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Abstract—The introduction of dynamic reconfiguration
properties in a system can affect its performance and quality
of service offered to users. Thus, performance prediction of
component-based systems after reconfiguration is important
to help software engineers to analyze their applications at
the moment of reconfiguration and take decision to keep or
discard the analyzed reconfiguration, so that performance
problems are avoided. In this case, the design and verification
of functional and non-functional properties before and after
reconfiguration become a challenge. In particular, when a
applying a reconfiguration on a system, the consistency of
the new resulting architecture should be checked. To this
aim, we describe, in this paper, a generic reconfiguration
analysis approach which allows to check the reconfiguration
consistency of a component-based architecture, starting from the
architectural description of a component-based system. A case
study of a system reconfiguration illustrates the effectiveness of
our approach.

Keywords-Component-Based Systems; dynamic reconfiguration;
formalization; consistency.

I. INTRODUCTION

Component-based approaches [1] are more and more essen-
tial for the development of systems and applications, to meet
the challenges of engineering systems such as administration,
autonomy. In this paradigm, components are developed in
isolation or reused and are then assembled to build a Com-
ponent Based System (CBS). Their objective is to enable a
high degree of reusability of the software, rapid development
(reducing the cost in terms of development time) and high
quality since development is based on precompiled components
In this direction, numerous component models have been pro-
posed (e.g., Enterprise Java Beans (EJB) [2], Corba Component
Model (CCM) [3], Fractal [4], etc.). They operate different
life-cycle stages, target different technical domains (embedded
systems, distributed systems, etc.) and offer different degrees of
tool support (textual modeling, graphical modeling, automated
performance simulation, etc.).

Nowadays, systems need more and more to adapt their be-
haviour to their environment changes. To do that, they should
dynamically add, remove or recompose components by the use
of computational reflection. These abilities are called dynamic
or runtime reconfiguration and constitute a key element to
enable the adaptation of complex systems, such as embedded
systems (mobile phones, PDAs, etc.) and service-oriented sys-
tems, to a changing environment. Moreover, dynamic system

reconfiguration allows to achieve continuous availability of
systems.

Dynamic reconfiguration techniques are promising solutions
for building highly adaptable component-based systems. How-
ever, the introduction of dynamic reconfiguration properties in a
system can affect its performance and quality of service offered
to users. To avoid this, the design and verification of functional
and non-functional properties of a reconfigured system become
a challenge.

In this context, our long-term goal is to develop a method-
ology which allows analysis of component-based applications
and their correction after reconfiguration, to help the decision to
keep or discard the analyzed reconfiguration. The first property
to ensure during analysis of such systems is consistency, which
is defined as remaining compliant with their specification [5].
In this paper, we introduce a new formalism for checking
consistency of dynamic reconfigurations of component-based
systems. We provide this formalism for general component sys-
tems characterized by the most common component properties.

Outline. The structure of the paper is as follows. We discuss
in Section II the related work. Then, we present in Section III
the most important concepts of component-based systems. We
detail our approach in Section IV and illustrate it in Section V.
We conclude in Section VI and give future works.

II. RELATED WORK

Several approaches were proposed, during last years, for
analysis of CBS; a few of them addressed dynamic reconfig-
uration.

In this context, two main proposals were given for dy-
namic reconfiguration analysis of CBS. First, Grassi et al.
[6] proposed a metamodel called KLAPER, which includes a
kernel modelling language. The main goal of this language
is to act as a bridge between design models of component-
based systems (built using heterogenous languages like Uni-
fied Modeling Language (UML) [7], Ontology Web Language
(OWL) (OWL-S) [8], etc.) and performance analysis models
(Markov chains [9], queueing networks [10], etc.). This first
work did not address reconfiguration cases study. Later, in [11],
an extension of KLAPER, called D-KLAPER, was given to
support the model-based analysis of reconfigurable component-
based systems, with a focus on the assessment of particular non-
functional properties, namely performance and reliability.
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The second work, defined by Leger [5], targeted dynamic
reconfigurations reliability analysis for component-based sys-
tems, where an analysis approach for the Fractal component
model was defined. The approach is summarized in three steps:
the first step is a Fractal configuration modeling [5] step of
a component-based configuration architecture; then, definition
of mechanisms used for maintaining systems consistency dur-
ing dynamic reconfigurations; finally, implementation of these
mechanisms for checking reliable reconfiguration.

