
Towards Probabilistic Models to Predict Availability, Accessibility and
Successability of Web Services

Abbas Tahir, Sandro Morasca, Davide Tosi
Department of Theoretical and Applied Sciences

Università degli Studi dell'Insubria
Varese, Italy

tahir_a@acm.org, {sandro.morasca, davide.tosi}@uninsubria.it

Abstract— Web Services are gaining increasing attention as
programming components and so is their quality. The external
qualities of Web Services (i.e., qualities that are perceived by
their users) such as the OASIS sub-quality factors Availability,
Accessibility, and Successability can only be measured at late
stages after the deployment and the provisioning of the Web
Service. This may necessitate expensive rework if the targeted
levels of qualities are not satisfactorily met. A reliable
prediction of the values of the external qualities at early phases
during development may totally remove the need for
reworking and hence save valuable resources. In this paper, we
describe an approach for building and empirically evaluating
probabilistic prediction models for the Web Services external
sub-quality factors Availability, Accessibility, and Successability
based on internal static and dynamic quality measures (e.g.,
Cyclomatic Complexity and Distinct Method Invocations). A
methodology was established that involves the collection of a
set of predefined quality measures and then performing
regression analysis to identify any correlation between them
and the above mentioned external qualities. For this purpose, a
framework for data collection and evaluation was designed,
implemented and tested. The results of the preliminary
evaluation of the framework showed that it is feasible to collect
all the data points necessary for the regression analysis and
model building activities. We are currently working towards
adding about 18 more Web Services to our testbed in order to
carry out a wider controlled experiment and then to build
possibly accurate probabilistic prediction models for
Availability, Accessibility, and Successability.

Keywords-quality models; web services; measurement;
metrics; probabilistic models; quality prediction

I. INTRODUCTION
Web Services (WSs) are gaining more attention as

programming components for different software
applications. They play an important role in service-oriented
architectures where loosely coupled programming
components or services deliver their functionality over a
network – often over the Internet. The quality of such
architectures depends heavily on the quality of its individual
service components, which are usually WSs. Therefore, the
quality of WSs is becoming a major concern. Users of WSs
are usually careful (among others) about the availability of
WSs they are relying on. They also need to know whether
the WSs are accessible (i.e., they actually accept requests)

while available and whether they successfully deliver
responses for the incoming requests. These concerns are
referred to as the Availability, Accessibility, and
Successability of WSs.

The OASIS Web Services Quality Model (WSQM)
Technical Committee [1] is currently working towards a
quality model for WSs. The committee developed
specifications for WSs quality factors (WSQF) [3] that cover
the development, usage and management of WSs. One of the
quality factors described in the specification is the Service
Level Measurement Quality that consists of sub-quality
factors including Availability, Accessibility, and
Successability.

All of the above mentioned quality factors are considered
external software quality measures according to the
definition provided in the ISO/IEC standard 25000 [4]. On
the other hand, internal software quality measures [4] are
those measures concerned with the static attributes of
software products (e.g., number of lines of code). Such
measures are usually related to the software architecture and
design and do not require the execution of the targeted
software. Measures that can only be collected by executing
the software are called dynamic measures. For example
coupling between class objects CBO is a well-known static
quality measure. If it is measured in runtime, it is called
dynamic coupling between objects DCBO and considered as
a dynamic software quality measure.

The external quality measures Availability, Accessibility,
and Successability of a WS can be only measured when the
WS is already developed, deployed and exposed to users. If
these external quality measures can be predicted early during
the development phase, they can provide valuable
information that may positively influence the engineering of
WSs with regards to the three sub-quality factors.

Other researchers worked towards predictive models for
software quality. Dragan Ivanovic et al. [5] proposed a
methodology for predicting Service Level Agreement (SLA)
violation during service composition at run-time. They used
the structure of the composition and properties of the
component services to derive constraints to model SLA
conformance and violations. These models are used for
predicting satisfaction and violation of the constraints in a
specific scenario. Xing et al. [6] proposed an approach to
predict software quality by adopting support vector machine

498Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

(SVM) in the classification of software modules based on
complexity metrics.

