
MCReF: A Metric to Evaluate Complexity of Functional Requirements

Carlos Roberto Paviotti

São Paulo Federal Institute of Education, Science and

Technology, IFSP

Capivari, Brazil

 e-mail: carlinhos@ifsp.edu.br

Luiz Eduardo Galvão Martins

Institute of Science and Technology

Federal University of São Paulo, UNIFESP

São José dos Campos, Brazil

e-mail: legmartins@unifesp.br

Abstract— The high sophistication of software systems has lead

to an increase in the requirements complexity. Currently, there

are metrics to evaluate the functional size of the software such

as metrics of function point and use case points which are used

with good results. However, a metric for the complexity for

software requirements specifically had not yet been proposed.

Identifying this gap, this paper proposes a Metric of

Complexity of Functional Requirements (MCReF is an
acronym composed by Portuguese words: Métrica de

Complexidade de Requisitos Funcionais) indicated to evaluate

and classify the complexity of software requirements. MCReF

was developed from an empirical study based on a

questionnaire that collected the opinion of 20 professionals

from the requirements area to determine the weights of the

factors that influence the requirement complexity. The

responses were tabulated and given a statistical treatment to

assess the weights of the complexity factors and their

respective ranges of values for classification. A case study

using MCReF is also presented in this paper.

Keywords-Requirements Engineering; Complexity of

Requirements; Requirement Metrics.

I. INTRODUCTION

Being part of the system engineering phases,
Requirements Engineering consists of a set of techniques
employed in the processes involved in the development of
system requirements, i.e., eliciting, detailing, documentation
and validation of the requirements [11]. The result of the set
of requirements is a Software Requirements Specification
Document, where the degree of understanding and accuracy
of the provided description tend to be proportional to the
degree of quality of the generated product. The definition of
the software requirements occurs in the early development
phases. Requirements Engineering provides methods,
techniques and tools that help requirements engineers to
define and classify what must be implemented in the
software before starting building the system to be, i.e., the
earliest phases of the software life cycle. Several processes
models advocate such a procedure, for example:
Requirements Definition in the Waterfall Model [13],
Requirements Design in the Spiral Model [11],
Requirements Gathering in the Prototyping Model [15],
Requirements Workflow in USDP [13], etc. Among the
ways of realizing the requirements complexity of a given
system, regardless of the process model to be adopted, the
Use Cases provide help in this issue, helping to formalize the
scope of the system and facilitating the communication

between developer teams and stakeholders. The presentation
of requirements in a Use Cases Diagram is a simplified and
less complex form of representation than the requirements
description in natural language, enabling to estimate the
project size and realize the system’s complexity in a global
way. Being one of the important factors to generate a
software product with quality, a Software Metric
corresponds to quantitative measures on one or more
relevant features of the software [7][8][10], which allows
developers to have a more refined view on the software
process or related documentation, along with being an
important management tool that contributes to preparation of
time schedule, more accurate costs and more plausible goals,
thus facilitating the decision making process and its
consequent results.

Among the existing metrics, focusing on functionalities
and not on a software system requirements, there are
Function Points [13] and Use Cases Points Metrics [15], in
both, the specified complexity factors are classified as
subjective since they link the measures to “its value to the
user”.

Some related studies have been performed involving the
requirements complexity, with presence in researches and
empirical studies [12]. However, as many of them are
focused on software quality, the necessity of involving the
complexity factor in achieving the final result of the study
remains, which generally refers to the system or project
complexity in relation to their functionalities and not their
requirements.

Kanjilal, Sengupta, and Bhattacharya [1] developed an
approach based on metric model which aims to
quantitatively estimate the requirements complexity for the
object-oriented methodology, using project models like
Sequence Diagram and Classes Diagram in the aid of
validating the estimates in the project phases and long term
project management.

Zhao, Tan, and Zhang [2] created a method to estimate
costs through the requirements designing, proposing a new
term named Path Complexity, which indicates a metric to
measure the effort of the software complexity based on E-R
Diagram (Entity-Relationship Diagram), showing the whole
database structure in which an entity that can reach other
entities due to its relationship and obtaining data on it.

Aiming the complexity related to requirements, an
empirical study performed by Regnell, Svensson, and Wnuk
[3] describes a case of system engineering in the field of
mobile telephony, based on experiences used at Sony

471Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Ericsson, which demonstrates the existing complexity of
requirements in mobile telephones development.