Besides, some other approaches were proposed for CBS for
checking, in particular, consistency of CBS during dynamic
reconfiguration. Warren et al. [12] proposed to do automatic
runtime checks of reconfigurable component-based systems
for the OpenRec framework [13]. A formal model based on
ALLOY [14] was defined for that purpose. It allows architec-
ture constraints expression and checking. Another work [15]
has introduced an extension of the Fractal model [16], called
Safran to enable the development of adaptive applications. It
consists of a dedicated programming language for adaptation
policies, as well as a mechanism to dynamically attach or
detach policies to or from Fractal basic components. Finally, M.
Simonot et al. [17] proposed a formal framework, called Fracl,
for specifying and reasoning about dynamic reconfiguration
programs, being written in a Fractal-like programming style [4].
This framework is based on a first order logic, and allows
properties specification and proof concerning either functional
or control concerns. An encoding of their model using the
Focal specification framework [18] enabled them to prove its
coherence and obtain a framework for reasoning on concrete
architectures.

These proposals are interesting, however, Safran, Fracl and
Leger’s proposals are focused on Fractal models only. In par-
ticular, Fracl was defined only for applications with primitive
components. In addition, no difference is done between Manda-
tory and Optional interfaces and no subtyping notion is consid-
ered. Warren et al. [12] focused on OpenRec framework only.
Moreover, only connections between component are modelled
and not component behaviours.

In our case, we target to provide a generic formalism to
be used for checking consistency in any component-based
system. Our approach formalizes main component elements
(component, interfaces, bindings, etc.) and defines for each
reconfiguration operation a set of constraints to build consistent
configurations. Global constraints are also introduced on a CBS
after its reconfiguration.

III. COMPONENT BASED SYSTEMS

A software component is defined as a unit of composition,
provided with contractually specified interfaces and explicit
context dependencies [19]. An interface is an access point to
the component, which defines provided or required services.
In addition, types, constraints and semantics are defined by the
component model in order to describe the expected behaviour
at runtime.

Interfaces of a component allow to connect it to other com-
ponents. Consequently, we build a Component-based System

by connecting the interfaces of components. These connec-
tions are done depending on interactions between components.
Generally, two main styles of interactions are defined in com-
ponent models: synchronous interactions provided by service
invocation (such as an Remote Procedure Call (RPC) or Remote
Method invocation (RMI) communication), and asynchronous
interactions given through notification of events (asynchronous
messages). Service invocations take place between a client in-
terface requesting a service and a server interface providing the
service. Besides, event communications are defined between
one or more event source interfaces generating events and one
or several event sink interfaces receiving event notifications.
The reception of a notification causes the acknowledgment
of the reception and execution of a specified reaction called
the handler of the event. Some event services can use event
channels for mediating event messages between sources and
sinks. An event channel is an entity responsible for registering
subscriptions of a specific type of event, receiving events,
filtering events according to specific modes, and routing them
to the interested sinks.

A component can contain itself a finite number of other
interacting components, called sub-components, allowing the
components to be nested at an arbitrary level. In this case, it is
said a composite component. At the lowest level, components
are said primitive. Sometimes, assembling two components
may require an adaptation of associated interfaces, whenever
these interfaces cannot directly communicate for example. In
this case, the adaptation is done with an extra entity, called
connector, modelling the interaction protocol between the two
components.

For each component model, a corresponding Architecture
Description Language (ADL) allows to describe an assembly of
components forming an application. From such a description, a
set of tools are used to compile and generate the application
code, while checking syntactical and even some semantical
properties.

IV. FORMALIZATION

Our goal is to propose a new formalism for checking con-
sistency of dynamic reconfigurations of component-based. For
this purpose, we give first a set of concepts and then define our
approach for checking consistency of CBS.