There are many factors that may influence the time-
related behavior, and therefore some external qualities of the
WS (e.g., network, hardware, application server, application
software, etc.). In this research, we are focusing on the WS's
application software since in a typical WSs development
project, only the WS's logic is implemented and all the other
elements are not developed but only used for deployment
and hosting purposes. Factors other than the WS's
application software are isolated by using similar
configurations for all WSs under test. Our aim is to help
predicting external qualities in early stages of WSs
development projects based on static internal quality
measures as well as the internal dynamic behavior of WS's
application software measured through different dynamic
measures.

In this paper, we present a framework for (1) collecting
some static and dynamic quality measures from WSs, and (2)
applying statistical approaches to identify any correlation
between the static and dynamic measures collected and WSs
Availability, Accessibility, and Successability, and (3) the
development of probabilistic models for the prediction of
WSs Availability, Accessibility, and Successability based on
the theory provided in [7].

The rest of this paper is structured as follows. Section II
provides the necessary background by introducing the basic
concepts and the theoretical basis on which this work is
based. In Section III, the aims and objectives are introduced
and the two main research questions are clearly stated. Then,
the methodology followed and the data required for
experimentation and model building are introduced
(Section IV). A detailed technical description of the
framework used for collecting necessary data during
experimentation is provide in Section V. The results of short
tests performed to build confidence on the framework are
listed in Section VI. Finally, in Section VII, conclusions are
drawn and future work plans are introduced.

II. BACKGROUND
In this section, we introduce the WSs quality factors

defined by OASIS with focus on Availability, Accessibility
and Successability; we discuss the theoretical background
that is at the basis of our framework to compute external
quality factors; we show the logistic regression approach that
helps us in predicting external quality factors starting from
the observation of internal quality metrics.

A. OASIS Web Services Quality Factors
As a result of the increased acceptance and utilization of

WSs as programming components, the OASIS [2]
standardization body established a technical committee [1] to
define a quality model for WSs (WSQM). The model is
centered around the identified WSQFs [3]. The quality
factors are based on the functional and non-functional
properties of the WSs. They are classified into 6 categories:
Business value quality, service level measurement quality,
interoperability quality, business processing quality,
manageability quality, and security quality. Each category

contains different related sub-quality factors. Service level
measurement quality is subdivided into five sub-quality
factors including Availability, Accessibility, and
Successability.

Availability is defined as “a measurement which
represents the degree of which web services are available in
operational status. This refers to a ratio of time in which the
web services server is up and running. As the DownTime
represents the time when a web services server is not
available to use and UpTime represents the time when the
server is available, Availability refers to ratio of UpTime to
measured time.”

 (1)

Accessibility “represents the probability of which web
services platform is accessible while the system is available.
This is a ratio of receiving Ack message from the platform
when requesting services. That is, it is expressed as the ratio
of the number of returned Ack message to the number of
request messages in a given time.”

 (2)

Successability “is a probability of returning responses
after web services are successfully processed. In other words,
it refers to a ratio of the number of response messages to the
number of request messages after successfully processing
services in a given time. ‘Being successful’ means the case
that a response message defined in WSDL is returned. In this
time, it is assumed that a request message is an error free
message.”

 (3)

B. Theoretical background
Morasca [7] introduces a probability-based approach for

measuring the external qualities of software. The main
assumption is that external qualities can be quantified by
means of probabilities. The author proposes that “external
software attributes should not be quantified via measures, but
via probabilistic estimation models.” This implies that
instead of measuring the external qualities after the
deployment and the exposure of a WS, we can predict them
using probabilistic models.

Additionally, the introduced probability-based approach
is rooted in the “probability representations”, which are part
of the well-founded Measurement Theory. Probability
representations “has not yet been used in Software
Engineering Measurement” [7].

Based on this theory, probabilistic models for different
software external qualities models can be built. However, the
accuracy of the models need to be assessed by carrying out
empirical studies.

C. Logistic regression
Logistic regression [8] is a statistical analysis approach

for predicting the outcome of dependent variables based on
one or more independent variables.

messages request of number
messages response of number=litySuccessabi

Time Measured
Time Down=tyAvailabili 1

messages request of number
rmessages Acks of number=ityAccessabil

499Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

The logistic regression curve (Fig. 1) is the graphical
representation of the logistic function that can be expressed
as follows for one independent variable x:

P(x) = exp(0 1x)/(1 + exp(0 1x)) (4)

 logit(x) = 0 1x (5)

P(x) is the probability that the dependent variable equals 1
for the independent variable x. 0 and 1 are the regression
coefficients.

