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Abstract—Modeling, implementation, and testing are inte-
gral parts of system development process. Models usually
serve for description of system architecture and behavior and
are automatically or manually transformed into executable
models or code in a programming language. Tests can be
performed on implemented code or executable models; it
depends on used design methodology. Although models can
be transformed, the designer has to usually adapt resulted
code manually. It can results in inconsistency among design
models and their realization and the further development,
testing and debugging by means of prime models is impossible.
The approach discussed in this paper allows to model and test
systems using high-level languages, especially Object Oriented
Petri Nets combined with Discrete Event System Specification,
whereas models are deployed to the product environment and
become integral part of the system.

Keywords-Object Oriented Petri Nets; DEVS; model deploy-
ment.

I. INTRODUCTION

Modeling, implementation, and testing are integral parts

of system development process. Various models are used in

analysis and design phases and usually serve as a system

documentation rather than real models of the system under

development. The system is then implemented according to

these models, whereas the code is either generated from

models or is implemented manually. Unfortunately, many

implementation differ from designed models because of

debugging or system improvement. Consequently, models

become out of date and useless.

To solve a problem with manual implementation and

impossibility to test designed system using models, the

methodologies and approaches commonly known as Model-

Driven Software Development are investigated and devel-

oped for many years [1], [2] These methods use executable

models, e.g., Executable UML [3] in Model Driven Ar-

chitecture methodology [4], which allows to test systems

using models. Models are transformed into another models

and, finally, to code. Nevertheless, the resulted code has to

often be finalized manually and the problem with semantic

mistakes or imprecision between models and transformed

code remains unchanged.

The approach to system development, which is presented

in the paper, uses formal models as a means for system

description as well as system implementation. The basic

idea is to have a framework allowing to execute models

in different modes, whereas each mode is advisable for

another kind of usage—design, testing, and deployment. The

system is developed using different kinds of models (from

formal models to direct code in a programming language)

in simulation, i.e., it is possible to test systems in any state

in any time. The design method, which is taken into account

in the papers [5][6], does not require model transformations

and assumes that models serve for system description as

well as system implementation. The formalism of Object-

Oriented Petri Nets (OOPN) [7], [8] and Discrete Event

System Specification (DEVS) are basic modeling means.

The paper is organized as follows. First, we briefly

introduce the used formalisms of OOPN and DEVS in

Section III, application framework in Section IV, and design

methodology including a simple case study model in Section

V. Possibilities to deploy models into product environment

will be discussed in Section VI.

II. RELATED WORK

Combination of formal models, simulation, and model

deployment is applicable mainly in control software. The

use of high-level languages, especially Petri Nets, allows

to build and maintain control systems in a quite fast and

intuitive way. To control robot application, hierarchical bi-

nary Petri nets are used for middleware implementation in a

RoboGraph framework [9]. To develop control software for

embedded systems, the work which uses Timed Petri Nets

for the synthesis of control software by generating C-code

[10], the work based on Sequential Function Charts [11], or

the work based on the formalism of nets-within-nets (NwN)

[12], [13], [14] can be mentioned.

These tools and works allow to model systems using a

combination of different formalisms, but do not allow to

use formal models in system implementation. The proposed

approach allows to use formal models as a basic design,

analysis and programming means combining simulated and

real components. The main advantages; there is no need for

code generation, and for further investigation of deployed

systems, using the same formal models and methods is

possible.
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III. USED FORMALISMS

We will briefly introduce the formalisms of Object-

Oriented Petri Nets and Discrete Event System Specification

in this section.

A. Formalism of Object Oriented Petri Nets

Object orientation of Object-Oriented Petri nets (OOPN)

[15] is based on the well-known class-based approach. All

objects are instances of classes, every computation is real-

ized by message sending, and variables contain references

to objects. This kind of object-orientation is enriched by

concurrency. OOPN objects offer reentrant services to other

objects and, at the same time, they can perform their own

independent activities. The services provided by the objects

as well as the autonomous activities of the objects are

described by means of high-level Petri nets—services by

method nets, object activities by object nets.