The result of this study is called by the authors Very
Large–Scale Requirements Engineering (VLSRE),
suggesting a new order of magnitude applied to
requirements, focusing on the size of the requirements set
(the number of requirements is used, among other variables,
to represent the complexity and it is strongly related to the
nature of interdependencies among requirements), which are
managed by a system developer company.

Complexity is an attribute that allows measuring if a
software, usually part of it (module, method or function) is
easy to read (comprehension), or else how complex it can
become, if it contains a large number of nesting of laces and
decision commands in a given program or functionality [8].

According to McCabe (1976) in Pressman [13]
complexity is the quantification of the number of
interdependent paths in a program, which provides an
indication of its maintainability and testability. It is
important to note that these definitions of complexity were
built with the software as object in question and not the
software requirements [10]. Another issue, also reported by
Regnell, Svensson, and Wnuk [3] is that one of the factors
responsible for the increasing of the requirements complexity
is the large and diversified set of stakeholders, both internal
and external to the organization. Based on the research
performed in the literature and on the case studies, it is
possible to characterize the requirements complexity as the
degree of difficulty to interpret, specify, understand and
implement a set of requirements, which is directly influenced
by the amount of variables and procedures relevant to the
requirements, as well as by the dependency relationships or
coupling among them.

Currently, there is not available among the Requirements
Engineering techniques, a metric aimed specifically to
evaluate the requirements complexity. Such metric is of
fundamental importance for the software development teams
to have a reference concerning to the degree of complexity a
requirement can present. Based on a metric of requirements
complexity, the developer teams may build their own
productivity indicators, which will be of great value to
accurately estimate variables such as effort, time and cost of
software development.

The aim of this study is to contribute to the software
development in industries that employs the Requirements
Engineering concepts and techniques, by proposing a metric
to evaluate the complexity of functional requirements, even
before start building the systems, in which this complexity is
already recognized in the early phases of the life cycle of the
software development.

To achieve the proposed metric, the adopted
methodology was divided in four phases: (i) Development of
case studies focusing the requirements elicitation,
specification and validation, based on real contexts,
including: a) Creation of a requirements specification
document using the template Volere, referring to a system for
monitoring and capturing heart rates to evaluate the heart
autonomic function (in human beings); b) Creation of a
requirements specification document using one of the

templates from the IEEE STD 830-1998 recommendation
[9], regarding to the system for technical and physical
monitoring of athletes in all the categories of a Brazilian
professional soccer club [16]. These case studies were used
as a “laboratory” to identify the factors that influence the
requirements complexity. (ii) Creation of a Requirements
Complexity Metric, identifying: a) main variables that
influence the requirements complexity; b) Relationships
among these variables; c) Weight of these variables, obtained
through the application of a questionnaire to the software
development professionals; d) Classification of the
requirements complexity. (iii) Application of the proposed
metric in three case studies which were software projects
whose requirements had already been raised and previously
documented. (iv) Analysis and discussion of the results
obtained with the application of the metric in the case
studies.

The rest of this paper is organized as follows: MCReF
metric is explained in the section II. The empirical study that
grounded the proposed metric is presented in section III. A
case study is discussed in the section IV. Conclusions are
presented in the section V.

II. MCREF METRIC

A. Proposal

The revolution of software systems, where the increasing
complexity and the size of their set of requirements are
inherited factors of this progress, has motivated the
improvement of already existing methods, techniques and
tools in the Requirements Engineering.

Currently, there are metrics to estimate the software size
and functionality [8][13][15], something that was a challenge
to software companies in past decades. However, a metric
for complexity of software requirements had not already
been proposed. Motivated by such a gap, this paper presents
the Metric of Complexity of Functional Requirements
(MCReF).

MCReF is a metric proposed to evaluate the complexity
of functional requirements, enabling to classify how complex
is the functional requirement, focusing especially in
information systems requirements. To apply the proposed
metric it is necessary to obtain from the Requirements
Specification Document, the generated artifacts or diagram,
enabling to know the main factors that influence the
complexity of functional requirements, namely: treatment
and identification of functionalities, input and output
variables, dependencies and couplings, decompositions,
constraints and number of stakeholders involved in. Once
performed the identification of these factors, it is necessary
to specify them a little more, and thus to classify the sub-
factors that influence the complexity of functional
requirements on which is applied the weight attributed to
each subfactor of complexity, enabling to obtain the degree
of complexity in a single requirement.