A. Concepts

1) Component-based configuration:

Definition 1. A component-based configuration of a system S
is defined as a triplet:

Cg =≺ C, I,B ≻ where

• C: is a set of components;
• I: is a set of interfaces;
• B: is a set of component connections or bindings.

Definition 2. A component c is defined as:

c =≺ name, granul, state ≻
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where:

• name: is the unique name of the component C;
• granul: refers to granularity wich can be Composite or

Primitive;
• state: is the current state of the component C, which can

be Started or Stopped.

Definition 3. A component interface i is defined as:

i =≺ itfc, role, visib, card, contig, sign ≻

where:

• itfc: is the unique identifier of the interface (being of the
form: component-name.interface-name);

• role: can be Client / Server (in the case of a service
invocation interface) or Sink / Source (in the case of an
event based interface);

• visib: refers to the visibility of the interface, which can
be Internal or External;

• card: refers to the cardinality of the interface, which is
Singleton or Collection;

• contig: characterizes the interface contingency, which
may be Optional or Mandatory;

• sign: returns the interface signature.

Definition 4. A component binding b is defined with:

b =≺ itfc− clt, itfc− srv ≻

where:

• itfc-clt: refers to the invoking interface, and can be Client
or Sink;

• itfc-srv: refers to the service interface, and may be Server
or Source.

2) Reconfiguration:

Definition 5. Let be a configuration Cg1 of a system S. We
define a reconfiguration R of S, being in the configuration
Cg1, as an ordered set of primitive operations applied on
Cg1 :

R = op1, op2, ..., opn, n ≥ 1

where opi, i = 1..n, is one of the following reconfiguration
operations:

1) Delete a component
2) Add a component
3) Replace a component
4) Delete a binding
5) Add a binding

The resulted configuration after application of R is denoted
Cg2.

We denote this by:

Cg1
op→ Cg2

3) Predefined functions: To be able to specify constraints
required for performing properly a reconfiguration, we need a
set of predefined functions. For this objective, we propose the
following functions:

1) CFather(cp) : returns the parent of the component cp;
2) CInterfaces(cp) : returns the interfaces list of the compo-

nent cp;
3) CType(cp) : returns the type of the component cp;
4) IComponent(i) : returns the owner of the interface i;
5) IType(i) : returns the type of the interface i.

B. Constraints

To ensure the correction of a reconfiguration R applied on a
system S, we define two sets of constraints:

• Constraints on primitive reconfiguration operations :
Should be checked after each primitive operation.

• Global constraints : should be checked after the whole
reconfiguration.

In the following, we specify these two sets of constraints.
1) Constraints on primitive reconfiguration operations:

Let op be a primitive reconfiguration operation, applied on a
configuration Cg1 of a system S, resulting in the configuration
Cg2, where :

• Cg1 =≺ C1, I1, B1 ≻
• Cg2 =≺ C2, I2, B2 ≻
We denote this by:

Cg1
op→ Cg2

In the following, we consider :

• A component : cp =≺ name, granul, statut ≻
• A binding : b =≺ iclt, isrv ≻
Primitive reconfiguration operations, applied on components

cp and cp′, are denoted as follows:

1) Delete a component cp :

del comp(cp)

2) Add a component cp :

add comp(cp)

3) Replace a component cp by anpther cp′:

Repl comp(cp, cp′)

4) Delete a binding b :

del bdg(b)

5) Add a binding b :
add bdg(b)

Table I gives the required constraints to be satisfied after each
reconfiguration operation.
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TABLE I: CONSTRAINTS ON PRIMITIVE RECONFIGURATION OP-
ERATIONS