The formalism of OOPN contains important elements

allowing for testing object state (predicates) and manip-

ulation with object state with no need to instantiate nets

(synchronous ports). Object state testing can be negative

(negative predicates) or positive (synchronous ports). We

can see that synchronous ports can be used for testing as

well as for manipulation. Synchronous ports are special

(virtual) transitions, which cannot fire alone but only dynam-

ically fused to some other transitions, which activate them

from their guards via message sending. Negative predicates

are special variants of synchronous ports with inverted

semantics—the calling transition is fireable if the negative

predicate is not fireable.

B. Formalism of DEVS

Discrete Event System Specification (DEVS) [16] is a

formalism, which can represent any system whose input/out-

put behavior can be described as sequence of events. The

atomic DEVS model is specified as a structureM containing

sets of states S, input and output event values X and Y ,

internal transition function δint, external transition function

δext, output function λ, and time advance function ta. These

functions describe behavior of the component.

This way we can describe atomic models. Atomic models

can be coupled together to form a coupled model CM .

The later model can itself be employed as a component

of a larger model. This way the DEVS formalism brings

a hierarchical component architecture. Sets S, X , Y are

obviously specified as structured sets. It allows to use

multiple variables for specification of a state; we can use

a concept of input and output ports for input and output

events specification, as well as for coupling specification. In

another words, components are connected by means of ports

and event values are carried via these ports.

IV. APPLICATION FRAMEWORK

Since one of the main motivations behind the development

of OOPN is a possibility to use Petri nets not only for

system modeling but also for system implementation and

deployment, we need an application framework, which ful-

fils two basic requirements. First, to link models and product

environment. Second, to work with models in simulations.

A. Interoperability with Product Environment

The models described by means of OOPN can cooperate

with objects of the product environment (product objects).

Since the framework is implemented in Smalltalk [17],

OOPN objects can send messages to Smalltalk objects,

and OOPN objects can be directly available in Smalltalk.

There are different levels at which the product objects can

send messages to OOPN objects—domain, predicate, and

synchronous port levels. Domain level allows Smalltalk

objects to send messages OOPN objects as though they were

Smalltalk objects. Predicate level allows to test predicates

and port level allows to perform synchronous ports. Each

OOPN object offers special meta-protocol allowing to work

at presented levels (it will be shown in the text, later on).

Another way on how to connect OOPN models with

their product environment is to use component approach

based on DEVS formalism. DEVS component can wrap

another kind of formalism, so that each such a formalism

is interpreted by its simulator and simulators communicate

each other by means of a compatible interface. Let MPN =
(M,Π,mapinp,mapout) be a DEVS component M , which

wraps an OOPN model Π. The model Π defines an initial

class c0, which is instantiated immediately the component

MPN is created. Functions mapinp and mapout map ports

and places of the object net of the initial class c0. The

mapped places then serve as input or output ports of the

component.

B. System in Simulation

The framework offers a protocol for creating and manipu-

lating models and simulations. Models are usually described

by formalisms of OOPN or DEVS, but can be implemented

in product environment or can interoperate with product

environment. The framework allows to execute models in

different simulation modes—simulation in model time, sim-

ulation in real time, and simulation in combined time.

Each simulation mode is advisable for another kind of

usage. Model time is intended for basic design, testing,

and analysis of system under development and assumes all

components are described by formal models. Combined time

assumes that the system is descibed by formal models as

well as implemented in product environment, i.e., selected

simulated components are replaced by their real implemen-

tation, whereas simulated components work in model time

and real components work in real time. This mode allows to

experiment with simulation models in real conditions. Real
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time assumes that all components (simulated as well as real)

work in real time and is intended for hardware/software-in-

the-loop simulation and system deployment.

V. SYSTEM MODELING USING OOPN AND DEVS

The system is modeled and simulated in the applica-

tion framework, which supports formalisms of OOPN and

DEVS, so far. This section will demonstrate modeling

methodology based on usage of the application framework.

Figure 1. Use Cases of designed system.

