
Light-PubSubHubbub: A Lightweight Adaptation of the PubSubHubbub Protocol

Porfírio Dantas, Jorge Pereira, Everton Cavalcante, Gustavo Alves, Thais Batista

DIMAp – Department of Informatics and Applied Mathematics

UFRN – Federal University of Rio Grande do Norte

Natal, Brazil

{enghaw13, jorgepereirasb}@gmail.com, {evertonrsc, gustavo}@ppgsc.ufrn.br, thais@ufrnet.br

Abstract—The publish-subscribe communication paradigm is

widely used in systems that require a loosely coupled asyn-

chronous form of interaction. The PubSubHubbub protocol is

a publish-subscribe protocol for the Web that involves pub-

lishers, subscribers, and hubs, which are the intermediate

elements between publishers and subscribers. However, in the

original implementation of the protocol, unnecessary computa-

tion and network traffic occur as the sequence of exchanged

messages to subscribers to retrieve a message is not optimized.

In this paper, we present a lightweight version of such a proto-

col, named Light-PubSubHubbub, by introducing the follow-

ing changes to the communication process: (i) the publisher no

longer needs to publish updated messages in a Web topic and

then notify the hub since the messages are published in the hub

itself; (ii) it uses the REST architectural style in order not to

couple publishers, subscribers, and the hub; (iii) XML is the

default format of the messages. This paper also presents the

results of experiments comparing Light-PubSubHubbub with

the original PubSubHubbub protocol and the JMS technology

for asynchronous messaging. The obtained results have shown

that Light-PubSubHubbub takes less time to answer to the

client than PubSubHubbub and JMS.

Keywords-asynchronous communication; publish-subscribe;

PubSubHubbub; Light-PubSubHubbub

I. INTRODUCTION

In the traditional way of the client-server communication,
the server is the main element involved in the communica-
tion that receives and handles requests from clients. Never-
theless, such a model has shown to be significantly ineffi-
cient in situations in which data is frequently updated or such
frequency is undetermined. In this case, the client needs to
periodically send requests (synchronous) to the server to
obtain the data and to check for updates. Such method is
called polling [1], and although it meets the purpose of ob-
taining updates, it is not appropriate for situations when data
are updated with an unknown frequency. Fig. 1 illustrates an
example in which a client interested in updated data periodi-
cally makes requests to check for updates on the server.
However, in this example, the client only gets an update on
the third request; so, the first, second, and the fourth requests
would be unnecessary because they do not provide any new
information.

Although such a method makes the communication pro-
cess between the client and the server simpler, it raises the
question about the ideal period of time for making such re-
quests. If a very large time period is chosen, the time for
obtaining an update may be high and then it is possible to use

Figure 1. The polling method for obtaining information.

outdated information while an updated one is available. On
the other hand, if the requests are performed in a very short
period of time, unnecessary network traffic may be generated
since the information may not be updated in such short time
period [2]. In order to solve this problem, the PubSubHub-
bub protocol [3] was developed for dealing with event-
oriented asynchronous requests [4] based on the Publish-
Subscribe client-server communication model, in which
publishers are responsible for sending messages to be con-
sumed by subscribers. PubSubHubbub introduces a new
element in such communication model called hub, which
works as an intermediary between the publisher and sub-
scriber elements. However, in the original implementation of
such a protocol, the publisher needs to notify the hub that it
has published an updated message in a Web topic, so that an
additional processing must be performed by the hub in order
to retrieve this new message and then forward it to the sub-
scribers, thus generating unnecessary computation and net-
work traffic. These limitations have motivated us to perform
adaptations in the PubSubHubbub protocol to reduce its
complexity, thus resulting in a lightweight protocol called
Light-PubSubHubbub. In our approach, the publisher no
longer needs to notify the hub that it has published a new
message since publishers directly send the updated message
to the hub instead of the Web topic. Therefore, no additional
actions are performed to retrieve the published messages.

