
Interactive Hyperbolic Tree for Industrial size Software Product line Architecture

Abeer Khalid, Salma Imtiaz

Department of Software Engineering

International Islamic University

Islamabad, Pakistan

abeer.msse234@iiu.edu.pk, salma.imtiaz@iiu.edu.pk

Abstract—This Software Product line is an eminent part of

software re-engineering field. Facilitation of software product

line architecture with a more convenient method of

representation mechanism results in efficiency with respect to

time, cost, energy, etc. For this to be true, there is a need for

information visualization techniques that represent true

characteristics of software product line. This paper presents a

study of information visualization technique which makes

perception of data easy for interacting with the software

product line architecture.

Keywords-software product line architecture; information

visualization; visualization representation

I. INTRODUCTION

Software product lines are known as a family of software
systems, based on common and varying aspects of software
products with immense complexity rooted in them. The
present studies have suggested that architecture is the best
suitable form there representation [24] [25]. Literature shows
that representation mechanism, such as Unified Modeling
Language (UML), matrix tables, conventional trees have so
far been used in illustration of software product line
architecture. But foremost, they have not depicted the
characteristics of a software product line, which
consequences in, not well attained results. For this problem
to be tackled, an information visualization technique is the
best suitable option [26].

In recent years, information visualization has taken grip
of software engineering field by its sheer capability to
enhance cognitive abilities for perceiving complex data [23].
Thought information visualization is a relatively new
concept in the branch of software product line engineering, it
can still be of immense help if a suitable visual structure plus
its interactive visualization techniques are provided, as well
said by Tufte “There are right ways and wrong ways to show
data; there are displays that reveal the truth and displays that
do not” [22].

A lot of work has been done in representation of software
product line architecture data, with each technique having its
pros and cons. The techniques presented so far are not
scalable, traceable and they are not supporting evolution
[10]. Present representation mechanisms for management of
software product line architecture are not capable of handling
the software product line architecture attributes and do not
expose good visual structure attributes [26]. And thus, a
visual structure technique is proposed, which is capable of
conquering the attributes of a software product line

architecture data, also that visual structure can be interacted
upon; without being a static structure.

Hyperbolic trees are the visual structure devising the
central piece for our Information visualization techniques.
The criterion, on the bases of which hyperbolic tree structure
was concluded as best fit structure, was obtained from
attributes of software product line architecture and visual
structure [26]. The criteria were set as “abstraction,
hierarchy, traceability, scalability, evolution, visual content,
and perception” [26]. Also, hyperbolic trees are chosen, for
the fact that they “support exponential growth in the number
of components with increasing radius” [5]. Hyperbolic tree
stands on the basis that it has its root in the middle while its
linked nodes and their children are spread apart. In short, this
hierarchy depicts many generations of parents, their children,
their siblings, in the same window snapshot without losing
focus of the context [6]. The main feature of hyperbolic trees
is their ability to be manipulated, without any regard to its
extremely large hierarchy, which is much larger than
conventional hierarchal structure. They have the ability to
show 10 times as many nodes compared to other visual
structures, and hyperbolic tree structure being more effective
in providing navigation, without deviating from the context
[5]. This takes care of our software product line architecture
scalability issue to some extent.

This paper is organized in four sections: Section II is
concerned with the problem and related work. Section III
describes the visualization of the chosen visual structure.
Section IV states the conclusion and direction for future
work.

II. PROBLEM AND RELATED WORK

So far, representation of software product line
architecture has used many techniques and notations (e.g.,
Matrix table conventional tree, then notations like UML,
etc.). But, noticeably all these techniques are lacking in one
way or another.

Literature suggests that a number of illustration
mechanisms are used for representation of software product
line data. Unified modeling language (UML) notations are a
well-known representation form, and can be understood
easily, with platform independence provided in them[16-21].
UML notations incorporated with natural languages are also
used for representation of software product line data. Use
case map path notations (UCM) are also used for
representation of software product line data. The point to be
notated is that all of the notations are good in some context
[26], but they are not favorable for representation of software

445Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

product line architecture data as a whole, where traceability
links need to be visualized across the architecture as a whole,
beside other factors.

Textual presentation is another representation form,
which is used for SPL data [13] [14] [15]. But again, it is not
feasible for the fact that, it is not scalable, no traceability
links are present or visualized, keeping in mind that if no
traceability, then evolution cannot be optimally utilized.

Matrix form is another type of notation which is used, as
the literature suggests, for representation of software product
line architecture data [9] [11] [12]. They are a good form of
representation, but the problem with them is that they are not
scalable for software product line architecture data; also, as
with the above type of notation, traceability links are not
visible.