A. Modeling Methodology

We will follow the design methodology, which has been

presented by Kočı́ and Janoušek [18]. The modeling process

starts with identification of actors and use cases as a model

of system behavior. In this phase, the use case diagrams

from UML can be used. Based on this diagram, roles and

their activity nets are defined. Roles are based on analysis of

actors (actors usually correspond to roles) and activity nets

model behavior described by use cases.

Next step is to define an architecture of the system. The

architecture can be described by class diagram. Roles and

activity nets are encapsulated into classes, furthermore the

subjects are identified and modeled using classes. Subjects

represent information about actors or a group of actors,

e.g., one user (a subject) can have more roles (administra-

tor, customer, etc.). The architecture is based on layered

modeling of roles and their activities, i.e., each activity

encapsulates a role, an activity can encapsulates another

activity, etc. Each role and its set of allowed activities

(activity nets) can be described by any formalism allowing

to define an interface for communication or synchronization,

e.g., statecharts, activity diagrams, Petri Nets, etc.

B. System Behavior Modeling

We will demonstrate system modeling and model deploy-

ment on a simple case study of a robot control system. First,

walking

r isCloseToObstacle.

t1

r stop. r turnRight.

r

r

p1

r isCloseToObstacle.

t2

r turnRight.

r

r isCloseToObstacle.

t3

r turnRight.

r isClearRoad.

t11

r

r isCloseToObstacle.

t4 blocked

r isClearRoad.

t12

r isClearRoad.

t13

r

r

r

r go.

r go.

r go.

r

p2

r

r

r

p3

r

r

r

Figure 2. Activity Net Scenario.

we identify use cases of the system, as shown in Figure 1.

We have found two actors (User who can control the system

and Robot who is controlled) and three use cases (Execute

Scenario for Robot, and Start Scenario and Stop Scenario

for User).

walking

blocked

isBlocked isNotBlockedr r

isWalking r isNotWalkingr

Figure 3. Activity Net Scenario – predicates.

Actors represent roles and use cases represent activities

in the system. We aim at the actor Robot and the use case

Execute Scenario in our study. The use case models an

activity of the robot. We will suppose very simple activity,

which can be described in following algorithm: (1) the robot

is walking, (2) if the robot comes upon to an obstacle, it

stops, turns to right and tries to walk, (3) if the robot turns

three times with no possibility to walk, it stops. The activity

net Scenario describing the presented behavior of use case

Execute Scenario is shown in Figure 2.

The robot can be in two stable states—walking or blocked

(there is no possibility to walk). Each such a state is

represented by appropriate place, i.e., places walking and

blocked. We have to be able to test activity states, there-

fore the predicates are generated for each such a place—the

synchronous port isBlocked and the negative predicate

isNotBlocked for the state blocked and similar pred-

icates for the state walking. Test predicates are shown in

Figure 3.

487Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances



constructor forRole: r

r

r

rself

return

isStopped

stopped

isNotStopped

r

r

r

role

Figure 4. Activity Net Scenario – the constructor.

The activity has to be linked to a role in the system—this

role is stored in places and serves even as a state token. The

role supplies an information about the robot and allows to

send commands. Each activity is instantiated for just one

role, so that the role is initialized by means of constructor

as shown in Figure 4. The new state stopped is added—it

represents a situation when the robot is stopped but does not

stay before any obstacle (e.g., the robot was stopped by user

or the activity is being created).

Now, we have to add last element, a possibility to start

activity—it is a part of use case Start Scenario modeled

by method net start (see Figure 5), which decides what

has to be done based on the activity state. If the activity is

walking, the method does nothing. If the activity is stopped

or blocked, it starts the robot’s walk (send a message go

and moves the token to the place walking.

start

p1

return

self isWalking self isStopped || self isBlocked.

r go.

false true

role

walking

r

r

Figure 5. Activity Net Scenario – a method net start.

C. Architecture Modeling

Each role needs to have its subject, i.e., the object defin-

ing information about a subject, which can have different

roles in the system. The subject is usually modeled as an

object containing efficient data directly or as an interface to

database, another system or remote object. The way how to

model subjects influences the system architecture.