This paper is structured as follows. Section 2 gives an
overview of the Publish-Subscribe communication model.
Section 3 introduces the PubSubHubbub protocol. Section 4
presents the Light-PubSubHubbub protocol, resulted from
adaptations in the original PubSubHubbub protocol. Section

432Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

5 presents a preliminary evaluation of the proposed protocol.
Finally, Section 6 contains final remarks and future works.

II. THE PUBLISH-SUBSCRIBE MODEL

An event can be defined as a change in a state [4]. For
example, when a person enters in his/her house, this action
means a state change, i.e., an event. Events can be detected
and dealt with applications through an event-driven architec-
ture (EDA). Technically, such an approach enables the de-
velopment of applications in which events trigger messages
to be sent to independent modules of the application in an
asynchronous way and according to the occurrence of such
events.

In this context, the Publish-Subscribe model was devel-
oped as a model to deal with asynchronous messages in
which publishers are responsible for sending messages that
are consumed by subscribers. A great advantage of such
model is the decoupling among its elements since publishers
do not have knowledge about the subscribers registered for
receiving their messages. However, the subscribers are able
to choose what messages they want to receive from the pub-
lishers. Furthermore, subscribers receive only a subset of all
published messages. The process of selecting such messages
to be sent to the subscribers is called filtering, which can be
topic-based or content-based. In a topic-based system, the
messages are published in topics, which work as repositories
of information of interest, so that subscribers will receive all
messages published in the topic in which they have sub-
scribed. In content-based systems, subscribers define con-
straints about the messages to be received, so that the mes-
sages are forwarded to them only if the message attributes or
the content itself match the defined constraints.

In several systems that adopt the Publish-Subscribe mod-
el, there is an intermediary element called broker (or event-
bus), which basically stores and forwards messages [5, 6]. In
this kind of implementation, publishers publish messages in
the broker, which forwards them to the subscribers that have
been registered in the broker. There are also systems that do
not use such intermediary element, so that publisher and
subscriber share information (metadata) about themselves,
thus forwarding messages based on the discovery of each
other [6].

III. THE PUBSUBHUBBUB PROTOCOL

The PubSubHubbub protocol [3] is based on the Publish-
Subscribe communication model and uses a broker element
called hub. The hub is responsible for intermediating re-
quests both from publishers (interested in distributing an
updated information) and subscribers (interested in receiving
the updates provided by the publishers), so that it receives
update notifications from the publishers through an HTTP
POST message, which informs the topic that has been updat-
ed. In a sequence, the hub makes a request to such topic in
order to get the updated information. This request to the
topic is performed through an HTTP GET message for ob-
taining updates, so that the updated information is forwarded
to the subscribers through an HTTP POST message. There-
fore, the PubSubHubbub protocol avoids that clients con-
stantly perform checks for updates and it also eliminates the

direct communication between the client and the server,
which now is always intermediated by the hub (i.e., client–
hub–server).

The PubSubHubbub protocol has four main elements:
1) The topic is the element in which the update infor-

mation is published in the format of a feed by using the

Atom [7] or Really Simple Syndication (RSS) [8] technolo-

gies. In general, the topic is publically available on the Web

and can be accessed through an URL.

2) The hub is the element that works as an intermediary

between the publisher and subscriber elements by: (i) re-

ceiving update notifications; (ii) accessing the topic provider

in order to obtain updates; (iii) registering the subscribers,

and; (iv) forwarding the updates to the subscribers.

3) The publisher is the element that publishes in the

topic and is responsible for notifying the hub about the oc-

currence of an update. In the PubSubHubbub protocol, the

publishers do not have to send the update to the hub. The

publishers are only responsible for notifying it. The updates

are published by the publisher as feeds, which is a data

format used in communication transactions in which users

frequently receive updated content.

4) The subscriber is the element that wants to receive

updates regarding a given topic. In order to receive such

updates, it is necessary that the subscriber has been sub-

scribed in a topic of interest by making a request to the hub

for subscribing to such topic. The hub will send to it the

updates regarding the subscribed topic. The subscriber must

be directly accessible through the network and identified by

an URL.

PubSubHubbub works by performing three basic opera-
tions: (i) discovery; (ii) subscription, and; (iii) publication. In
the discovery process the subscriber asks the publisher for a
feed of a topic. Afterwards, the publisher sends the feed to
the subscriber, which checks if there is an address regarding
the hub used by the publisher for publishing updates in the
topic and other important information, such as the update
title and date when Atom feeds are used. If there is any ref-
erence to the hub in the feed sent by the publisher, then the
subscriber can be subscribed to the referenced hub in order to
obtain the updates whenever they are available. Otherwise,
the subscriber must resort to the polling method or to other
mechanism for obtaining updates regarding such topic since
there is no reference to a hub in the feed, thus making impos-
sible the use of the PubSubHubbub protocol.

In the subscription process, the subscriber requests the
hub to subscribe to a topic by passing the address of the topic
and the necessary information for sending the updates to the
subscriber, and the hub confirms the subscription to the sub-
scriber.

Fig. 2 illustrates the publication process in which the
publisher publishes in the topic and immediately notifies the
hub about the update by passing the address of the topic. In
turn, the hub consults the address passed by the publisher
and obtains the updated information for forwarding it to the
interested subscribers. In such a communication model, the

433Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

update of information requires the following actions illus-
trated in Fig. 2:

(1) the publisher publishes a new information in the

topic;

(2) the hub is notified about the update in the topic;

(3) the hub requests the topic about the new available

information;

(4) the hub receives the new information from the top-

ic, and;

(5) the update is distributed to the interested subscrib-

ers.

Figure 2. Processes performed by the PubSubHubbub protocol.

In addition, PubSubHubbub specifies operations based
on the REpresentational State Transfer (REST) [9] architec-
tural style, as means of establishing connections and request-
ing services, whether subscription or even publication re-
quests. By using REST, PubSubHubbub can establish com-
munications between hub, publishers, and subscribers by
using only the HTTP protocol and several representation
formats (e.g., XML, JSON [10] or plain text) without addi-
tional abstractions as in the SOAP protocol [11] for Web
services.

IV. LIGHT-PUBSUBHUBBUB: AN ADAPTATION OF THE

PUBSUBHUBBUB PROTOCOL

In PubSubHubbub, the publisher is not responsible for
sending information to the hub when it is published. It is
only responsible for notifying it. Afterwards, the hub makes
a request to the topic in order to obtain the updated infor-
mation through the informed URL. In the adoption of this
model, some shortcomings can be observed, such as the
unnecessary computation performed by the hub, which must
access the topic at each publication, and the generation of
unnecessary network traffic because the updated information
must go to the topic and then be retrieved by the hub, as well
as the possibility of the topic being unavailable when it is
accessed.

In this perspective, the original PubSubHubbub protocol
was modified, resulting in the Light-PubSubHubbub protocol
[12]. In this new proposal, the hub is not responsible for
accessing the topic (on the Web) in order to obtain the up-
dates, thus eliminating the need of publically accessing the
topic through an URL. In the publication request to the hub
(implemented by following the REST architectural style),
publishers send information to the topic that must be previ-

ously registered in the hub, not in a server on the Internet, so
that the hub must forward the updated information to the
subscribers to such topic.

In the Light-PubSubHubBub proposed protocol, the pub-
lisher sends the updated information and the identifier of a
topic that is registered in the hub. Next, the hub checks if the
passed identifier of the topic is already registered and if there
are subscribers interested in such publication. If true, the hub
sends the updated information to the subscribers that are
registered for receiving it. In this new perspective, the com-
munication process is as follows: in the publication request
to the hub, publishers directly send the updated information
to the hub by following the REST architectural style; next,
the hub forwards the updated information to the subscribers.