Conventional trees are another type of representation
form, whether they are vertical or horizontal tree [7], [9],
[10]. They are the best form of presenting software product
line architecture data. Here, the traceability links can be
visualized for the whole context. However, they are not
feasible because they are not a scalable structure, and also,
when focusing on one aspect of the tree, the other parts of
the hierarchy are obscured.

Cone tree is another form of hierarchal structure, which
in 3D format is quite good; they overcome the prominent
issues of the software product line architecture, namely
scalability, plus visualization of traceability links [8], [9].
But, the problem of data obscuring is still present, meaning
when focusing on one aspect of hierarchy, one does not see
the full context in a single snapshot.

Tree maps are another form of hierarchal structure, which
optimally utilize the screen space [7]. But the problem with
this type of technique is that traceability links are not visible,
also specifically one area of hierarchy cannot be focused on,
without losing the grip on the context.

In sum, the shortfall of the above mentioned
representation mechanism can be atoned by hyperbolic tree
structure, based on the fact that its essence is favorable for
software product line architecture data [26].

III. VISUALIZATION OF HYPERBOLIC TREE

The mapping of software product line architecture data
on to hyperbolic tree is based on the fact that this visual
structure is best suited for this job [10]. As defined in [5] and
[6], hyperbolic trees support large hierarchies and their
results have shown a preference towards the hyperbolic tree,
as compared to conventional approaches. The authors of [5]
and [6] also briefed about the implementation and the
general features of their hyperbolic browser.

Here, their work has been translated for software product
line architecture with enhancements included in it, based on
the lack of presence of characteristics of software product
line architecture. Also, the enhancements are derived from
the perception capability of a human mind.

Figure 1. Based on Anstis (1974) work [3].

A. Presenting “node”

Each node is encompassed in a circle for displaying node
information [5]. The circle does not interact with the circle of
another node. The size of the circle would vary based on its
generation level, e.g., if the node central to the core has size
of 15cm, then, the next ring of nodes would have node with
size of 10cm, which is 5cm short as compared to the parent
and so on. The theory behind this logic is to show the
distance factor giving the illusion of 3D depth factor. This is
similar to the implementation in [3], where letter size is
larger if the generation level is high. As shown in fig. 1,
where outer most circle have large sized nodes, giving the
perception that they are more close to the surface of the
screen as compared to the other nodes; the illusion is that the
size of the node decreases as they move further away from
the surface of the screen. In fig. 2, Anstis [3] work has been
translated onto the hyperbolic tree structure, where the inner
most circles of nodes is giving the perception that they are
closer to the surface of the screen. The next levels of
generation of circle of nodes are positioned behind and so
on.

 When focusing on some point of a hierarchy then, the
size of the nodes would vary, depending on the size of the
parent node. The size of the parent node, and its child, and so
on would become the same as compared to the other nodes at
that specific time. Moreover, the positioning of the nodes
with regards to the generation level would not be hindered
when focusing on some part of the hierarchy.

446Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 2. Hyperbolic tree structure with distance factor mapped on it.

B. Generation level

This feature has to be maintained for the sole reason that
the perception of data for software product line architecture
has a major hold. If the graph cannot maintain the level of
placement of every node by their generation radius, then
perceiving can be made quite difficult. The allotment of
placement of nodes can be calculated by

  = =  

where stands for total degree of angle, n implies total
number of children, is the equal number of angle, is

number of children per node, and is the number of angle

per node. Also, it should be stated that for each ring of nodes
this equation is called for placement of next level of
generation nodes. Then [5] presented in their article,
equation for calculating the needed space from a parent to
their child.
Lamping and Rao formula:

  

where is angle between midline and edge of the subwedge

and is the desired distance between child and edge of its
subwedge [5].Keeping in mind that even when focusing on
some part of the hierarchy the level of generation gap should
be maintained and not overlap at any point in time.

C. Background landscape

The background of it would be landscape, e.g., made up
of peak mountain; the base of the mountain would be in
green representing the grass, moving upwards it would
merge with the color brown showing bare land, then moving
upwards to color white representing snow. Figure 3 shows
software product line architecture data translated onto the
hyperbolic tree with human perception of real world
environment kept in mind.

Perception of data is easy if the visualization is inspired
from the real world environment and its objects known as

“data landscape” in software terminology [4], based on the
fact that skills used by human mind in interpreting the real
world environment can be used in perceiving the
visualization of “data landscape” [4].

Figure 3. Perception of hyperbolic tree as real world object.