Figure 6 shows the classes of basic architecture of our

example with appropriate stereotypes Activity Net, Role, and

Subject. The architecture consists of the subject RobotDe-

vice, its role Robot and its activity Scenario, that have been

modeled by OOPN (see the stereotype PN). RobotDevice

represents an interface to the simulated robot and Robot

represents a role which the robot has in the system. Each

method is labeled with one of stereotypes C (constructor),

Figure 6. Basic architecture of the case study.

Act (activity), and T (testing) determining a realization of

methods in OOPN (see [19]).

D. DEVS Architecture Modeling

The DEVS architecture of presented case study contains

the components Behavior and Subject as shown in Figure

7. The component Behavior describes the system behavior

as presented in previous case and the component Subject

describes a subject of behavior. Subcomponents of the

component Subject can be modeled by OOPN, programming

language, or any other supported formalism. Components

are connected via ports request and answer. The DEVS

subcomponent RobotDevice is an atomic component, which

gets a request string at its input port request, asks a robot for

answer, and puts this answer to its output port answer. This

architecture allows to exchange components in a very simple

way, because components are connected only by means of

ports.

Figure 7. DEVS architecture of the case study.

VI. SOFTWARE DEPLOYMENT WITH MODELS

This section will demonstrate possibilities of keeping

models in the deployed system. It is based on the applica-

tion framework allowing to interoperability of models and

product environment.

A. Implementation with Basic Architecture

A possible model of the role Robot, which is based on

architecture described in Figure 6, is shown in Figure 8. The
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role checks actual distance of robot to the obstacle each 10

time units and offers information about robot’s position by

means of predicates isClearRoad and isCloseToObstacle. To

get information about the distance, the role asks its subject

by sending a message getDistance.

subject

self delay: 10

d := r getDistance.

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

r

d

oldD

p1

p2

t1

t2

Figure 8. The role Robot – implementation for basic architecture.

We can exchange the simulated subject by real interface

to the controlled robot. It is very simple—we only create

instances of appropriate classes and do not care about used

formalism. Figure 9 of Smalltalk code shows creating a

subject as an instance of a Smalltalk class. This subject

cooperates with a role and an activity modeled by OOPN.

The object Repos represents the storage of all classes and

simulations using OOPN or DEVS formalisms.

cAct := Repos componentNamed: ’Scenario’.

cRole := Repos componentNamed: ’Robot’.

subj := RobotDevice new.

role := cRole forSubject: subjR.

actS := cAct forRole: roleR.

Figure 9. Accessing OOPN objects from Smalltalk.

Now, we demonstrate an accessing OOPN objects from

product environment of Smalltalk. We send a command to

start walking by means of a message go—the message

passing is provided in the standard form. To test an object

state, the predicates should be used. Since they are not

ordinary methods, we have to access them in a special

way. First, we obtain a special meta-protocol by sending a

message asPredicate. Second, we can call synchronous

port or negative predicate in the standard form of message

passing. Third, the result represents a state of a called

port/predicate, which has been tested. In our example, we

test the predicate isCloseToObstacle and if the result

is true, then we stop robot’s walking by sending a message

stop. The example is shown in Figure 10.

role go.

r := role asPredicate isCloseToObstacle.

r ifTrue: [ role stop ].

Figure 10. Message passing and predicate testing.

Of course, proposed solution is not sufficient for our case,

because we need to test this condition until it becomes

true. Therefore we can use one of following ways—to

use waiting for specified condition or to define a listener.

The first way is shown in Figure 11. We simply use a

message waitFor: from the meta-protocol, which blocks

until the specified condition becomes true, i.e., the port

isCloseToObstacle becomes fireable.

role go.

role asPredicate waitFor: #isCloseToObstacle.

role stop.

Figure 11. Waiting for a condition.

Second way is shown in Figure 12. It uses a message

listener:for: from meta-protocol to define a listener,

which is activated if the condition becomes true, i.e., the

port becomes fireable.

role go.

role asPredicate

listener: self

for: #isCloseToObstacle.

Figure 12. Setting a listener.

