
Two-Dimensional Models’ Processing Using Principles of Knowledge-Based

Architecture

Andrejs Bajovs, Oksana Nikiforova

Faculty of Computer Science and Information Technology

Riga Technical University

Riga, Latvia

e-mail: andrejs.bajovs@rtu.lv, oksana.nikiforova@rtu.lv

Abstract — Presently, the technological diversity increases the

attention to Model Driven Software Development, which

provides system modeling at the high level of abstraction and

further generation of software components. In this aspect, the

task of the automatic code generation starts to play an

important role and requires a new generation of the research

directed to the quality of model and model transformation

result. This paper discusses an ability to use several principles

of artificial intelligence and knowledge management and offers

so called knowledge-based architecture for code generation

from the Unified Modeling Language class diagram and a

verification of a class diagram itself.

Keywords- UML class diagram; code generation; knowledge

base; model verification

I. INTRODUCTION

An increasing impact of the role of system modeling
during software development facilitates the leading positions
of Object Management Group (OMG) [1] and its solution for
system abstraction, modeling, development, and reuse –
Model Driven Architecture (MDA) [2]. A key component of
usages of MDA is Unified Modeling Language (UML) [3],
which defines several kinds of diagrams, their elements and
notation. UML diagrams describe the system from different
aspects: static diagram represents system structure, dynamic
diagrams represents system behavior. Fully automated
transformation of system model, defined at platform
independent level into platform-specific source code, is the
main goal of MDA.

Currently, this goal has not yet been achieved
completely, due to problems with definition of system
dynamic aspects and their translation into code components
[2]. But even description of system static elements would
give a good initial preparation for system development and
its further refinement with dynamic aspects. This static
system representation in the form of UML class diagram and
further generation of software components could replace
significant amount of routine work performed by
programmers during software development. Reducing its
amount could give developers an opportunity to focus on
more important tasks, thus helping to improve the quality of
computer systems’ developing process.

Model-Driven Architecture defines that the system’s
models could be automatically transformed from one level of

abstraction into another. These levels involve not only
graphical, but also textual models, including a source code.
So, according to MDA, a graphical model could be
automatically transformed into a source code. Such
transformation process is commonly called code generation.

The idea of automatic code generation is not new. The
first code generators were compilers which appeared in the
middle seventies and used text-to-text generation techniques
[4]. Since then, a significant amount of different standards
appeared to support the idea of automatic code generation,
however the practical side of this field was left almost
untouched. Nowadays, a significant amount of different tools
exists, which implement the most popular code generation
approach – text templates. However, the authors’ previous
study shows that the code generation as a result of the UML
class diagram transformation is of a low quality [5]. As
designed for the concrete situations (thus, required to be
frequently rewritten), templates, possibly, limit the
functionality of some popular code generators. The other
problem is that the code generators do not “think” like a
human while doing their job and should be endowed with
means of at least artificial intelligence.

Therefore, authors state code generation as an object to
research and propose knowledge-based code generator
architecture, which allows not only generating the source
code, but also verifies the correctness of a model and thus a
model transformation result.

The goal of the paper is to describe how the basic
principles of artificial intelligence could be used to increase
the quality of the code generation process. This paper
specifies the background of the term “code generation” and
reveals the related problems. In order to solve them, the
hypothesis of the knowledge-based code generator
architecture is described. In addition, the small practical
example is presented to reveal the essence of the proposed
theory.

The paper is structured as follows. The second section
describes the roots of code generation and related problems
which disturb its evolution. Section three introduces the
knowledge-based code generator architecture and describes
its parts, advantages, and disadvantages. The mechanism of
how the introduced architecture works is explained in section
four. The fifth section gives an overview of the researches
related to the code generators, which use artificial
intelligence. Section six concludes the paper.

539Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

II. CODE GENERATION: STATE OF THE ART

The term code generation has several interpretations. One
of them is defined by OMG’s MDA. It states that
implementation of a concrete target platform is generated
from a model containing the target platform’s specific details
using pre-defined and tool supported transformations.
Actually, OMG did not invent anything new, but
standardized older framework – Model Driven Software
Development (MDSD) [6]. Both of MDA and MDSD are
related to a term “model”, which according to [1] is “… a
description or specification of a system and its environment
for some certain purpose.” However, MDA considers
models to be central in the development process (assuming
that the model represents a set of diagrams that express the
whole software system) [7]. According to MDA, these
diagrams are used to build the systems for any platform,
however MDSD does not claim such portability at all. In
contrast of MDSD, MDA suggests using only UML
diagrams to describe the system at a high level of
abstraction. In general, MDA is more strict than MDSD,
which allows much more ways of building the computer
system by using models [6].

There are four basic models for systems’ development
proposed by MDA: computation independent, platform
independent, platform specific and implementation specific
model. The first one reflects to business and its models. The
next two represent analysis and detailed design models of
software system to be developed. The last one reflects to
implementation and runtime models and, in fact, it is a
system’s source code. MDA also defines that each of the
described models could be transformed into the others [8].
This paper focuses on the automatic transformation of
platform specific model to the implementation specific
model.

While the OMG organization was developing theoretical
basis of the research area, practical side of code generation
started to fall behind. Nowadays, a significant amount of
different standards related to code generation exists [9], but
no methods could completely describe how to apply all these
theory into practice. The problem is that OMG invented their
standards for templates and transformation languages, but
almost forgot about looking at the core process of code
generation itself.

Speaking about theory, the computer science describes
two different code generation approaches [10], but both of
them involve word mapping to model elements. In addition,
the study from [5] shows that some of the nowadays most
popular code generators are not producing a good quality
code because of lack of smart ways to verify correctness of
the models.

Authors are making experiments with different software
development environments and different tools, positioned as
MDA/MDD support tools [5], and have detected several
inadequacies between expected code and code generated by
the tool. Unfortunately, the current experiments with
modeling tools that generate program code from UML class
diagram show a weak and unsatisfactory results compared to

the expected. Authors have identified a number of problems,
which can be generally divided into two groups:

 Modeling tools allow to create improper element
constructions and use incompatible keyword
connections that leads model transformation into
incorrect code, that can`t be compiled.

 Generated code does not correspond to notation and
details used in model, which leads to loss of
information in the result code.

 The root problem is in the simplicity of program code
generators, which just transfer the pattern of model
information into the program code without any additional
testing and decision making on the required information
conversion for the target programming language. Generators
do not have any additional knowledge support about target
platform restrictions, laws and keyword combination. Some
tools like SPARX Enterprise Architect [11] have code
template editor with built-in transformation templates, which
can be modified to support custom needs, but this does not
solve the problem of the lack of base information about
target platform, because restrictions might be needed for
combination of elements and not one-to-one element
mapping. The second mentioned group points to the
complexity of the generators negligence. The result program
code does not represent appropriate constructions for
semantics used in the model, resulting in loss of information
and devalue of the work invested to provide additional
details in the model.

It means that it is not enough with simple word mapping,
and machine should be taught to apply some knowledge
performing code generation. Inspired by this idea, in the next
sections authors propose their hypothesis of applying some
principles of artificial intelligence in code generation process
to supplement it with the model verification.

III. THE KNOWLEDGE-BASED CODE GENERATOR

ARCHITECTURE

In this section, authors propose the hypothesis of the
knowledge-based code generator architecture, which is
shown in Fig. 1.

Figure 1. Knowledge-based code generator architecture.

The reason authors call it “knowledge-based” is as
follows. As it was mentioned before, code generation is
nothing but model transformation to code performed by
computer. But how do human beings act, while transforming
models to source code? It could differ from concrete

OOP knowledge base

(concept + rules)

Language-specific principles

(language syntax)

Model-specific principles

(XMI syntax)

540Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

individual, but commonly, each element of the model is
taken and transformed, in a step-by-step manner, into code
according to some knowledge of the model’s notation,
programming language syntax and fundamental rules of
object-oriented paradigm. In authors’ opinion, the word
“knowledge” is the keyword here. That is the reason why the
proposed architecture consists of three blocks: Object-
Oriented Programming (OOP) knowledge base, model-
specific principles and language-specific principles. All of
them are explained in the next subsections of the paper.