B. Case study Development

To assist identifying the factors that influence the
complexity of the information system requirements, two case

472Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

studies were carried out, each one having as a result a
requirements specification document, being in different
templates, which allowed a wider view of the functionalities
and the objectives to specify and document the requirement
correctly. The requirements specification documents
included the following systems: (i) Monitoring and Heart
Frequency Capturing System to evaluate the heart autonomic
function (in human beings) developed in collaboration with
Department of Physiotherapy at UNIMEP (Methodist
University of Piracicaba – Brazil), using Volere template
[14]; (ii) Technical and Physical Follow Up System to all
categories of a professional soccer club in Brazil, which is
discussed in a previous work [16].

C. Metric Development

Based on case studies performed to support the MCReF
metric it was possible to identify in the Requirement
Specification Document [16], the main factors of the
complexity that influence the functional requirements, which
are described in the following subsections.

1) Input and Output Variables

Represent values to be treated or used to meet the
requirement represented by the identifiers, i.e., a label for
each variable. They are classified as: (i) Input variable –
existing variable in the requirement that will receive
information from one agent or another system and making
necessary to treat the value of this input, for example, an
input variable of genre: “f” for female or “m” for male. (ii)
Output variable – a variable of the result of the requirement.
After processing the variable, the resulting information will
be presented to the applicant and such value must be treated
by the application, for example: the information “f” obtained
from a field that stores data referring to genre must present
the result “female” to the user requesting. It is possible to
identify this factor of complexity in the Requirement
Specification Document due to: the large number of
variables, which will possibly have a greater complexity
when comparing to requirements with a few variables,
because these, whether input or output, need to be treated to
present the results they were intended; the amount of
constraints on the variables of the requirement, for example:
input variables where the date of birth cannot be greater than
or equal to the current; height and weight cannot receive
negative values; output variables where age is obtained from
date of birth stored; etc. Among the artifacts produced in a
Requirements Specification Document, there is the factor of
complexity in analysis in: Class Diagram, identifying the
attributes of classes; Data Flow Diagram, obtaining the
amount of data (input, output, query, internal file and
external file); Entity-Relationship Diagram, identifying the
attributes of the Entities and the attributes of the
Relationships; Context Diagram, through the amount of data
sent or received by the external entities, among others.

2) Number of Types of Stakeholders Involved
As reported by Regnell, Sevensson, and Wnuk [3], one of

the factors responsible for the elevation of the complexity in
Requirement Engineering is the large and diversified set of

stakeholders, both internal and external to the system.
However, regardless of the counting of stakeholders, there is
a need of classifying these types involved.

It is possible to identify in the Requirements
Specification Document such factors of complexity due to:
number of actors representing given types of stakeholders –
possibly a wide range of stakeholders attributed to the
requirement will have a greater complexity when comparing
to requirements with fewer stakeholders involved, because
these will be related, at least, with one system functionality,
demanding to be treated to present the results intended;
quantity of existing hierarchic levels for the actors – each
hierarchic level created indicates the need to specify and
treat the available functionalities.

Among the artifacts produces in a Requirements
Specification Document, there is the factor of complexity in
analysis in: Use Cases Diagram, represented by the Actors
and Hierarchic Levels existing among the actors
(generalization relationships).

3) Number of External Interfaces
The external elements, with which the software in

question must interact, such as IN/OUT hardware or even
other systems, are considered external resources to the
software and must be treated at the requirement level. It is
possible to identify the influence of this factor of complexity
analyzing: number of actors representing devices, such as
sensors, actuators, etc. which demand treatment to interact
with the system; number of actors representing other
systems; other software or systems that receive or send
information to the software in question. Among the artifacts
produced in requirements specification, there is the factor of
complexity in analysis in the Use Cases Diagram through the
identification of the Actors and Data Flow Diagram by
means of external and internal entities.

4) Functionalities Identification/Treatment
Functionality can be defined as a behavior or an activity

for which a beginning and an end can be viewed, that is,
something capable of being executed. For example, the
simple execution of a functionality called “perform order”
refers to the activities to be performed (create order, verify
customer, link product, verify stock, calculate discount,
define delivery time, etc.) resulting in the creation of an
instance of the entity/class called “Order”. It is also
recommended to present, in the description, the set of
preconditions (for example, customer already registered), to
implement functionality, and post-conditions (product
delivered, product warranty after sale etc.) which may arise
from this implementation.