The activation of listener means that the special message

conditionSatisfied: is sent to object, which is spec-

ified as a first argument. The example of its implementation

is shown in Figure 13.

method conditionSatisfied: aCond

(aCond == #isCloseToObstacle)

ifTrue: [ role stop ].

Figure 13. Listener implementation.

B. Implementation with DEVS Architecture

Because the architecture changes, we have to modify

classes describing system behavior. The component Behav-

ior encapsulate OOPN model, which defines the class Robot

as its initial class, so that ports are mapped to places of the

Robot object net. This modified object net is shown in Figure

15. Place named request, resp. answer, corresponds to output

port request, resp. input port answer.

The example of accessing DEVS components and their

object interface is shown in Figure 14. First, we get a DEVS

simulation named R01, which is based on architecture from

Figure 7. Second, we obtain DEVS component Behavior,

which is able to communicate through its ports. Never-

theless, this component is described by OOPN, so that it

is possible to use object interface of its initial object (an

instance of the class Robot) too. To get the object interface,

we send a special message objectInterface from the

component meta-object protocol.

s1 := Repos componentNamed: ’R01’.

cB := c1 componentNamed: ’Behavior’.

iB := cB objectInterface.

Figure 14. Obtaining object interface to the inital object.
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answer

self delay: 10

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

(#distance, d)

d

oldD

#getDistance

request

p1

t1

t2

Figure 15. The role Robot – implementation for DEVS architecture.

VII. CONCLUSION AND FUTURE WORK

The paper dealt with a possibility to deploy formal models

to target application using specific application framework.

It allows to use formal models as a basic design, analysis

and programming means combining simulated and real

components. The main advantage of that approach is no need

for code generation and further investigation of deployed

systems using the same formal models.

The proposed approach has one main disadvantage—

usage of application framework, which interprets formal

models directly demands of increased requirements on mem-

ory size and system performance. The future research will

aim at efficient representation of choosed formal models

and interoperability with another product environment. The

application framework will be adapted to new conditions

having lesser requirement for resources.
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[6] R. Kočı́ and V. Janoušek, “OOPN and DEVS Formalisms
for System Specification and Analysis,” in The Fifth Interna-
tional Conference on Software Engineering Advances. IEEE
Computer Society, 2010, pp. 305–310.
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[8] R. Kočı́ and V. Janoušek, Simulation Based Design of Control
Systems Using DEVS and Petri Nets, ser. Lecture Notes in
Computer Science. Springer Verlag, 2009, vol. 5717, pp.
849–856.

[9] J. L. Fernandez, R. Sanz, E. Paz, and C. Alonso, “Using
hierarchical binary Petri nets to build robust mobile robot
applications: RoboGraph,” in IEEE International Conference
on Robotics and Automation, 2008, pp. 1372–1377.

[10] C. Rust, F. Stappert, and R. Kunnemeyer, “From Timed Petri
Nets to Interrupt-Driven Embedded Control Software,” in
International Conference on Computer, Communication and
Control Technologies (CCCT 2003), 2003.

[11] O. Bayo-Puxan, J. Rafecas-Sabate, O. Gomis-Bellmunt, and
J. Bergas-Jane, “A GRAFCET-compiler methodology for
C-programmed microcontrollers, In Assembly Automation,”
Assembly Automation, vol. 28, no. 1, pp. 55–60, 2008.

[12] R. Valk, “Petri Nets as Token Objects: An Introduction
to Elementary Object Nets.” in Jorg Desel, Manuel Silva
(eds.): Application and Theory of Petri Nets; Lecture Notes
in Computer Science, vol. 120. Springer-Verlag, 1998.

[13] D. Moldt, “OOA and Petri Nets for System Specification,” in
Object-Oriented Programming and Models of Concurrency.
Italy, 1995.

[14] L. Cabac, M. Duvigneau, D. Moldt, and H. Rölke, “Modeling
dynamic architectures using nets-within-nets,” in Applications
and Theory of Petri Nets 2005. 26th International Conference,
ICATPN 2005, Miami, USA, 2005, pp. 148–167.
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