A. Description of the knowledge-based architecture’s

blocks

The main block of the proposed architecture is OOP
knowledge base, which describes the field of object oriented
programming in a high level of abstraction. It represents only
the very basics and does not describe anything connected
with the concrete programming languages, models or
platform-specific things. This is expressed in a way of
ontology [12], which keeps two main things: conceptual
information about OOP and basic rules to support validating
the correctness of the UML class model.

The first is represented as a tree structure, which shows
the relationships between different concepts of OOP (e.g.,
class, visibility, attribute, method, etc.). The simple example
of such structure is shown in Fig. 2. Due to the complexity of
the OOP itself, the relations between some concepts
(visibility and attribute/method, type and name, interface and
method, etc.) are omitted at the example to make it more
readable and simpler to understand.

Figure 2. Example of OOP structure.

The second part of the OOP knowledge base is an
alternative to Object Constraint Language (OCL). This block
is represented by the set of rules, where each rule is a first-
order logic (predicate) expression. This set of rules describes
some restrictions which exist in the context of OOP (e.g.,
attribute can be only one at a time: private or public or
protected).

The research of [5] defines some of the rules which are
most commonly missed by code generators. They are:

1. If class contains at least one abstract method, then it
must be marked as abstract;

2. A non-abstract class that is derived from an abstract
class must include implementations of all inherited
abstract methods;

3. Because an abstract method must be overridden in
the derived class, then it must not be private;

4. While overriding an abstract method, the access
modifier ought to be the same as for the overridden
base method, e.g., if it is public, then in the derived
class it can not be protected, because it must be
public.

The rules mentioned above could be formally expressed
in the way shown in Fig. 3.

Figure 3. Formal expression of the model validation rules

The other block of the knowledge-based architecture is a
set of language-specific principles or in other words, the
syntax of different programming languages. In fact, there are
several sets of such rules – each represents concrete
programming language. The description of the syntax should
be similar to Backus-Naur Form (BNF) notation [13]
because its level of formalization allows to be easily
interpreted by computer. The syntax of languages should be
described using templates which associate concepts from the
OOP knowledge base with its formal syntax. Although
templates have some major disadvantages [5] which force to
find alternatives to replace them, it is preferable to use them
here. However, in this context templates should be
maximally laconic and structured, describing the whole
syntax of a concrete programming language rather than a
particular case. The example of a simplified description of a
Java class is shown in Fig. 4.

Figure 4. Example of the class syntax description using BNF notation

Such markups as <Name> or <Parent> are taken from
the OOP concept (see Fig. 2). During code generation the
<Name> is replaced by the name of a particular class while
<Attribute> is replaced by another piece of code which in
case of Java is defined like this:

[<Visibility>] [<Scope>] <Type> <Name> [= <Value>];
As it was stated earlier, the BNF notation is used to

specify the syntax. Thus, blocks which are enclosed inside
“{}“ are repeating blocks, but blocks inside “[]” are those
which can not be in the code for it to be correct, etc. A word
inside “<>” points to a concrete block of the syntax which is
associated with the concrete OOP concept. The last is a
modification which is used for proposed architecture and is
not connected with BNF.

1. has(Class, Method) & abstract(Method) 
abstract(Class);

2. ¬abstract(Class1) & parent(Class1, Class2) &
abstract(Class2) & inherited(Method, Class1,
Class2)  overriden(Method, Class1, Class2);

3. abstract(Method) & overriden(Method) 
¬private(Method);

4. overriden(Method1, Method2) &
abstract(Method2)  equals(visibility(Method1),
visibility(Method2).

OOP

Class Interface

Name

Attribute Method

Type Parameters

Visibility

Private

Public

Protected

Parent

“class” <Name> [<Parent>]

[“implements” <Interface>

{“,”<Interface>}] “{”

 [{<Attribute>}]

“}”

541Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

The third block includes the model-specific principles
that, in fact, represent the mapping of the concepts from the
OOP knowledge base to the Extensible Markup Language
Metadata Interchange (XMI) representation of the model
[14]. This should be done using slightly extended XPath
language [15]. Since various modeling tools implement XMI
format differently [16] this block contains various sets of
described mappings which are specific to the XMI format of
the concrete tool. For example, let us assume the concepts
shown in Fig. 2, which are mapped to the Extensible Markup
Language (XML) document shown at Fig. 5.