Another change that was performed over the original
PubSubHubbub protocol refers to the used topic. PubSub-
Hubbub extends the Atom and RSS protocols by using them
as means of obtaining updates about information hosted in a
server on the Web. Nevertheless, as the publisher is used for
sending update data to the hub in the implementation of the
Light-PubSubHubbub protocol, it was observed that the
Atom and RSS technologies originally used for sending
information to the hub could be easily replaced by XML-
based messages (extensively used for message exchanges in
the Web) since additional information (e.g., the update date
in the Atom protocol) would not be necessary because the
hub has now control over the topic. Therefore, the hub re-
ceives a publication and forwards it to the subscribers, thus
bringing a greater flexibility to the Light-PubSubHubbub
protocol in terms of the message format (that can be repre-
sented as XML, JSON, plain text, etc.) since there is no
restriction regarding it. However, the subscriber must know
the message format in order to suitably and correctly parse it.

It is important to highlight that the hub just works as a
distributer, i.e., it does not need to know the object format
since it only receives and forwards a string that must be
parsed by the subscribers. Hence, if the messages are repre-
sented in the XML format, for example, the transformations
to (marshaling) and from (unmarshaling) the XML format
must be respectively performed by the publishers and sub-
scribers. In turn, the hub can distribute information in any
text-based format.

The following subsections detail the communication pro-
cesses in the Light-PubSubHubbub protocol.

A. Registration

Before making any publication, the topic must already be
registered in the hub. To do that, a publisher requests the
registration of a new topic through an HTTP request to the
RESTful service that is responsible for registering new top-
ics. In the registration request, the hub checks if the passed
identifier has not already been registered and then makes and
confirms the registration.

The registration process regarding a new topic is per-
formed through an HTTP PUT request to the URL regarding
the RESTful service that registers new topics in the hub. The
HTTP PUT request for registering a new topic in the hub is
made by the publisher to the following URL:

http://<hub’s IP address>:<hub’s port>/Hub/register

434Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

The identifier of the topic must be in the body of the HTTP
message. Fig. 3 shows an example of an HTTP message sent
to the hub aiming at registering a topic with the sports identi-
fier. In Fig. 3, lines 1 to 7 correspond to the header of the
HTTP message and line 9 corresponds to the body of the
message with the identifier of the topic.

Figure 3. Example of HTTP PUT message sent to the hub for registering a

topic with the sports identifier.

B. Subscription

The subscriber must be registered to receive the updates
regarding its topics of interest. In this perspective, the sub-
scriber sends to the hub an HTTP request to the RESTful
service responsible by such requests and passes as parame-
ters: (i) the identifier of the topic of interest, which is re-
quested by the hub in order to identify which updates will be
sent to the subscriber, and; (ii) an address and a port used for
identifying to where the updates will be sent. Therefore, each
subscriber is uniquely identified by a triple composed of its
IP address, identifier of the topic of interest, and the port in
which it will wait for the notifications. After receiving a new
request for subscription, the hub checks if the identifier of
the topic is already registered; if true, the informed address
and the port are registered as interested in receiving updates
regarding such topic.

For a new subscription, it is made an HTTP PUT request
to the URL regarding the subscription in the hub:

http://<hub’s IP address>:<hub’s port>/Hub/subscribe

The body of an HTTP PUT request for new subscriptions
must contain the identifier of the topic of interest, and the
address and the port for receiving updates. Fig. 4 illustrates
an example of an HTTP PUT request sent to the hub in order
to make a subscription to the topic with the sports identifier.
In Fig. 4, lines 1 to 7 correspond to the header of the HTTP
message and line 9 corresponds to the body of the message
with the identifier of the topic of interest, and the address and
the port for receiving updates.

Figure 4. Example of HTTP PUT message sent to the hub for subscribing

to the topic with the sports identifier.

C. Unsubscription

If a subscriber does not want to receive anymore updates
regarding a topic, it is necessary to make an HTTP request to
the RESTful service responsible for cancelling such action.
As a client may be registered for receiving updates regarding
more than one topic, it is necessary to specify the infor-
mation about the client and the identifier of the topic. In
order to perform such operation, the subscriber sends the
identifier of the topic, and its address and port, so that the
hub removes such client from the list of interested subscrib-
ers.

In order to cancel a subscription, an HTTP DELETE re-
quest to the URL regarding the RESTful service responsible
for such operation is made by passing through such URL the
information that uniquely identify the resource to be deleted.
Unlike the previous operations in which the parameters can
be directly sent in the body of the HTTP message, the infor-
mation for this operation is passed in the URL itself due to
limitations of the HTTP DELETE request. Such URL is as
follows:

http://<hub’s IP address>:<hub’s port>/Hub/
unsubscribe/?address=<subscriber’s IP address>

&idTopic=<topic of interest>
&port=<subscriber’s port>

Fig. 5 illustrates an example of an HTTP DELETE re-
quest to the hub aiming at unsubscribing a subscriber from
the topic with the sports identifier. In Fig. 5, lines 1 to 6
correspond to the header of the HTTP message, which can be
empty because the information needed to cancel the sub-
scription have already been sent in the URL of the request.

Figure 5. Example of HTTP DELETE message sent to the hub for unsub-

scribing to the topic with the sports identifier.

D. Publication

The publication process only happens when the topic that
is being updated is already registered in the hub, otherwise a
“topic not found” exception is thrown. In order to make a
publication, a publisher sends to the hub the identifier of the
topic and the value to be published. The hub checks if the
passed identifier is already registered, and if true, it stores the
information contained in the request.

The publication is performed through an HTTP POST
request to the hub containing the identifier of the topic of
interest that must be updated. The request URL is as follows:

http://<hub’s IP address>:<hub’s port>/Hub/publish/
<identifier of the topic>

After publishing, the hub sends the updated information
to all subscribers registered for the current topic by using
their respective address and port that were previously regis-
tered when subscribing. If there is no registered subscriber,
the information is immediately discarded.

435Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

The body of the HTTP message for publishing a new
content regarding a given topic must contain the value for
update, which can be a string or even a XML representation
of an object that must be parsed by the subscribers. Fig. 6
illustrates an example of an HTTP POST request to the hub
in which the publisher wants to publish information in the
topic with the sports identifier.

Figure 6. Example of HTTP POST message sent to the hub for publishing

information in the topic with the sports identifier.

In Fig. 6, lines 1 to 7 correspond to the header of the

HTTP message, and lines 9 and 10 correspond to the body

of the message that represents a new information to be for-

warded to the subscribers. In such example, the update is

regarding a message as a string.

V. EVALUATION

A. QoMonitor

The conducted case study consists of a ubiquitous oil and
gas application that illustrates the need of monitoring the
Quality of Service (QoS) and Quality of Context (QoC) of
the services used by it. For monitoring such services, the
QoMonitor [13, 14] system assesses, monitors, and makes
available QoS and QoC metadata regarding services to be
used by clients such as middleware platforms, Web services,
applications, etc. QoMonitor handles synchronous and asyn-
chronous requests from clients, both returning QoS and QoC
metadata regarding a given service or a set of services. In
synchronous requests, QoMonitor receives a request, pro-
cesses the information, and answers to the client, i.e., the
response time of such operation is the time for transporting
the request/response over the network and the time for pro-
cessing the request. In asynchronous requests, QoMonitor
receives a subscription request, processes the information,
and waits until a particular event (return condition) happens,
and then asynchronously responds to the client, which needs
to provide means of receiving responses from QoMonitor.
To do that, the original implementation of QoMonitor uses a
Java Message Service (JMS) [15] topic for forwarding the
result of the subscription to the client when QoMonitor pub-
lishes in such topic. More details can be found at the URL
http://consiste.dimap.ufrn.br/projects/lightpubsubhubbub/ics
ea2013.

However, the JMS technology generates a coupling be-
tween the clients and QoMonitor since JMS only works
when the client is developed by using the Java programming
language. In this context, the Light-PubSubHubbub protocol
could have a key role since it enables the asynchronous
communication between the clients and QoMonitor without

generating a coupling because Light-PubSubHubbub was
developed as a Web service.

B. Experiments and results

The performed experiments were aimed to address the
overhead due to the use of the Light-PubSubHubbub proto-
col in comparison with the original PubSubHubbub protocol
and the JMS technology, when QoMonitor notifies its clients
about the event (return condition) regarding the asynchro-
nous request. In the experiments, five different computers
were connected to the same wired LAN network (in order to
minimize the influence of the network) according to the
experimental setup shown in Fig. 7. In order to calculate
such overhead, a time Web service was developed for shar-
ing the current time among the client, QoMonitor, and the
used topic (JMS or hub). When QoMonitor publishes the
notification in the topic, the time service is accessed for
retrieving the current time and this time is stored. After-
wards, when the client receives the notification from JMS
topic or the hub, it accesses the time service and the obtained
time is subtracted from the time retrieved by QoMonitor,
thus resulting in the time spent by the topic for answering to
the client.

Figure 7. Infrastructure used in the evaluation of the Light-PubSubHubbub

protocol compared with the original PubSubHubbub protocol and the JMS

technology.

The experiments were conducted in three sequential
phases. In the first one, the JMS technology was used by
QoMonitor for communicating with the client, so that the
client has performed an asynchronous request to QoMonitor,
which has registered it in the JMS topic. Similarly, in the
second and third phases, the PubSubHubbub and Light-
PubSubHubbub protocols were respectively used, so that the
client has performed an asynchronous request to QoMonitor,
which has registered it in the hub. When the return condition
was satisfied, QoMonitor answered to the client by using the
used topic (JMS or hub). Twenty independent executions for
the process of publishing and receiving the subsequent noti-
fication message were performed.

Table I presents the minimum, average, maximum, and
standard deviation times spent (in milliseconds) by JMS,
PubSubHubbub, and Light-PubSubHubbub within QoMoni-

436Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://consiste.dimap.ufrn.br/projects/lightpubsubhubbub/icsea2013
http://consiste.dimap.ufrn.br/projects/lightpubsubhubbub/icsea2013

tor. As can be observed in Table I, Light-PubSubHubbub
takes less time to answer to the client than JMS and the orig-
inal PubSubHubbub, thus resulting in a reduction of approx-
imately 40% compared with JMS and 93% when compared
to PubSubHubbub, on average.

TABLE I. TIME SPENT BY THE JMS TECHNOLOGY AND THE PUBSUBHUBBUB

AND LIGHT -PUBSUBHUBBUB PROTOCOLS WITHIN QOMONITOR.

Technology Minimum Maximum Average
Standard

deviation

JMS 22.7671 30.6794 24.4792 1.7112

PubSubHubbub 173.4899 302.8242 209.085 33.2603

Light-PubSubHubbub 13.5101 19.3910 14.5962 1.3127

The considerable reduction observed when comparing
Light-PubSubHubbub with the original version of the proto-
col is mainly due the fact that messages are directly sent to
the hub instead of being posted to a Web topic, so that the
hub can retrieve the message and then forward to the client,
as in the original PubSubHubbub. Furthermore, as we have
already argued, Light-PubSubHubbub does not generate a
strong coupling between QoMonitor and the client since it
was developed as a Web service, unlike the JMS technology
that requires that the client be implemented by using the Java
programming language.

VI. RELATED WORK

PubSubHubbub is a well-known protocol that has been
used as a plug-in in several blog tools and content manage-
ment systems (CMS) such as WordPress, Tumblr, Joomla,
etc. Furthermore, there is also several works in the literature
that have the same purposes of the PubSubHubbub protocol.
For instance, the Java Message Service (JMS) [15] is a mes-
sage-oriented middleware (MOM) that defines a set of inter-
faces that enable Java applications to communicate with each
other. The JMS API enables asynchronism since it delivers
the messages to consumers as soon as they are sent from the
message producers, so that that consumers do not need to
periodically request for the messages in order to receive
them (as in the polling method). The JMS API also ensures
that a message will be delivered one and only once, in a
reliable way. The connection between consumers and pro-
ducers can follow two basic models: (i) point-to-point, in
which producers know consumers and directly deliver the
message to them; or, (ii) publish/subscribe, in which pub-
lishers do not know subscribers and vice-versa since the
communication among them is performed through the JMS
topic, which receives the messages sent from publishers and
forwards them to the interested subscribers. Since JMS is a
Java technology, publishers and subscribers must be devel-
oped by using the Java programming language, thus generat-
ing a dependency in terms of technology, which does not
happen in Light-PubSubHubbub.

Trifa [2] presents the Web Messaging System (WMS)
protocol, which is based on the Publish-Subscribe model and
is essentially similar to the PubSubHubbub protocol. WMS
specifies the core functions of a Publisher-Subscribe system
by using RESTful design patterns over HTTP interactions

instead of developing a custom messaging protocol on the
top of the HTTP protocol. In addition, it envisions a broker
(very similar to the hub in the Light-PubSubHubbub proto-
col) that is responsible for storing the messages in an embed-
ded database until their delivery to the subscribers. Despite
of ensuring the delivery of the messages to the subscribers,
this database storage may increase the latency for delivering
the messages, as reported by the author.

In turn, Senn [16] uses the PubSubHubbub protocol in
Wisspr (Web Infrastructure for Sensor Streams PRocessing),
a Web-based framework for handling sensor data. Wisspr is
built upon a Publish-Subscribe system in order to facilitate
the development of event-driven and real-time processing
applications for Web of Things by storing sensor data from
different sources (e.g., mobile devices, home appliances,
etc.) in a relational database. All sensor data are available
from the PubSubHubbub protocol through a uniform REST-
ful interface, which enables to easily publish and consume
data, as in Light-PubSubHubbub.

Another interesting publish-subscribe protocol is Mo-
bilePSM [17], which is intended to support mobile clients for
publish-subscribe middleware. MobilePSM ensures that
messages are not lost nor duplicated by temporarily storing
them in a broker during the moving period, so that mobile
clients can receive messages according to the sending order
when a mobile client moves from one network to another or
it is passively disconnected. This temporarily storage for
providing reliability in terms of message delivering is an
interesting feature that is not currently provided by Light-
PubSubHubbub.

VII. CONCLUSION AND FUTURE WORK

 In this paper, we presented Light-PubSubHubbub [12], a
lightweight version of the PubSubHubbub protocol [3] to
deal with asynchronous message exchanges in the Internet.
This new version introduced the following changes: (i) the
publisher no longer needs to publish updated messages in a
Web topic and then notify the hub since the messages are
published in the hub itself; (ii) it uses the REST architectural
style in order not to couple publishers, subscribers, and the
hub, and; (iii) XML is the default format of the messages.
We performed experiments to compare Light-
PubSubHubbub with the original PubSubHubbub protocol
and the JMS technology [15] for asynchronous messaging,
and the obtained results have shown that Light-
PubSubHubbub takes less time to answer to the client than
PubSubHubbub (a reduction of 93% on average) and JMS (a
reduction of 40% on average). In addition, the implementa-
tion is not constrained to a specific technology since JMS
uses the Java programming language, whilst Light-
PubSubHubbub is implemented as a Web service.

As ongoing work, we are investigating how to address
some current limitations of Light-PubSubHubbub. The first
one regards to the temporary persistence of the messages
when the subscriber is busy or down. Moreover, Light-
PubSubHubbub does not provide any mechanism to ensure
that only the owner of a topic can publish updated in such
topic; in the PubSubHubbub protocol, publishers receive
keys when registering for a topic and must use them in order

437Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

to publish the updates. Finally, it is important to provide
means of securing of the messages, in terms of crypto-
graphing the exchanged messages.

ACKNOWLEDGMENT

This work is partially supported by the Brazilian National
Agency of Petroleum, Natural Gas and Biofuels (ANP),
through the PRH-22 Project.

REFERENCES

[1] H. Levi and M. Sidi, “Polling systems: Applications,
modeling, and optimization”, IEEE Transactions on
Communications, vol. 38, no. 10, Aug. 1990, pp. 1750-1760.

[2] M. V. Trifa, Building blocks for a participatory Web of
Things: Devices, infrastructures, and programming
frameworks – PhD dissertation. Swiss Federal Institute of
Technology Zurich, Switzerland, 2011.

[3] PubSubHubbub: http://pubsubhubbub.googlecode.com/
(access on September, 2013)

[4] K. Mani Chandy, “Event-driven applications: Cost, benefits
and design approches”, Gartner Application Integration and
Web Services Summit, 2006.

[5] G. Cugola and H.A. Jac obsen, “Using Publish/Subscribe
middleware for mobile systems”, ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 6, no. 4, Oct.
2002, pp. 25-33.

[6] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.M. Kermarrec,
“The many faces of Publish/Subscribe”, ACM Computing
Surveys, vol. 35, no. 2, Jun. 2003, pp. 114-131.

[7] Atom Publishing Protocol: http://www.ietf.org/rfc/rfc5023.txt
(access on September, 2013)

[8] RSS Specification: http://www.rssboard.org/rss-specification
(access on September, 2013)

[9] L. Richardson and S. Ruby, RESTful Web services. USA:
O’Reilly, 2007.

[10] JSON: http://www.json.org/ (access on September, 2013)

[11] Simple Object Acess Protocol (SOAP) 1.2:
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
(access on September, 2013)

[12] Light-PubSubHubbub:
http://consiste.dimap.ufrn.br/projects/lightpubsubhubbub/
(access on September, 2013)

[13] C. Batista et al., “A metadata monitoring system for
Ubiquitous Computing”, Proc. of the 6th Int. Conf. on Mobile
Ubiqutious Computing, Systems, Services and Technologies
(UBICOMM 2012). USA: IARIA, 2012, pp. 60-66.

[14] QoMonitor: http://consiste.dimap.ufrn.br/projects/qomonitor/
(access on September, 2013)

[15] Java Message Service (JMS):
http://www.oracle.com/technetwork/java/jms/index.html
(access on September, 2013)

[16] O. Senn, WISSPR: A Web-based infrastructure for sensor
data streams sharing, processing and storage – Master’s
thesis. Swiss Federal Institute of Technology Zurich,
Switzerland, 2010.

[17] T. Xue and T. Guan, “A protocol to support mobile
computing for publish/subscribe middleware”, Proc. of the
2012 Int. Conf. on Communication, Electronics and
Automation Engineering, Advances in Intelligent Systems
and Computing Series, vol. 181, G. Yang, Ed. Germany:
Springer-Verlag Berlin/Heideberg, 2013, pp. 845-849.

438Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://pubsubhubbub.googlecode.com/
http://www.ietf.org/rfc/rfc5023.txt
http://www.rssboard.org/rss-speciﬁcation
http://www.json.org/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://consiste.dimap.ufrn.br/projects/lightpubsubhubbub/
http://consiste.dimap.ufrn.br/projects/qomonitor/
http://www.oracle.com/technetwork/java/jms/index.html

	I. Introduction
	II. The Publish-Subscribe Model
	III. The PubSubHubbub Protocol
	IV. Light-PubSubHubBub: An Adaptation of the PubSubHubBub Protocol
	A. Registration
	B. Subscription
	C. Unsubscription
	D. Publication

	V. Evaluation
	A. QoMonitor
	B. Experiments and results

	VI. Related Work
	VII. Conclusion and Future Work
	Acknowledgment
	References