D. Color aid

The concept of “peak mountain” for the background, on
which the hyperbolic tree would reside can be achieved with
the help of color, as well said by Colin “that color helps in
breaking camouflage” otherwise it would be very difficult to
determine where or what a certain object is [4]. The use of
color is not just about filling an image with color, but one
has to bring it as close to real world objects as possible. In
fig 3, the circles of nodes are filled with Lambertian shading,
also the circles shown as objects, are Casting shadow on the
mountain. Where Lambertian shading is known as a method
for showing surface shape with the help of shading [4],
meaning that if a mixture of color is not used then it is not
possible to differentiate between the background and the
overlaying objects on them. And Casting shadows theory is
deduced from the fact that any real world subject can cast
shadows either on itself or on the surface it is placed upon.
This theory gives us the illusion of perception of height, of
an object [4], stating that the specified object is at a height,
above the ground that’s why it’s casting its own shadow on
the ground; rather than being at the same level on the ground.

The nodes are also filled with the blue color and the text
defining the node is in black color, which brings out the
luminance contrast; which states that if the background is
low saturation (light color), then the overlaid symbols must
be of darker shade [4].

E. “Affordance”device

Taking Gibson’s affordance theory known as perceivable
prospective for action [2] into consideration and translating it

447Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

to our work, e.g., if the task is to bring second generation of
children into focus, it would be highly recommended if
“handles” are used [2]. As perceived by Houde, it is rather
easy to perceive solution with the help of “handles” than
arrows, etc. [1]. Here again, the focus is to bring forth human
perception of real life objects, and use those skills as
opposed to defining new ones.

IV. CONCLUSION AND FUTURE WORK

This paper starts with identifying the need for
information visualization technique for the software product
line architecture. It has mentioned the need for not just a
good visual structure, but also the need for interaction with
it. It further went on to explain the importance of hyperbolic
tree and then presented enhancements to the concept of
hyperbolic tree introduced by [5] and [6], for the sole
purpose of establishing it as a fine means for the
representation of software product line architecture data.
Along the way, the perception of the human mind was kept
in focus based on the rationale that nonfunctional
requirement of software product line architecture can only be
handled if perception of human mind is focused upon.

There is a need for testing this technique against
previously used techniques for representation of software
product line architecture. Our future work is based on this.

ACKNOWLEDGMENT

We would like to thank all our teachers and colleagues
who helped. A.K, thanks MR. Mushtaq, Ms. Zafar, Mr.
Iqbal, Mr. Hussian and Ms. Latif for their endearing support.

REFERENCES

[1] S. Houde. “Iterative design of interface for easy 3-D direct
manipulation,” Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM, Monterey,
May, 1992, pp. 135-142. [Retrieved: October, 2013].
doi:10.1145/142750.142772

[2] J. J. Gibson. “The ecological approach to visual perception,”
Houghton Mifflin, Boston, 1979. (currently published by
Lawrence Erlbaum, Hillsdale, NJ.)

[3] S. M. Anstis. “A chart demonstrating variation in acuity with
retinal position,” Vision Research, vol. 14, no. 7, July, 1974,
pp. 589-592. [Retrieved: September, 2013].
doi:10.1016/0042-6989(74)90049-2

[4] C. Ware. “Information visualization:Perception for design,”
Morgan Kaufman Publishers, 2nd ed, 2004.

[5] J. Lamping and R. Rao. “Hyperbolic Browser:A

focus+context Techniques for visualizing large hierarchies,”

Journal of visual languages and computing, vol. 7, no. 1,

March, 1996, pp. 33-55. [Retrieved: September, 2013]. doi:

10.1006/jvlc.1996.0003
[6] J. Lamping, R. Rao, and P.Peter. “A focus+context technique

based on hyperbolic geometry for visualizing large
hierarchies,” In Proceedings of the ACM SIGCHI Conference
on Human Factore in Computing Systems(CHI '95), ACM,
May, 1995, pp. 401-408. [Retrieved: October, 2013]. doi:
10.1145/223904.223956

[7] B. Johnson and B. Shnedierman. "Tree-maps: a space-filling
approach to the visualization of hierarchical information
structures," Visualization, 1991. Visualization '91,
Proceedings, IEEE Conference on, vol., no., 22-25 October,

1991, pp. 284-291. [Retrieved: September, 2013]. doi:
10.1109/VISUAL.1991.175815

[8] G. G. Robertson, J. D. Mackinlay, and S. K. Card. “Cone
trees: Animated 3d visualization of hierarchical information,”
Proceedings of the ACM SIGCHI Conference on Human
factors in computing systems, ACM, 1991 pp. 189-194.
[Retrieved: October, 2013]. doi:10.1145/108844.108883

[9] S. Card, J. Mackinlay, and B. Shneiderman. “Readings in
Information Visualization - Using Vision to Think,” Morgan
Kaufmann, 1999.

[10] D. Nestor, L. O'Malley, A. Quigley, E. Sikora, and S. Thiel,
"Visualisation of Variability in Software Product Line
Engineering," in 1st International Workshop on Variability
Modelling of Software Intensive Systems (VaMoS-2007),
Limerick, Ireland, 2007. [Retrieved: October, 2013].
doi:10.1.1.136.9399.

[11] S. Ferber, J. Haag, and J. Savolainen. "Feature Interaction and
Dependencies: Modeling Features for Reengineering a
Legacy Product Line," Software Product Lines (SPLC2):
Springer, vol. 2379, August, 2002, pp. 235-256. [Retrieved:
September 2013]. doi: 10.1007/3-540-45652-X_15

[12] H. Ye, and H. Liu. “Approach to modelling feature variability
and dependencies in software product lines,” IEEE. vol. 152,
June, 2005, pp. 101-109. [Retrieved: September, 2013]. doi:
10.1049/ip-sen:20045007

[13] S. G. Eick, J. L. Steffen, and E. E. Sumner. “Seesoft-ATool
for Visualizing Line Oriented Software Statistics,” IEEE
Transactions on Software Engineering, vol. 18, no. 11,
November, 1992, pp 957-968. [Retrieved: September, 2013].
doi:10.1109/32.177365

[14] A. van Deursen, M. de Jonge, and T. Kuipers. "Feature-
Based Product Line Instantiation Using Source-Level
Packages," Software Product Lines (SPLC2): Springer, vol.
2379, August, 2002, pp. 217-234. [Retrieved: October, 2013].
doi: 10.1007/3-540-45652-X_14

[15] K. C. Kang et al., “FORM: A feature-oriented reuse method
with domain specific reference architectures,” Annals of
Software Engineering, vol. 5, no. 1, 1998, pp. 143-168.
[Retrieved: September, 2013]. doi:
10.1023/A:1018980625587

[16] D. Muthig, and C. Atkinson. "Model-Driven Product Line
Architecture," Software Product Lines (SPLC2): Springer,
vol. 2379, USA, August, 2002, pp. 110-129. [Retrieved:
October, 2013]. doi: 10.1007/3-540-45652-X_8

[17] D. Fey, R. Fajta, and A. Boros. "Feature Modeling: A Meta-
Model to Enhance Usability and Usefulness," Software
Product Lines (SPLC2): Springer, vol. 2379, USA, August,
2002, pp. 198-216. [Retrieved: October, 2013]. doi:
10.1007/3-540-45652-X_13

[18] S. Salicki, and N. Farcet. "Expression and Usage of the
Variability in the Software Product Lines," Software Product-
Family Eng (PFE-4): Springer, vol. 2290, Spain, October,
2002, pp. 304-318. [Retrieved: September, 2013]. doi:
10.1007/3-540-47833-7_27

[19] G. Halmans, and K. Pohl. “Communicating the variability of
a software-product family to customers,” Software and
Systems Modeling, vol. 2, no. 1, March, 2003, pp. 15-36.
[Retrieved: October, 2013]. doi: 10.1007/s10270-003-0019-9

[20] F. Bachmann et al., "A Meta-model for Representing
Variability in Product Family Development," Software
Product-Family Eng (PFE-5): Springer, vol. 3014, Italy,
November, 2004, pp. 66-80. [Retrieved: October, 2013]. doi:
10.1007/978-3-540-24667-1_6

[21] D. L. Webber, and H. Gomaa. “Modeling variability in
software product lines with the variation point model,” Sci.
Comput. Program., vol. 53, no. 3, December, 2004, pp. 305-
331. [Retrieved: September, 2013]. doi:
org/10.1016/j.scico.2003.04.004

448Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://dx.doi.org/10.1145/223904.223956
http://dx.doi.org/10.1145/108844.108883
http://dx.doi.org/10.1049/ip-sen:20045007
http://dx.doi.org/10.1109/32.177365

[22] R. E. Tufte. “Visual explanation:Images and Quantities,
Evidence and Narrative,” Cheshire, CT: Graphics Press, 1997.

[23] D. A. Norman. “Things that Make Us Smart,” Reading, MA:
Addison-Wesley, 1993

[24] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch.
"COVAMOF: A Framework for Modeling Variability in
Software Product Families," Software Product Lines
(SPLC3): Springer, vol. 3154, USA, August- September,
2004, pp. 197-213. [Retrieved: September, 2013]. doi:
10.1007/978-3-540-28630-1_12

[25] A. V. D. Hoek. “Design-time product line architecture for
any-time variability,” Science of Computer Programming,
vol. 53, no. 3, Neatherland, December, 2004, pp. 285–304.
[Retrieved: October, 2013]. doi:10.1016/j.scico.2003.04.003

[26] K. Abeer, and I. Salma, “Evaluation of Visual structure for
Industrial size Software Product Line Architecture,” Proc. of
Eighth International Multi-Conference On Computing In The
Global Information Technology, Think Mind, France(Nice),
July. 2013, pp. 152-157. [Retrieved: October, 2013].
doi:iccgi_2013_7_40_10278

449Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://dx.doi.org/10.1016/j.scico.2003.04.003