Figure 1. The logistic regression graph

As it is clear from Fig.1, the values of the dependent
variable (probability) range from 0 to 1. Re-examining the
formulas for calculating the external qualities Availability,
Accessibility, and Successability presented in Section II, we
can conclude that the resulting values of any of the three
qualities range also from 0 and 1. Therefore, we intend to use
the logistic regression in our analysis to identify any possible
correlation between the internal and the external quality
measures in order to facilitate the prediction of external
quality factors starting from the static and dynamic measure
of internal quality factors.

III. OBJECTIVES AND RESEARCH QUESTIONS
The main final aim of the work described in this paper is

to develop probabilistic models for the quantification of the
software sub-quality factors Availability, Accessibility and
Successability identified in the OASIS WSQF [3] based on
the theoretical basis provided in [7]. These models may
predict the values of the above-mentioned factors in early
phases (design-time and deployment-time), thus allowing for
early adjustments during the development to satisfy any
imposed requirements with regards to the three sub-quality
factors. Additionally, knowing the need of adjustments in
advance may also facilitate early evaluation of the impact
(costs, human resources, etc.) for implementing the
adjustments.

Our Objectives (O) can be summarized as follows:
 O1 - To build significant probabilistic models for

the sub-quality factors Availability, Accessibility
and Successability;

 O2 - To empirically evaluate the accuracy of the
probabilistic models.

To achieve our objectives, we formulated the following
research questions (RQ):

 RQ1 - Is it possible to build statistically significant
probabilistic models for the WSs sub-quality factors
Availability, Accessibility and Successability?

 RQ2 - How accurate are these models?

To build and empirically evaluate the probabilistic
prediction models, we designed and implemented a
framework able to support developers of WSs to collect and
calculate metrics automatically and to measure external
qualities.

IV. EXPERIMENTATION APPROACH
For model building and evaluation, we need to perform

experimentation using a set of WSs. The approach we
follow can be summarized as follows:

1. Selection of suitable WSs for experimentation;
2. Identification and selection of related software

measures to be collected besides the external
qualities Availability, Accessibility, and
Successability;

3. Development of a framework for collecting the
selected quality measures;

4. Data collection;
5. Analysis of the collected data and building

probabilistic models for the external qualities
Availability, Accessibility, and Successability.

The experimentation will be carried out as a controlled
experiment, where (graduate) students will be used to
interact with the WSs to collect quality measures.

A. Web services selection
The WSs needed for experimentation are selected based

on the following criteria:
 Full access to the source code and the

documentation of the WS to facilitate the evaluation
of static and dynamic quality factors;

 The WSs are built using Java programming
language, due to the fact that our framework is
currently able to analyze Java components only;

 The WS provides the claimed functionality itself
and it is not a “wrapper” for other services.

Since open source applications usually satisfy the above
criteria, we focused on them.

Unfortunately, the process of identifying and selecting
WSs satisfying all the aforementioned criteria ended with the
availability of just one WS only. Specifically, we discovered
and used as case study a WS released by Yesiltepe
Softwareentwicklung [9], which satisfies all the above
conditions. This WS provides a registry for artists. One issue
with this WS is that the data of artists are stored on plane
operating system files. This makes the application slow and
not stable enough for concurrent accesses. Therefore, we
modified the original WS to make use of an embedded
database instead of plane files.

To overcome the limitation in the number of available
Open-WSs on the net, we decided to manually convert free
and open source Java applications into WSs (i.e., the

500Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

functionalities provided by the Java applications are exposed
on the Web). To perform this conversion, we used the
Apache Axis2 framework [10]. For instance, we converted
the application code2web [11], a utility application that
converts Java source code into HTML, into a WS. For
uniformity, we used the Axis2 framework to expose the
functionalities of all the WSs selected for the
experimentation.

To provide a statistically relevant set of WSs, we targeted
at least 20 WSs for the complete experimentation of the
approach. This process is an ongoing work so, in this paper,
we focus on the experimental results of the two above-
mentioned case studies.

B. Identification and selection of software measures to be
collected
Building probabilistic models for the sub-quality factors

Availability, Accessibility, and Successability involves the
identification of the dependent variables and the (possibly)
related independent variables. Since we aim to predict the
sub-quality factors Availability, Accessibility and
Successability, they are considered the dependent variables.
The independent variables on which the prediction of the
dependent variables depends are the software internal static
and dynamic measures listed below. The static quality
measures selected are well-known a widely accepted
measures taken mainly from [12]. We also considered the
dynamic behavior of the Web Services by including four
dynamic metrics.

 Static software measures:
 Lines of Code (LOC) is the number of lines of code

in the WS's source code. It is a size measure that is
usually used to assess the complexity of the
software.

 McCabe Cyclomatic Complexity (CC) counts the
number of linearly independent paths in the WS's
source code.

 Weighted Methods per Class (WMC) is the sum of
the McCabe Cyclomatic Complexity of all class
methods.

 Lack of Cohesion of Methods (LCOM) “is the
number of pairs of methods in a class that don't
have at least one field in common minus the number
of pairs of methods in the class that do share at least
one field. When this value is negative, the metric
value is set to 0.” [13]

 Afferent Couplings (Ca) is the number of other
packages that depend upon classes in a specific
package.

 Efferent Couplings (Ce) is the number of other
packages that the classes in the package depend
upon.

 Instability (I): The ratio of efferent coupling (Ce) to
total coupling (Ce + Ca)

 Dynamic software measures:
 Distinct Classes (DC) is “the count of the distinct

number of classes that a method uses within a
runtime session.” [14]

 Dynamic Coupling Between Objects (DCBO) is the
number of distinct classes a specific class is coupled
to at runtime.

 Object Method Invocations (OMI) is the total
number of distinct methods invoked by each
method in each object within a runtime session

 Distinct Method Invocations (DMI) is “the count,
within a runtime session, of the total number of
distinct methods invoked by each method in each
object.” [14]

Each data point for a specific WS in the regression graph
is composed of two elements, the dependent variable (Y-
Axis) and the independent variable (X-Axis). For example,
suppose that the measured Availability value is 0.922 and
WMC value is 7.60, then (7.60, 0.922) is a data point on the
regression graph.

C. Data Collection.
The static software measures (e.g., LOC and WMC, etc.)

are first calculated for all WSs using two different tools,
namely, CodePro AnalytiX [15] and the Eclipse Metrics
plugin [16]. Then a number of users (students) freely use the
WSs under evaluation through a set of clients that support all
their exposed functionalities for a pre-specified period of
time. During this, the different dynamic quality measures
identified in Section IV. B are collected using the data
collection framework described in details in Section V of this
paper. The framework collects the required data and
automatically calculates the average values for each quality
measure.

The sub-quality factors Availability, Accessibility and
Successability are calculated using the three formulas
presented in Section II. A. The data required for calculating
Availability are collected from the log information of the
WSs application server. This includes server's up-times and
any possible down-time. The data required for calculating
Accessibility and Successability are collected by capturing
the HTTP messages exchanged between the WSs application
server and the clients. This allows for calculating the number
of request, response, and acknowledgment messages
exchanged between the WSs and their clients.

D. Data analysis
After collecting the necessary data points, we will then

use statistical regression analysis to identify possible
correlation between the software qualities described above
for a specific WS and the external software qualities
Availability, Accessibility and Successability measured at
run-time. We propose logistic regression for our analysis as
the values of all the three external qualities (the dependent
variables) range from 0 to 1 and the logistic regression curve
(Fig. 1) better fit such values.

501Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

V. THE DATA COLLECTION FRAMEWORK
To achieve the objectives listed in Section III, we

designed, implemented and tested a framework for the
automatic data collection and metrics calculations. The
framework can support developers of WSs in assessing in a
simple way the external qualities of their WSs at deploy-
time, and to react promptly in case their WSs do not satisfy
the expected quality requirements. Server-side, the
framework simplifies the process of converting Java
applications into WSs, guaranteeing a reliable message
exchange between the clients and the WSs. The server-side
components are also responsible for the computation of static
measures, for creating the environment that is able to
compute dynamic measures in a transparent way, and also
for calculating Availability, Accessibility and Successability
for the target WS.

 In the following sections, the framework and its
components are described in details.

A. Server-side
The server-side of the measurement framework is

centered around the application server Apache Tomcat. First
the WSs engine Apache Axis2 is deployed into Tomcat and
used to expose (web) applications functionality as standard
WSs that communicate using SOAP messages over the
HTTP protocol. The targeted WSs are then deployed into
Axis2 engine.