Figure 5. Example of the class syntax description using BNF notation

In this case, a mapping of the Class concept could be
done as //class, which means that this concept takes its data
from the class XML element. The name of the class in turn
could be accessed as <element>/@name . <element> is a
reserved directive which points to the element being iterated
before a current one since all concepts make a hierarchical
structure. This means that the knowledge-based code
generator takes a full path //class/@name to access the name
of the class.

It is also important that language-specific and model-
specific principles’ blocks could include overloading of
some of the classic OOP rules from the OOP knowledge
base according to the concrete programming language or
model. Section IV shows how all of these blocks work
together.

B. Analysis of the knowledge-based architecture

The proposed architecture does not have an ability to
autonomously derive code as logical consequence of the
knowledge-base like advanced AI code generators do.
Basically, the approach does the standard template-based
model-to-code transformation where additional intelligence
is reflected into using such fundamental AI structures as
ontology and first-order logic rules. Thus, ontology, syntax
description and rules proposed by the authors could be
represented as the equivalent of MDA meta-model, OCL and
the templates, but their specter of appliance is wider, as well
as they are more universal. For example, OCL is designed
directly for UML and is much more oriented on constraining
values rather than the structure of the models. In contrast,
predicate rules do not depend on any concrete syntax so they
could constrain every model by working directly with the
essence of OOP itself. As for the proposed templates, they
have less complex structure and focus on describing
language’s syntax rather than simple XMI mapping.

The main advantage of the proposed code generator
architecture is its precise structure. Knowledge-based
architecture defines the exact set of tasks for each of its
blocks. It also specifies different levels of abstraction for
describing contents for its blocks. The architecture gives an
opportunity to split block creation tasks between different
independent specialists where each of them should work on
concrete task at a specific level of abstraction. Moreover, the
OOP principles are a kind of bridge between a model and a
programming language. This means that theoretically, each
of the templates can be used with each of the model-specific
principles. Rewriting or adding new ones also do not affect
the opposite part. In addition, OOP knowledge base is the
bridge which stands between the problem and solution
domain. This is reflected in Fig. 6.

Figure 6. Relation of the knowledge-based code generator with sotware

development domains

Theoretically, the OOP knowledge base can be used to
transform some artifacts from the Problem software
development domain into the model. However, such
transformation is out of the knowledge-based generator’s
scope and thus, it will not be described in this paper.

The main disadvantage of the knowledge-based
architecture is a significant amount of the work required to
build a knowledge base and map its concepts with the syntax
and XMI. However, after this job is done, the knowledge-
based code generator potentially can be more powerful. The
other disadvantage is that there is a significant amount of

Problem

domain

Solution

domain

Software

domain

OOP

knowledge

base

OOP rules

Model-specific +

language-specific

principles +
OOP concept

<model>

<class id = “1” name = “A” p_id = “2”>

 <attributes>

 <attribute visibility = “private”

type = “int”>

 <name>A_atr1</name>

 </attribute>

 </attributes>

</class>

<class id = “2” name = “B”></class>
</model>

542Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

different ways to organize knowledge base as well as some
variants to write a syntax templates, which means that
functionality of such code generator can strongly vary
depending on specialists and many other factors.

In addition, the proposed architecture can be used in two
different dimensions: vertical (to generate a code from a
model) and horizontal (to verify if model is correct).
Normally, generating the code, both dimensions should be
involved, but their separate usage is also possible depending
on the task. When the model is only verified, the code
generator uses mostly the rules from OOP knowledge base,
but while performing only the code generation, all other parts
of the proposed architecture are used. Fig. 6 shows how these
dimensions are related with the software development
domain. The reason of calling these two concerns as
dimensions is also reflected there. Models are at the same
level of abstraction – solution domain, so, while validating
them, the code generator is staying within its bounds. That is
why the dimension is horizontal. As for the vertical
dimension, code generation transfers the model between the
different states of the various domains – vertically.