Operation Constraints

del comp(cp)
1) C2 = C1 − cp
2) I2 = I1 − CInterfaces(cp)
3) ∀ i ∈ CInterfaces(cp), i /∈ I2

add comp(cp)
1) C2 = C1 ∪ cp, cp /∈ C1

2) I2 = I1 ∪ CInterfaces(cp)
3) ∀i ∈ I1, ∃j ∈ I2 tq : i.itfc =

j.itfc
4) ∀i ∈ CInterfaces(cp), i /∈ I1

Repl comp(cp,cp’)
• CType(cp) is a sub-

type of CType(cp′)

del bdg(b)
1) B2 = B1 − b
2) b ∈ B1

add bdg(b)
1) B2 = B1 ∪ b
2) b /∈ B1

3) ∃ b.iclt ∈ I1 ∧ b.isrv ∈ I1
4)

b.iclt.card=SINGLETON ⇒
∀ b’< iclt′, isrv′ >∈
B1, iclt

′ ̸= iclt
5)

b.isrv.card=SINGLETON ⇒
∀ b’< iclt′, isrv′ >∈
B1, isrv

′ ̸= isrv

2) Global constraints: Let R be a reconfiguration that will
be applied to a configuration Cg1 of a system S, giving as a
result a configuration Cg2:

Cg1
R→ Cg2

with : R = op1, op2, ..., opn, n ≥ 1

We specify the following constraints, which must be satisfied
by Cg2 :

1) ∀ b ∈ B2, b.iclt.role = Client / Sink ∧ b.isrv.role = Server
/ Source

2) ∀ b ∈ B2, (b.iclt.contig = Mandatory) ⇒ (b.isrv.contig =
Mandatory)

3) ∀ b, b’ ∈ B2, b.iclt ̸= b’.iclt
4) ∀ b ∈ B2, (CFather(IComponent(b.iclt)) =

CFather(IComponent(b.isrv)))∨ (b.iclt.visib = Internal ∧
IComponent(b.iclt) = CFather(IComponent(b.isrv))) ∨

(b.isrv.visib = Internal ∧ CFather(IComponent(b.iclt)) =
IComponent(b.isrv))

5) ∀ i ∈ I2 ( i.role = Client ∧ i.contig = Mandatory ⇒ ∃! b
∈ B2 tq: b.iclt = i )

6) ∀ b ∈ B2, IType(b.isrv) ⊆ IType(b.iclt)

C. Consistency of a configuration

Theorem 1. A reconfiguration R, applied to a configuration
Cg1 of a system S, is valid if the resulting configuration Cg2
satisfies all constraints defined on primitive reconfiguration
operations and global constraints.

Theorem 2. A configuration Cgi of a system S is consistent
after a reconfiguration R if R is valid.

V. ILLUSTRATION

To illustrate our approach, we use a navigator application
similar to Mozilla already used in [20]. In such applications,
components are usually equipped with an install manifest in
XML format, allowing, among other things, to deliver the in-
formation needed to manage the version compatibility between
components.

Fig. 1: Initial configuration

So, the architecture of the application consists of a composite
component MAIN composed of three primitive components
(Figure 1):

1) M , the main application (e.g., Firefox);
2) E, an already installed plugin;
3) VM , a version manager component.
Each of the components M and E have an interface h

with a signature H , being respectively a client and server
interface. They also each have a server interface im of signature
InstallMf . M has an additional server interface g of signature
G, being the main interface exported to the global external
interface of the application.

The Main composite exports business methods from M and
supplies update, a control method implementing the upgrade
operation. This method looks for a component with same id as
E, having a more recent version and being compatible with M .
In case of success, it replaces E with the new component.

Based on our formalization, we specify the initial configura-
tion of Figure 1 as follows:

Cg1 =≺ C1, I1, B1 ≻
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where:
• C1 = (Main,M, VM,E)
• I1 = (Main.g,M.g,M.im, VM.a1, V M.a2, E.im,E.h)
• B1 = (b1, b2, b3, b4)

where:
• M = (M, Primitive, Started)
• VM = (VM, Primitive, Started)
• E = (E, Primitive, Started)
• Main.g = (Main.g, Server, External, Singleton, Optional,

G)
• M.g = (M.g, Server, External, Singleton, Optional, G)
• M.h = (M.h, Client, External, Singleton, Optional, H)
• M.im = (M.im, Server, External, Singleton, Mandatory,