It is possible to identify in the Requirements
Specification Document this factor of complexity by
analyzing: the number of existing functionalities to perform a
requirement; necessary conditions set out in the requirement
preconditions, necessary conditions set out in the
requirement post-conditions, requirements that involve
dependency or coupling of the functionality of other
requirements. Among the artifacts produced in a
Requirements Specification Document, there is the factor of

473Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

complexity in analysis in: Classes Diagram, represented by
the operation of classes; Data Flow Diagram, represented by
the processes; Use Cases Diagram represented by the Use
Cases, Requirement Specification Form, obtained from the
conditions to perform a requirement; number of validations
to perform a requirement, number of results obtained from
the performance (main flow, requirement alternative(s) and
exception (s)), among others.

D. The weights of Factors of Complexity and their

Subfactors

In Table I, the factors and subfactors of the complexity
proposed for MCReF are presented along with their
respective weights, obtained from the results of the empirical
study performed with 20 professionals from the requirements
area. The factors and subfactors are objects of study and
were obtained through bibliographic review of the
Requirement Engineering area along with the development
of case studies focused on requirements elicitation,
specification and validation based on real context, among
them: a) Creation of a requirement specification document,
using the template Volere, referring to a monitoring and
collection of a heart rate system to assess the autonomic
function of the heart (in human beings); b) Creation of a
requirement specification document using the templates
recommended by IEEE STD 830-1998, referring to a
technical and physical monitoring of athletes system on all
categories of a professional soccer club [16]. To define each
Weight Attributed to the Subfactors of Complexity of the
Requirement, as presented in Table I, it was necessary to
base on the responses obtained on the empirical study
conducted with the professionals from the area. Based on the
responses obtained from this study, the arithmetic average of
the respondents answers were obtained for each subfactor of
complexity and thus defining the subfactor Average.

TABLE I. WEIGHTS OF THE FACTORS OF COMPLEXITY OF THE

REQUIREMENTS

To define the weight attributed to the subfactor of

complexity, it was necessary to conduct, for each one, a
division of the average of the subfactor obtained by the sum
of the subfactors of complexity generated. With the value of
the assessment of each factor of complexity, it is obtained
the result, which must be multiplied by 10 (ten), to be

applied in a 0-10 scale, as suggested by the metric proposed.

During the empirical study, it was needed to define a weight

to the factors of requirements complexity along with their
subfactors of complexity, however, it was verified that only
the responses attributed to the subfactors of requirements
complexity would be of real interest, discharging the values
obtained to the factors of requirements complexity.

The amount identified of each subfactor of requirement
complexity must be multiplied by the weight attributed to the
Subfactor of Complexity (SfC), resulting in the Complexity
of the Subfactor of the Requirement (CSfR) and allowing
them to receive their respective classification of complexity.
The degree of importance of the composition to the subfactor
of requirement complexity, in this study called weight of the
subfactor, is the result of the empirical study conducted with
the professionals of the area.

The classifications of the CSfR is the result of empirical
tests conducted, and the rating value “Low” was assigned by
the MCReF’s developers, based on their professional
expertise; “Medium” corresponds to twice the value
attributed to low classifications, “High” corresponds to
higher values than the average and less than “inappropriate”.
The classification “Inappropriate” indicates that the amount
of elements defined for the SfC in the requirement multiplied
by the weight of the factor of requirement complexity
exceeds the value attributed to the value “high”. For the
complexity of the subfactor of the requirement that is not
identified or used in the requirement, there should be used a
value of zero (0). In case there is not a CSfR classified as
“Inappropriate”, it is possible to obtain the classification of
the requirement by the sum of the complexities of the
subfactors referring to the requirement in question, thus
obtaining a “Complexity of the Requirement” (CR). This
Complexity of the Requirement must be related with Table II
to receive a Classification of the Complexity of the
Requirement (CCR). When the CSfR is classified as
“Inappropriate”, it is recommended to restructure the
requirement or, “Complexity Inappropriate Requirement”
must be attributed to the requirement in question, i.e., it will
maintain the structure of the functional requirement in
analysis, even with one or more subfactors of complexity
classified as inappropriate. All Complexity of Inappropriate
Requirement (CiR) indicates that one or more subfactor of
complexity of the requirement was diagnosed as a number of
elements defined for the SfC of the requirement that, when
multiplied by the weight of the factor of requirement
complexity, exceeds the value attributed to the classification
“High”, then this requirement is given the Complexity
Inappropriate Requirement (CiR) and its weight is the
highest value shown in Table II multiplied by the number of
times the SfC of requirement for the functional requirement
in question was classified as inappropriate. Therefore, the
Complexity of the Requirement is obtained by the result of
the sum of the CSfR and its Classification of the
Complexity of the Requirement is achieved through the
application of the Complexity of the Requirement checked
with Table II. The Classification of the Complexity of the
Requirement (CCR) is the result of empirical tests grounded
on the development of case studies focused on elicitation,

474Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

specification and validation of requirements based on real
contexts [16]. To define the classification as “Very Low” it
also takes under consideration the classification
“inappropriate” where both have a scale of 10 (ten) points,
i.e., less than 10 points are classified as “Very Low” and the
10 points less than 100 points are “Inappropriate”.

TABLE II. CLASSIFICATION OF THE COMPLEXITY OF THE

REQUIREMENT

III. THE EMPIRICAL STUDY THAT GROUNDED THE

PROPOSED METRIC

The empirical study, which aimed the application of a
questionnaire concerning to the requirements complexity
identified along with the professionals of the area provided
the database to obtain the weights for each factor of
complexity studied. The results are shown through the
following analysis: data from the participants, degree of
importance attributed to the factors and subfactors of
requirements complexity and reliability of the instrument of
data collection.

A. Data from the participants

It was possible to obtain a profile of the interviewed
through the part of the questionnaire “Professional
Identification”. The results indicated that 100% of the
participants in the empirical study were professionals with a
high level of academic education, distributed in master
(30%), mastering (55%) and Ph.D (15%). Regarding the time
working in the area of requirements, 80% of the participants
have carried out activities for 5 years or more, while only
10% has had less than a year in the area.

B. Degree of importance attributed to the factors and

subfactors of complexity of the requirement

For the specific purpose of obtaining weights to the
factors and subfactors of complexity, it was used the basic
tool for data collection: a questionnaire consisting of 4
factors subdivided in 12 subfactors with 5 alternatives each,
whose measures were based on Likert scale [6]. The factors
considered in the empirical study were obtained by
reviewing the literature about the complexity of requirements
and also by the case study developed along the research
using the templates Volere and IEEE STD 830-1998 to
document the requirements with the factors: input variables
and output of the system, Stakeholders, external interfaces to
the system and system functionalities. Through this
instrument to collect data, the participants were able to
express their opinion about each of the affirmatives.

C. Analysis of the Reliability

Finished the tabulation of the research data using the
statistic software SPSS (Statistical Package for the Social
Sciences- version 13.0), the instrument used to collect data
was subjected to a reliability evaluation through Cronbach’s
Alpha coefficient analysis which works the relationship
between internal covariance and variances of the measures.
The value of Alfa can range between zero and one (0 - 1) and
the higher this value, the greater the internal consistency of
the instrument evaluated. Authors differ on the minimum
acceptable value to Cronbach’s Alpha Coefficient. Hair et al.
[4] said that to have an acceptable reliability, Cronbach’s
Alpha must have a value of at least 0.70. However, as this is
not considered an absolute value, lower values are accepted
if the research is exploratory in nature. According to
Malhorta [5], the minimum value of Cronbach’s Alpha to
ensure the reliability in a research must be 0.60.

Using Cronbach’s Alpha in this study aimed to evaluate
the internal consistency of the instrument used
(questionnaire), and check if there is consistency in the
variation in the participants’ responses, examining each
factor and subfactor of complexity considered in the
research. Table III presents the results of Cronbach’s Alpha
coefficient for subfactors grouped by their factors of
requirement complexity in question, i.e., involving Q1.1,
Q1.2, Q1.3 and Q1.4 for Input and Output variables, Q2.1
and Q2.2 for Stakeholders, Q3.1 and Q3.2 for External
Interfaces and Q4.1, Q4.2, Q4.3 and Q4.4 for functionalities.