IV. USAGE EXAMPLES OF THE KNOWLEDGE-BASED

ARCHITECTURE

As it was mentioned before the architecture of the
knowledge-based code generator can be used in two different
dimensions: horizontal (to verify the correctness of the
model) and vertical (to perform the code generation). The
subsections below show the examples of both dimensions.

A. Vertical Dimension (Code Generation)

The knowledge-based code generator works with the
OOP knowledge base in the first place. It iterates through the
defined concepts starting from the root of the structural tree
by jumping between elements according to the relations of
these concepts. First, code generator takes an appropriate
mapping from the model-specific principles and tries to find
a value according to this mapping inside the XML meta-data.
If the value is found, then, the code generator takes a syntax
template for the OOP concept currently being iterated and
produces an output. If the template interpreter finds any
markup (text enclosed in “<>”) then, it refers to the
appropriate concept from the OOP knowledge base, searches
for the values according markup from the model-specific
principles and finds another template of the text to produce.
When the code generator meets a structure enclosed in “{ }”
it assumes that the model could contain none or more than
one element that is represented by the markup inside.
Therefore, it takes each of them, repeating the text and
iterating through every other concepts enclosed in figure
brackets as much as model elements it had found. If the code
generator meets something inside “[]” then it produces an
appropriate text if it finds any values inside the XML
documents, otherwise it does not. If the code generator does
not find any model elements which are enclosed in “{}” or
“[]” brackets, it will not produce any text inside of them.

Concerning the example shown in Fig. 2, Fig. 4 and Fig.
5, the root is “OOP” and its children are “Class” and
“Interface”. The code generator will not find anything

connected with “Interface” because XML document does not
contain anything about it. But since a markup of interface is
included inside the square as well as figure brackets, the
code generator will not insert anything at the place of
markup “<Interface>”, as well as it will not produce a text
“implements” and “,”. The situation with the concept “Class”
is different. Let us assume that this concept has a markup
“//model/class”. The code generator will use it to state that
the XML document contains two elements expressed with
this path so it will iterate through them. First of all, the code
generator will produce the text “class ” and meet the markup
“<Name>”. The knowledge base describes the concept with
the same name, so the code generator will jump to a model-
specific principle and find a markup for this concept. Let us
say it is “<element>/@name”. As the parent concept of the
current one is Class, the full path to determine its name is
“//model/class/@name”. Using this, the code generator finds
out the name of the class and produces the following code
“A {“. After that it will return to the parent (which is the the
concept Class) and continue parsing the template. The next
stop will be a markup “<Attribute>”. Here, in the same way,
the code generator will take a visibility, type and the name of
the attribute and construct a piece of code “private int
A_atr1;”. Since no more information about the class A is
provided the code generator will iterate further producing a
text “class B {} “.

At first glance this mechanism is very similar to the
ordinary templates, but the difference is that template is fully
separated from the markup. A markup for the Class could
possibly be “//diagram/elements/class” but for its name –

“//diagram/attributes[@id = <element>/@id]/name”.
This never affects the template and vice versa because these
two blocks are connected through the knowledge base which
is static. That gives an opportunity to switch between
markups easily without making any changes inside the
templates.

B. Horizontal Dimension (Model Verification)

The rules which are used to validate the model are
described in Fig. 3. The mechanism of the model verification
is conceptually simple: the model’s every element is tested
on matching the defined rules and if at least one of them does
not match, the model is considered incorrect. Despite
appearing primitive in theory, this part of the proposed
architecture is both the most creative and complex because
the rules can be translated into logical expressions in a
variety of ways. Each rule contains standard symbols defined
by predicate logic [12] (terms, predicates, and, or, not, etc.),
as well as references to the concepts from the OOP
knowledge base expressed as variables. But in contrast to the
model-specific and language-specific principles not every
OOP concept must be described in the rules. The other part
which is skipped in this example is putting some sense in
predicates or, in other words, explaining to a computer what
does they mean. The programming language, such as Prolog
[17] is used to accomplish this. Although it does not fully
feat in the concept of the knowledge-based architecture as
well as in the code generation itself, it is specially created to
work with logical expressions.

543Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

V. RELATED WORK

The first code generators in the World were related to
text-to-text transformation. They were nothing but high-level
compilers. According to [4], the first scientist who started to
talk about the code generation was Wilcox. In 1971, he
described his compiler, which was based on two internal
forms: Abstract Program Tree and Source Language
Machine. The first one was translated into the second one,
which in turn was transformed into the machine code.

The first popular code generator which was able to
transform model into a source code was Rational Rose [18]
developed by Rational Software in 1997. Later, this
company was consumed by IBM resulting with evolution of
Rational Rose into Rational Software Architect [19]. The
tool’s integration into an Eclipse environment allows users to
customize their transformations more flexibly. Flexibility is a
distinctive feature of Eclipse, so some other tools operating
under this platform exist: Acceleo [20] and XPand [21]. The
other popular tools – the “monsters” of today’s industry
which provide a code generation opportunities are such tools
as SPARX Enterprise Architect [11] and Microsoft Visual
Studio [22]. This list could be populated with a significant
amount of other smaller tools, and basically, all of these code
generators use their own different transformation
mechanisms which are mostly based on templates. In
addition, none of these tools are positioned to use artificial
intelligence to perform code generation.

The template based programming originated in the 1960s
and became especially popular thirty years later [23].
Eighteen years later, in 2008, the template-based code
generation approach was also standardized by OMG [24].
However, since then, no new versions of this specification
appeared.

The idea of using artificial intelligence in the field of the
code generation was expressed by bloggers-enthusiasts as
well as by scientists. Danilchenko and Fox [23] describe
their system called the Automated Coder using Artificial
Intelligence (ACAI), which as they claim is “… a first pass
at a purely automated code generation system”. ACAI
generates the code through some simple steps: first, it
generates a plan(s) to solve the problem; next, it takes
reusable code components from the library and weaves them
according to a created plan. The result is a text template
which has been processed to get a working source code.
ACAI uses an artificial intelligence technique called Case-
Based Reasoning which can be used to maintain a reusable
library of code components. Case-Based Reasoning is
popular, and also is used in the other code generation
systems: CHEF [25], Software Architecture Materialization
Explorer [26] and The Individual Code Reuse Tool [27].

The knowledge-based code generator studies, which are
mentioned above are advanced and actually they are far from
the classic MDA concept. The studies are based on building
the program’s text from the reusable code components. The
knowledge-based architecture, however, describes more
simple mechanism which uses only basic AI principles but in
fact is much similar to the ideology of the Model-Driven
Architecture.

VI. CONCLUSION

Abstraction is the process by which we extract and distill
core principles from a set of facts or statements. A model is
an abstraction of something in the real world, representing a
particular set of properties. There are two primary reasons
developers build the model [28]: understanding a process or
a thing by identifying and explaining its key characteristics
and documenting ideas what developers need to remember
and to communicate those ideas to other. OMG’s last
initiative – Model Driven Architecture offers the third reason
on using the models during software development [29].
Using models as a basis for the further code generation and
UML class diagram plays the central role on moving an idea
about the code generation into the industry.

A significant amount of different standards in the code
generation area overwhelmed it and as a result, led to the
lack of ways of using them in practice. However, a
significant amount of tools exist that have an ability to
generate a more or less working source code. In general, all
of them are using templates as a code generation technique,
and this could be a reason why those code generators have
not got an ability to work perfectly yet. The main problem is
that templates do not provide any mechanism to verify a
model which could be wrong from the start. Thus, as long as
completely new approaches of code generation will not be
found, the idea of using MDA for making the process of
implementing fully functioning system more easy, affordable
and reliable will remain nothing but a utopia. For now,
templates could not be fully replaced, that is why they must
be used in conjunction with the other methods.