InstallMF)
• VM.a1 = (VM.a1, Client, External, Singleton, optional,

InstallMF)
• VM.a2 = (VM.a2, Client, External, Singleton, Optional,

InstallMF)
• E.h = (E.h, Server, External, Singleton, Optional, H)
• E.im = (E.im, External, Singleton, Mandatory, InstallMF)
• b1 = (Main.g, M.g)
• b2 = (VM.a1, M.im)
• b3 = (VM.a2, E.im)
• b4 = (M.h, E.h)
When applying on this configuration a reconfiguration R,

which removes the plugin E, we model this by the following
reconfiguration R :

R = op1, op2, op3

where:
• op1 : Del comp(E),
• op2 : Del bdg(b3),
• op3 : Del bdg(b4).
This resulted configuration is valid because it provides a new

consistent configuration (given in Figure 2), which is defined as
follows:

Cg2 =≺ C2, I2, B2 ≻
where:
• C2 = (Main, M, VM)
• I2 = (Main.g, M.g, M.im, M.h, VM.a1, VM.a2)
• B2 = (b1)

Fig. 2: Resulting configuration after reconfiguration

where:
• M = (M, Primitive, Started)
• VM = (VM, Primitif, Started)
• Main.g = (Main.g, Server, External, Singleton, Optional,

G)
• M.g = (M.g, Server, External, Singleton, Optional, G)
• M.h = (M.h, Client, External, Singleton, Optional, H)
• M.im = (M.im, Server, External, Singleton, Mandatory,

InstallMF)
• VM.a1 = (VM.a1, Client, External, Singleton, optional,

InstallMF)
• VM.a2 = (VM.a2, Client, External, Singleton, Optional,

InstallMF)
• b1 = (Main.g, M.g)
• b2 = (VM.a1, M.im)
By checking all defined constraints, we can say that R is

valid. So, the new configuration Cg2 is consistent starting from
the fact that Cg1 is consistent.

VI. CONCLUSION

In this paper, we presented a new formalism for checking
consistency of dynamic reconfigurations of general component-
based systems. For this purpose, we introduced formal concepts
for modelling a component-based configuration and reconfig-
uration operations. We also defined required constraints that
must be satisfied by the new configuration resulting after ap-
plying reconfiguration, to ensure consistency of the system.

Our approach can be instanciated to any existing component
model, allowing thus genericity of the formalism.

Work is in progress to achieve automation of the proposed
approach, by providing a toolbox based on the FOCALIZE
programming environment [21]. This latter is based on a func-
tional programming language with object-oriented features and
allows to write formal specifications and proofs of designed
programs. Proofs are build using the automated theorem prover
Zenon [22] and Coq proof-assistant [23]. Future work also
include modeling CBS before and after reconfiguration to allow
quantitative analysis of CBS.
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fractal component model and its support in java,” vol. 36, no. n. 11-12,
2006, pp. 1257–1284.

[17] M. Simonot and M. Aponte, “Formal modeling of control with fractal,”
CEDRIC laboratory, CNAM-Paris, France, Tech. Rep. CEDRIC-08-
1590, 2008, http://cedric.cnam.fr/index.php/publis/article/view?id=1590.

[18] V. Benayoun, “Fractal components with dynamic reconfiguration :
formalization with focal,” 2008, http ://reve.futurs.inria.fr/.

[19] C. Szyperski, “Component technology - what, where, and how?” in Proc.
25th Int. Conf. on Software Engineering. IEEE, May 3–10 2003, pp.
684–693.

[20] M. Simonot and V. Aponte, “A declarative formal approach to dynamic
reconfiguration,” pp. 1–10, 2009.

[21] INRIA and LIP6, “The focalize essential,” 2005, http://focalize.inria.fr/.
[22] D. D. R. Bonichon and D. Doligez, “Zenon : An extensible automated

theorem prover producing checkable proofs,” vol. 4790, 2007, pp. 151–
165.

[23] Y. Bertot and P. Casteran, Interactive Theorem Proving and Program De-
velopment Coq Art: The Calculus of Inductive Constructions. Addison-
Wesley, 2004.

522Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances


