2 < 0.);
bool b = fabs(d1) < epsilon;

if (mode >= HARMONIC){
if (a0 || fabs(d0) < epsilon || b ||

fabs(den = 1./d0 + 1./d1) < epsilon) m1 = 0.;
else m1 = 2./den;
if (a1 || b || fabs(d2) < epsilon ||

fabs(den = 1./d1 + 1./d2) < epsilon) m2 = 0.;
else m2 = 2./den;

}
else {m1 = .5 * (d0 + d1); m2 = .5 * (d1 + d2);}

t2 = t * t; t3 = t2 * t;
h1 = 2. * t3 - 3. * t2 + 1.;
h2 = -2. * t3 + 3. * t2;
h3 = t3 - 2. * t2 + t;
h4 = t3 - t2;
y = h1 * x1 + h2 * x2 + h3 * m1 + h4 * m2;

if (lg) return exp(y); return y;
}

Figure 12: The LPCHIP interpolant (a pedagogic version), called by Cam_LPCHIP.

void GFX::Cam_LPCHIP(int idx, double t, bool lg){
double X[6];
For (i,6) X[i] = LPCHIP(mCamCoords[idx-1][i+1],

mCamCoords[idx][i+1],
mCamCoords[idx+1][i+1],
mCamCoords[idx+2][i+1],
t,SHAPE_PRES,false);

if (lg){
double dx[4],dy[4],dz[4],d[4],dist,eye[3],u[3],factor;
For (i,4){

dx[i] = mCamCoords[idx+i-1][1] - mCamCoords[idx+i-1][4];
dy[i] = mCamCoords[idx+i-1][2] - mCamCoords[idx+i-1][5];
dz[i] = mCamCoords[idx+i-1][3] - mCamCoords[idx+i-1][6];

}
For (i,4) d[i] = sqrt(dx[i]*dx[i]+dy[i]*dy[i]+dz[i]*dz[i]);
dist = LPCHIP(d[0],d[1],d[2],d[3],t,SHAPE_PRES,true);
For (i,3){eye[i] = X[i]; mLookAt[i] = X[i+3];}
For (i,3) u[i] = eye[i] - mLookAt[i];
factor = dist/sqrt(u[0]*u[0]+u[1]*u[1]+u[2]*u[2]);
For (i,3) u[i] *= factor;
For (i,3) mEye[i] = mLookAt[i] + u[i];

}
else For (i,3){mEye[i] = X[i]; mLookAt[i] = X[i+3];}

}

Figure 13: The LPCHIP camera control method, called by Cam_Auto.

556Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

void GFX::Cam_Auto(){
int idx = mCamera_CurrentInterpIdx;
if (mCamCoords[idx+1][0] < mTime && idx < mCamCoordsN-3)

mCamera_CurrentInterpIdx = ++idx;
double t = InvPCHIP(mCamCoords[idx-1][0],

mCamCoords[idx][0],
mCamCoords[idx+1][0],
mCamCoords[idx+2][0],
mTime,SHAPE_PRES);

Cam_LPCHIP(idx,t,true);
glLoadIdentity();
gluLookAt(mEye[0], mEye[1], mEye[2],

mLookAt[0], mLookAt[1], mLookAt[2], 0.0, 1.0, 0.0);
}

Figure 14: The main evaluation method, called once for each rendered frame.

#define For(i,N) for (int (i) = 0; (i) < (N); (i)++)
...
class GFX ... {

enum {REGULAR, HARMONIC, SHAPE_PRES};
...
double mTime;//Time in Seconds
double mLookAt[3], mEye[3];//Camera Position
static const int MAX_CAM_COORDS_N = 1024;
double mCamCoords[MAX_CAM_COORDS_N][7];//Breakpoints (Including Timestamps)
int mCamCoordsN;//The Total Number of Breakpoints
int mCamera_CurrentInterpIdx;//Current Breakpoint (Start Value = 1)

};

Figure 15: A selection of declarations.

557Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