The authors of this paper wanted to make a computer
“smarter” for the code generation tasks. This could be
achieved by applying some principles of the artificial
intelligence. Therefore, authors propose a knowledge-based
architecture which separates a code generator into three main
blocks: model-specific, language-specific principles, and
OOP knowledge base. The first one is used to perform meta-
model mapping, the second one describes the syntax of a
programming language, and the third one keeps the main
principles of OOP, as well as it serves as a bridge between
the first and the second block. In the opposition to the simple
template, the proposed architecture keeps the meta-model
mapping independent from templates. It allows not only to
use different syntax with different mapping cases but also
involving different specialists to work with them
independently in turn to save the time.

The key contribution of this paper is extending an
ideology of the MDA central components, such as templates,
meta-model and constraints. According to the architecture
proposed by authors, the templates are no longer
overwhelmed by complex directives but contain only
references to the OOP knowledge base – the names of OOP
concepts. They also represent not only concrete code
mapping situations, but a whole syntax of the particular
programming language. The templates are independent from
the XMI mapping rules because of the OOP knowledge base
which is restricted by the first order logic rules that are an
alternative to MDA OCL. In contrast of this language, the

544Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

predicate rules are also independent from any concrete
syntax and XMI, as well as they describe global OOP
constraints based on the knowledge base. In addition, the
described architecture’s components do not only reflect the
basic MDA components, but also represent the basic AI
structures, which means that they have a potential for future
studies of making code generator cleverer.

The code generator, which is based on such an
architecture, can be used not only to perform the code
generation, but also to verify the model. The both tasks could
be performed separately as well as together. The knowledge-
based code generator has a potential ability to become
powerful, however it is very important to make a good OOP
knowledge base.

The further researches will be connected with adding
details to each of the three described levels: finding better
structures to express them, forming some restrictions and
formal rules for this task. When the concept of the
knowledge-based architecture is fully ready, the tool should
be implemented to realize it practically. This tool could be
used to validate the presented approach by systematically
applying some tests, which display the most problematic
aspects of the model to code transformations, including those
which other tools can not handle.

ACKNOWLEDGEMENTS

The research presented in the paper is partly supported by
Grant of Latvian Council of Science No. 342/2012
"Development of Models and Methods Based on Distributed
Artificial Intelligence, Knowledge Management and
Advanced Web Technologies".

REFERENCES

[1] Object Management Group, [Online]. Available: www.omg.org
[retrieved: September, 2013]

[2] Model Driven Architecture FAQ, [Online]. Available:
http://www.omg.org/mda/faq_mda.htm [retrieved: September, 2013]

[3] UML Unified Modeling Language Specification, OMG document,
[Online]. Available: http://www.omg.org/spec/UML/2.4.1 [retrieved:
September, 2013]

[4] R. G. G. Cattell, A survey and critique of some models of code
generation. Tech. rep. Pittsburgh, Pennsylvania, USA: School of
Computer Science, Carnegie Mellon University, 1979.

[5] J. Sejans and O. Nikiforova, “Practical Experiments with Code
Generation from the UML Class Diagram,” Proceedings of
MDA&MDSD 2011, 3rd International Workshop on Model Driven
Architecture and Modeling Driven Software Development In
conjinction with the 6th International Conference on Evaluation of
Novel Approaches to Software Engineering, Osis J., Nikiforova O.
(Eds.), Beijing, China, SciTePress, Portugal, Printed in China, Jun.
2011, pp. 57-67

[6] T. Stahl and M. Volter, Model-Driven Software Development, Wiley,
2006, pp. 428.

[7] I. Jacobson, G. Booch, and J. Rumbaugh: The Unified Software
Development Process, Addison-Wesley, 2002, pp. 512.

[8] O. Nikiforova, A. Cernickins, and N. Pavlova, “Discussing the
Difference between Model-driven Architecture and Model-driven
Development in the Context of Supporting Tools,” Proceedings of the
4th International Conference on Software Engineering Advances,
IEEE Computer Society, Sept. 2009, pp. 446-451.

[9] OMG: Catalog Of OMG Modeling And Metadata Specifications,
[Online]. Available:

http://www.omg.org/technology/documents/modeling_spec_catalog.h
tm [retrieved: September, 2013]

[10] A. Bajovs, Research of the Basic Principles of the Model-To-Code
Transformation, Bachelor Thesis, Riga Technical University, 2012.

[11] Enterprise Architect – UML Design Tools and UML CASE Tools for
Software Development, [Online]. Available:
http://www.sparxsystems.com.au/products/ea/index.html [retrieved:
September, 2013]

[12] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Second Edition, Prentice Hall, 2002, pp. 1132.

[13] M. Marcotty and H. Ledgard, The World of Programming Languages,
Springer, 1986, pp. 380.

[14] OMG: MOF 2 XMI Mapping Specification Version 2.4.1, [Online].
Available: http://www.omg.org/spec/XMI/2.4.1 [retrieved:
September, 2013].

[15] XML Path Language (XPath) 2.0 (Second Edition), W3C document,
[Online]. Available: http://www.w3.org/TR/xpath20 [retrieved:
September, 2013]

[16] A. Cernickins, O. Nikiforova, K. Ozols, and J. Sejans. “An Outline of
Conceptual Framework for Certification of MDA Tools,”
Proceedings of the 2nd International Workshop on Model-Driven
Architecture and Modeling Theory-Driven Development, In
conjunction with ENASE 2010, In Janis Osis, Oksana Nikiforova,
(Eds.), Athens, Greece, SciTePress, Jul. 2010, pp. 60-69.

[17] C. S. Mellish and W. F. Clocksin, Programming in Prolog: Using the
ISO Standard, Fifth Edition, Springer, 2003, pp. 300.

[18] IBM Software – Rational Rose, [Online]. Available: http://www-
01.ibm.com/software/awdtools/developer/rose [retrieved: September,
2013]

[19] Introducing IBM Rational Software Architect, [Online]. Available:
http://www.ibm.com/developerworks/rational/library/05/kunal/?S_T
ACT=105AGX99&S_CMP=CP [retrieved: September, 2013]

[20] Acceleo home page, [Online]. Available:
http://www.eclipse.org/acceleo/ [retrieved: September, 2013]

[21] XPand – Eclipsepedia, [Online]. Available:
http://wiki.eclipse.org/Xpand [retrieved: September, 2013]

[22] Microsoft Visual Studio 2012, [Online]. Available:
http://www.microsoft.com/visualstudio/eng/team-foundation-service
[retrieved: September, 2013]

[23] Y. Danilchenko and R. Fox, “Automated Code Generation Using
Case-Based Reasoning, Routine Design and Template-Based
Programming,” in the Proceedings of the 23rd Midwest Artificial
Intelligence and Cognitive Science Conference, S. Visa, A. Inoue and
A. Ralescu editors, Omnipress, Apr. 2012, pp. 119-125.

[24] MOF Model To Text Transformation Language, Version 1.0,
[Online]. Available: http://www.omg.org/spec/MOFM2T/ [retrieved:
September, 2013]

[25] K. J. Hammond, “CHEF: A Model of Case-based Planning,” in
Proceedings of the Fifth National Conference on Artificial
Intelligence, AAAI, Aug. 1986, pp. 267-271.

[26] G. Vazquez, J. Pace, and M. Campo, “A Case-based Reasoning
Approach for Materializing Software Architectures onto Object-
oriented Designs,” in Proceeding SAC '08 Proceedings of the 2008
ACM symposium on Applied Computing, ACM, Mar. 2008, pp.
842-843.

[27] M. Hsieh, and E. Tempero, “Supporting Software Reuse by the
Individual Programmer,” in Proceedings of the 29th Australasian
Computer Science Con"ference, Australian Computer Society, Inc,
Jan. 2006, pp. 25-33.

[28] J., W. Satzinger, R. B. Jackson, and S. D. Burd: Object-Oriented
Analysis and Design with the Unified Process, Thomson Course
Technology, 2005, pp. 656.

[29] D. Gasevic, D. Djuric, and V. Devedzic: Model Driven Engineering
and Ontology Development, 2nd edition, Springer, 2009, pp. 378.

545Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