According to the presented in this table, it is possible to
observe the Alpha values obtained for each one of the factors
of complexity considered in the empirical study. It is
observed that the lower Alpha value produced was for the
factor of Input and Output Variables (0.532) and the highest
result was for the factor External Interfaces (0.834).
Analyzing the general Alpha and considering all factors, it is
noticed that the value generated was very satisfactory. The
result indicates that the instrument used in the research is
highly reliable since reached a maximum value of 1 (one), an
Alpha of 0.808 was obtained. This value can be presented as
an indicator of efficiency and reliability of the instrument in
evaluating the factors of requirement complexity.

TABLE III. RESULTS OF CRONBACH’S ALPHA FOR FACTORS OF

COMPLEXITY OF REQUIREMENT

IV. CASE STUDY

The intent of this section is to present the applicability of
the metrics of complexity of functional requirements –
MCReF - in a case study. The context of such study was a
system to monitor and capture heart rate to evaluate the
autonomous function of the heart.

475Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

A. Monitoring and Heart Rate Capturing System

The documentation of requirements specification
referring to the Monitoring and Heart Rate Capturing System
to evaluate the autonomous function of the heart (in human
beings) was developed by students of the Computer Science
Master Degree at UNIMEP – Methodist University of
Piracicaba, Brazil - related to the practical work using the
Template Volere and presented to the discipline of
Requirements Engineering. The documentation consists of
21 functional requirements, 15 new ones and 6 from the
previous system. Table IV shows the results of the
application of MCReF.

TABLE IV. RESULTS OF THE APPLICATION OF MCREF – MONITORING

AND HEART RATE CAPTURING SYSTEM

Legend:
FRN – New Functional Requirements
FRL – Legacy Functional Requirements

1) Analysis and Discussion of the results obtained with

the application of MCReF in the Monitoring and Heart Rate

Capturing

Investigating the subfactors that classify FRN001

complexity as “inappropriate”, it is observed that the
subfactor “number of functionalities”, which presents 21
functionalities, multiplied by the weight 0.97 results to the
subfactor a complexity equal to 20.37 (weight adopted
according to Table I), which is higher than the stated in the
classification of complexity given to the subfactor applied in
the metrics, i.e., higher than 5 and less than 10.

In the analysis of the subfactors that classify the
complexity of FRN002 as “middle low”, it was observed that
the subfactor “number of input variables” stated with 22
variables, which multiplied by the weight 0.85 results in a
complexity of 18.7 to the subfactor defined as “High” in the
classification of complexity.

Besides this subfactor, it was found that the subfactor
“Number of Constraints to Input Variables” presents 7
variables, which multiplied by the weight 0.92 generates a
complexity of 6.44 to the subfactor also defined as “High” in
the classification of complexity.

Evaluating the classifications of complexity produced by
the MCReF from the experience of the analyzer considering
their own productivity indicator, it is observed that the result
of the application of the proposed metric reflects the reality
in the implementation of a software requirement, i.e., the
results of the complexity obtained for the requirements
corresponds to the necessary resources identified for their
development and enable their identification in functional
requirements of factors and subfactors of higher complexity.
It is also noticed that the results obtained with the application
of MCReF assist in the tasks to estimate the effort (people
and professional), time and cost for development, ranging
from the functional requirement of lower complexity, the
FRN014, until the highest complexity, the FRN002.

V. CONCLUSION AND FUTURE WORK

With the evolution of Software Engineering techniques,
it became possible to improve the software quality through
standardization and definition of development processes – in
accordance with the requirements – to ensure a final product
that meets the customer’s expectations, as agreed.

The tasks of classifying and measuring software are
present from the conceptual stage (requirements) to product
delivery. However, little has been explored in the
Requirements Engineering area about the use of metrics of
complexity. Briefly, only two studies about the subject could
be identified [1][3]. Currently, there is not available, among
Requirements Engineering techniques, a metric aimed
specifically to measure the complexity of requirements. Such
metric is of fundamental importance for software
development teams in industries to have references about the
degree of complexity a requirement can present. Based on a
metric of complexity of requirements, the development
teams can build their own productivity indicators that will be
of great use to predict, with precision, variables as effort,
time and cost of software development. These requirements
must preferably be specified in standard documents, based
on, for example, the template Volere or templates available
in IEEE STD 830-1998 recommendation, allowing
distinguishing their main features, artifacts or diagrams
contained therein, namely: treatment of functionalities; input
and output; dependencies or coupling, constraints and

number of stakeholders involved. With the definition of the

subfactors of complexity and their respective weights and
classification, it has been applied in real requirements
context already specified the metric of complexity proposed.
With the complexity and classification obtained for the
requirements it became possible to compare the results
among requirements and check the efficiency of the
proposed metric. For the specific purpose of obtaining
weights to the factors of complexity, it has been used a basic
instrument of collecting data, a questionnaire composed of

476Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

four factors of complexity, divided in 12 subfactors with 5
alternatives whose measures were based on Likert scale.