To assure reliable message exchange between the clients
and the WSs, they were instrumented using Sandesha2 (an
implementation of the OASIS WS-ReliableMessages
standard [17]). Sandesha2 provides a mechanism that can
accurately track and monitor message exchanges between the
WSs and their clients. It allows for the accurate
determination of the correct disposition of messages only
once and therefore, avoid any problems or errors associated
with lost or duplicated messages. Using Sandesha2, each
request received from the client is acknowledged separately.

This facilitates the calculation of the Accessibility since it is
calculated as the number of acknowledge messages received
by the client divided by the number of request messages sent.

Static measures defined in Section IV. B are calculated
before the deployment of the WSs into Tomcat using
CodePro AnalytiX and the Eclipse Metrics plugin.

Conversely, the dynamic measures defined in
Section IV. B are collected using the Aspect-Oriented
Programming (AOP) technology [18] at run-time. Each
measure is implemented as an “Aspect” that is constructed of
“point cuts” and “advices.” The “point cuts” define the
points in the program runtime flow that are of interest. For
example, “point cuts” can be placed to identify each “method
call” in the program flow. “Advices” are used to collect data
at the defined “point cuts” and to use the collected data to
calculated a specific measure. By placing “point cuts” at
“method calls,” an advice can be used for example, to collect
the data necessary to calculate the number of invocation of
each method in the program. All dynamic metrics defined in
Section IV. B are implemented in a similar way according to
their definitions and weaved into the services code during
compilation. The generated byte-code is then deployed into
Tomcat. When a WS is invoked during a runtime session, the
weaved aspects collect all the defined dynamic measures and
store the output as text files on the server-side.

During WS invocations, message exchanges between the
WS and its clients are captured using the network transport
capturing tool WinPcap [19] that captures outgoing and
incoming TCP packets to the WS server machine.
Wireshark [20] is a network protocol analyzer that is used
after each predefined capturing session to (1) extract all
HTTP communications, and (2) calculate the number of
request, response and acknowledge messages. These data are
used to calculate the Availability, Accessibility and
Successability of the WS.

B. Client-side
WSs clients are simple Java applications that invoke the

WSs under test to deliver its specified functionality. For each
WS, a web client is developed and used (or planned to be

TABLE I. PRELIMINARY EXPERIMENTAL RESULTS

 Static Measures (average) Dynamic Measures (average)

LCO CC WMC LCOM I Ca Ce DCBO OMI DC DMI

Code2web 565 2.26 7.6 0.24 1 0 10 2.00 3.375 1.50 23.00

Artist-Registry 322 1.56 14.2 0.39 1 0 4 1.50 2.09 1.80 14.00

 External Sub-quality Factors

Availability Successability Accessibility

Code2web 1 0.998 0.927

Artist-Registry 1 1 0.971

502Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

used) by users in experimental setup to stimulate the WSs
while collecting the data necessary to calculate the targeted
measures of the WSs. All develop clients for the WSs under
evaluation are instrumented by Sandesha2 to support reliable
messaging.

VI. PRELIMINARY RESULTS
Before executing the planned controlled experiment, we

carried out some tests to validate the data collection
framework we described in Section V. For this purpose, WSs
clients were developed to emulate intensive use of the WSs
under evaluation by randomly generating requests in a
randomly generated time intervals (range from 0.5 to 2
seconds). Each of the code2web WS and the Artist-Registry
WS were separately tested continuously for a period of 30
minutes using separate clients and the defined quality
measures were calculated. The results reported in Table 1
were achieved for each of the code2web WS and the Artist-
Registry WS. The reported values of Availability,
Accessibility and Successability are either 1 or very close to
it. This is due to the fact that these qualities usually require
longer measurement periods (weeks or months) for failures
to occur and hence to produce values different than 1. To
overcome this obstacle, we are planning to inject random
faults.

The outcomes of this study may be affected by two issues
(1) using random fault injection to enforce failures, and (2)
controlled experiments may result in restrictively
generalizable outcomes. Moreover, the population (Web
Services) selected for the experiment are all open-source
application with maturity level “Production” or “Stable”.
Therefore, we consider the population representative enough
and allows for the generalization of the results. Taking the
above mentioned concerns into account, the results of this
study may be considered generalizable.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we presented our ongoing work towards

answering the two research questions: (1) Is it possible to
build statistically significant probabilistic models for the
WSs sub-quality factors Availability, Accessibility and
Successability? and (2) How accurate are these models?

Building probabilistic prediction models for the WSs
sub-quality factors Availability, Accessibility and
Successability has a strong theoretical basis but
experimentation is necessary to build and empirically
evaluate the accuracy of the models. The framework
presented in this paper and the preliminary experimentation
on two case studies showed that it is feasible to collect all the
data points necessary for the regression analysis to establish
possible correlations between the static and dynamic
measures identified and the sub-quality factors Availability,
Accessibility and Successability of WSs. Based on that,
accurate probabilistic models for the mentioned factors may
be built.

Our next steps are (1) to identify and deploy additional
WSs so that the total number of WSs will be around 20. This
will provide sufficient data for (2) performing the planned

regression analysis and allows for (3) building more accurate
probabilistic models.

REFERENCES
[1] OASIS Web Services Quality Model (WSQM) Technical

Committee, https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsqm
[retrieved: August, 2013]

[2] OASIS (Organization for the Advancement of Structured
Information Standards), https://www.oasis-open.org
[retrieved: August, 2013]

[3] Web Services Quality Factors Version 1.0. 22 July 2011.
OASIS Committee Specification 01. http://docs.oasis-
open.org/wsqm/WS-Quality-Factors/v1.0/cs01/WS-Quality-
Factors-v1.0-cs01.html [retrieved: August, 2013]

[4] ISO/IEC 25000, Software engineering – Software product
Quality Requirements and Evaluation (SQuaRE) – Guide to
SQuaRE, ISO (2005).

[5] D. Ivanovi , M. Carro, and M. Hermenegildo, "Constraint-
based runtime prediction of SLA violations in service
orchestrations," In Service-Oriented Computing, Springer
Berlin Heidelberg, 2011, pp. 62-76.

[6] F. Xing, P. Guo, and M. R. Lyu. "A novel method for early
software quality prediction based on support vector machine,"
In Software Reliability Engineering, 2005. ISSRE 2005. 16th
IEEE International Symposium on, IEEE, 2005.

[7] S. Morasca, “A probability-based approach for measuring
external attributes of software artifacts,” Proceedings of the
3rd International Symposium on Empirical Software
Engineering and Measurement, IEEE, 2009, pp. 44-55.

[8] F. Harrell, “Regression modeling strategies: with applications
to linear models, logistic regression, and survival analysis,”
Springer, 2001.

[9] The Artists Registry Web Service,
http://yesso.eu/samples/artist-registry.zip [retrieved: August,
2013]

[10] Apache Axis2 (Java), http://axis.apache.org/axis2/java/core/
[retrieved: August, 2013]

[11] Code2Web Toolkit, http://sourceforge.net/projects/code2web
[retrieved: August, 2013]

[12] Chidamber, Shyam R., and Chris F. Kemerer. "A metrics
suite for object oriented design," IEEE Transactions on
Software Engineering, vol. 20, no. 6, 1994, pp. 476-493.

[13] Chidamber & Kemerer object-oriented metrics suite,
http://www.aivosto.com/project/help/pm-oo-ck.html
[retrieved: August, 2013]

[14] L. Lavazza, S. Morasca, D. Taibi, and D. Tosi, "On the
definition of dynamic software measures," ACM-IEEE
International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2012, IEEE, 2012, pp. 39,48.

[15] CodePro AnalytiX, https://developers.google.com/java-dev-
tools/codepro/doc/ [retrieved: August, 2013]

[16] Eclipse Metrics plugin, http://metrics2.sourceforge.net
[retrieved: August, 2013]

[17] OASIS Web Services Reliable Messaging (WS-1
ReliableMessaging) Version 1.1, June 2007, http://docs.oasis-
open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
[retrieved: August, 2013]

[18] G. Kiczales and E. Hilsdale. "Aspect-oriented programming,"
In ACM SIGSOFT Software Engineering Notes, vol. 26, no. 5,
ACM, 2001, doi: 10.1145/503271.503260.

[19] WinPcap, http://www.winpcap.org [retrieved: August, 2013]
[20] Wireshark, http://www.wireshark.org [retrieved: August,

2013]

503Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