The factors considered by the empirical study were
obtained through a literature review about the complexity of
requirements, and also through the case studies developed
along this research. Through the instrument of collecting
data, the participants could express their opinion about each
of the statements. The instrument used to collect data was
subjected to an evaluation of reliability through
Cronbach’Alpha coefficient.

Besides the evaluation of the general consistency of the
instrument, Cronbach`s Alpha was employed to analyze each
issue (factor and subfactor of complexity) considered in the
research. Therefore, the current paper assists the
development of system that use the Requirements
Engineering techniques and concepts, through a metric of
complexity of requirements, i.e., with the capacity of
measuring how complex a requirement is, even before
starting building it, identifying such complexity in the early
stages of a software development life cycle. It is envisioned
the possibilities of expanding this research and suggested as
future works the development of a method to obtain the
complexity of a set of existing requirements in a project,
enabling classify the complexity of a system as a whole.

It is also suggested the development of a software to
support the proposed metric. Besides such suggestions, this
metric could: become a tool to estimate the cost of the
software, because of the complexity involved in the
requirement, being charged by the degree of difficulty for its
implementation; predict the time of development of the
requirement presented by the complexity associated to the
resources required for implementation; estimate the delivery
time of the modules of the system; establish the necessary
resources (hardware, software, professionals, etc.) and
qualify the software through the way of treatment of the
requirement complexity. The study presented in this paper
points out for the necessity of new researches in the
Requirements Engineering metrics.

REFERENCES

[1] A. Kanjilal, S. Sengupta, and S. Bhattacharya, “Analysis of
complexity of requirements: a metrics based approach”, Proceedings
ISEC'09, pp.131-132, Pune, India, 2009.

[2] Y. Zhao, H. B. K. Tan, and W. Zhang, “Software cost estimation
through conceptual requirement”; Proceedings of the Third
International Conference On Quality Software (QSIC'03), p.141,
2003.

[3] B. Regnell, R. Svensson, and K. Wnuk, “Can We beat the complexity
of very large-scale requirements engineering?”, Proceedings of the
14th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 2008), pp.123-128,
Montpellier, France, june/2008.

[4] J. F. Hair, Multivariate Data Analysis, 4th ed., New York: Prentice-
Hall, 1995.

[5] N. K. Malhotra, Marketing Research: An Applied Orientation. New
Jersey: Prentice Hall, 1996.

[6] R. Likert, “A technique for the measurement of attitudes”. Archives
of Psychology, 1932.

[7] B. W. Boehm and P. N. Papaccio, “Understanding and controlling
software costs”, IEEE Transactions on Software Engineering, p.1462-
1477, vol. 14, no. 10, 1988.

[8] N. E. Fenton and S. L. Pfleeger, Software Metrics – A Rigorous and
Practical Approach, 2nd ed., PWS Publishing Company, 1997.

[9] IEEE, IEEE Std 830-1998 Software Requirements Specification, The
Institute of Electrical and Electronics Engineers, New York, 1998.

[10] S. H. Kan, Metrics and Models in Software Quality Engineering;
Addison–Wesley, 2002.

[11] G. Kotonya and I. Sommerville, Requirements Engineering:
Processes and Techniques; John Wiley & Son, Chichester, England,
1998.

[12] S. Park and J. Nag, “Requirements management in large software
system development”; IEEE International Conference on Systems,
Man and Cybernetics, pp. 2680-2685, vol. 3, 1998.

[13] R. S. Pressman, Software Engineering: A Practitioner´s Approach;
McGraw-Hill, 7th edition, 2009.

[14] J. Robertson and S. Robertson, Volere: Requirements Specification
Template, Edition 14, 2009.

[15] I. Sommerville, Software Engineering; Addison Wesley, 9th edition,
2010.

[16] C. R. Paviotti and L.E.G. Martins, MCReF – Métrica de
Complexidade de Requisitos. Revista Conteúdo, vol.1, no.6, pp.1-26,
ago/dez 2011.

477Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

