
The Impact of Intra-core and Inter-core Task
Communication on Architectural Analysis of

Multicore Embedded Systems

Juraj Feljan, Jan Carlson
Mälardalen Real-Time Research Centre

Mälardalen University
Västerås, Sweden

Email: juraj.feljan@mdh.se, jan.carlson@mdh.se

Abstract—In order to get accurate performance predictions,
design-time architectural analysis of multicore embedded systems
has to consider communication overhead. When communicating
tasks execute on the same core, the communication typically
happens through the local cache. On the other hand, when they
run on separate cores, the communication has to go through the
shared memory. As the shared memory has a significantly larger
latency than the local cache, we expect a significant difference
between intra-core and inter-core task communication. In this
paper, we present a series of experiments we ran to identify the
size of this difference, and discuss its impact on architectural
analysis of multicore embedded systems. In particular, we show
that the impact of the difference is much lower than anticipated.

Keywords—software architecture; model-based analysis; multi-
core embedded systems; task communication; measurement; cache

I. INTRODUCTION

The majority of computer systems in use today are em-
bedded systems. An embedded system is a microprocessor
based system with a typically single dedicated function (as
opposed to general purpose computer systems), embedded
in and interacting with a larger device. Embedded systems
range from simple devices (e.g., MP3 players) to complex
systems consisting of multiple nodes communicating over a
network (e.g., process controllers), and are used ubiquitously,
as we can find them in industry, transportation, medicine,
communication, entertainment, commerce, etc.

Today, embedded systems have more complex functionality
than ever. At the same time, pieces of functionality that were
traditionally realized in hardware are instead implemented
in software (e.g., software-defined radio [1]). This makes
today’s embedded systems increasingly performance intensive.
Similarly to general purpose computer systems, there is a trend
to tackle the increasing performance demands of embedded
systems by increasing the number of processing units, for ex-
ample by using multicore technology. A multicore processor is
a single chip that contains two or more processing units (cores)
that are coupled tightly together in order to increase processing
power while keeping power consumption reasonable.

Introducing additional processing units increases the per-
formance capacity, but on the other hand introduces the
problem of how to best allocate (partition) the software to

the available cores, as the allocation has a substantial impact
on the performance. A possible way of determining whether
a particular allocation of software to cores gives satisfactory
performance is to implement, deploy and run the system, in
order to collect performance measurements. However, rather
than employing such a ”fix-it-later” approach, in line with soft-
ware performance engineering [2], a preferred approach would
be to predict the performance with a sufficient accuracy early
in the development process, based on architectural models of
the system. That way we can get an indication towards good
allocations, and avoid time-consuming and costly redeploy-
ment of the system when using an iterative measurement-based
method. The earlier in the development process that a design
fault is caught, the cheaper and simpler it can be fixed. Also, by
using models of the system, it is possible to try a large number
of candidate allocations in shorter time than by measuring.

In our current work [3], we are investigating an approach
for optimizing the allocation of software modules to the cores
of a multicore embedded system, with respect to performance.
Here, communication time plays a significant role, as it impacts
performance aspects relevant in the domain of embedded
systems, such as throughput and response time. In a multicore
system, the communication time is affected by the allocation of
software modules to the available cores. If two communicating
software modules run on the same core, the communication
normally happens through the local cache and has thus the
potential to be much faster than communication between two
modules running on different cores, which happens through
the shared cache or the main memory. As our work includes
design-time model-based performance predictions, we have to
take these differences in communication duration into account,
in order for the performance predictions to be accurate.

In this paper, we investigate the impact that the allocation
of software modules to the cores of a multicore system
has on communication time. By performing measurements
on a running system, we determine the difference between
intra-core communication and inter-core communication under
varying conditions. We show that in many situations the
difference is significantly lower than we expected, and discuss
the reasons and implications of this, namely that the impact
of this difference on design-time model-based performance
analysis is limited.

402Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

The paper is organized as follows. In Section II, we
describe the preliminaries and present the motivation for
investigating the difference between intra-core and inter-core
communication, from the perspective of our current work. In
Section III, we give an overview of related work. Section IV
is the core of the paper: first it reasons about the expected
difference between intra-core and inter-core communication in
different scenarios, then it describes the setup of the performed
experiment, and finally it gives an interpretation of the results.
Section V concludes the paper with a discussion of what the
experiment results mean in the context of architectural analysis
of multicore embedded systems.

II. BACKGROUND

The scope of our work are modern (and future) embedded
systems whose hardware architecture resembles the one of
today’s general purpose computers. There is a recent trend of
embedded systems moving from single core CPUs to complex
multicore CPUs. For example, processors used in today’s
smartphones and microcontroller boards support up to 4 cores
at 2.5 GHz (e.g., ARM Cortex-A15 MPCore [4], Qualcomm
Krait 400 [5]).

Typically, each core of a multicore processor has a small
on-chip memory (cache), while a larger off-chip main memory
(RAM) is shared between the cores. The cache keeps a copy
of a subset of data present in the RAM, in order to make
this data available to the CPU at a much lower latency than
when accessing data from the RAM. For this, the cache utilizes
the fact that the same data is often re-accessed frequently
(temporal locality of data), and that data being accessed close
in time is often stored in adjacent memory locations (spatial
locality of data). Other than the local cache (called L1 cache),
modern processors typically have additional levels of cache.
L2 cache is usually shared between pairs of cores, while L3
cache is shared between all cores. The latency of a particular
memory grows in the following order: L1 cache, L2 cache, L3
cache, RAM. Even when having a particular CPU in mind, it is
difficult to characterize these values with concrete numbers, but
in general L2 cache latency is roughly two to three times larger
than L1 cache latency, L3 cache latency is roughly ten times
larger than L1 cache latency, and finally RAM latency is two
orders of magnitude larger than the latency of L1 cache [6],
[7]. When data is transferred between the different memories,
it is done in bigger blocks of fixed size called cache lines. A
cache line is usually several tens of bytes long.

The software architecture of embedded systems typically
consists of a set of concurrent communicating software mod-
ules called tasks. The decision of which task to run on which
core (i.e., the allocation of tasks) impacts the performance of
the system. The extent of the impact depends on the particular
performance aspect we consider. For example, schedulability
is directly determined by the allocation. If too many tasks
are allocated to a single core, the core will be overloaded.
As a consequence, tasks will miss their deadlines which is
not acceptable for systems with real-time requirements, which
embedded systems often have. Similarly to schedulability, it
can be expected that task allocation has a large impact on
communication time. Two tasks running on the same core can
communicate through the L1 cache, while two tasks running
on different cores have to communicate through one of the

shared memories. This means that intra-core communication
should be considerably faster than inter-core communication.

Our current work [3] focuses on optimizing the allocation
of tasks to the cores of a multicore embedded system. Already
early in the development process, before the implementation,
we want to be able to identify the allocations that will
result in a system with good performance. We start with
an architectural model of the system in terms of tasks and
the connections between them, and a model of the hardware
platform the system will run on. By an automatic model-
to-model transformation, from the architectural and platform
models we obtain an executable model of the system, and
by simulating this model we get performance predictions for
the system. This way we are able to test many allocations in
search for the ones that give satisfactory performance. With the
term performance, here we mean aspects like throughput and
response time. These aspects depend on the communication
time, which in turn depends on the allocation of tasks to
the cores, as stated above. Therefore, in order to be able to
give sufficiently precise performance predictions, we need to
identify the difference in communication time depending on
whether tasks communicate locally with other tasks running
on the same core, or globally with tasks running on different
cores. Due to the considerable differences in latencies between
the different memories, we intuitively expect this difference to
be significant.

III. RELATED WORK

Even though the work presented in this paper touches
upon research on caches in multicore systems and research
on detailed performance evaluations of multicore systems, the
context of the work lies in the field of architectural analysis
and optimization of embedded systems. We therefore focus the
discussion about related work to this research area.

Architectural analysis and optimization of embedded sys-
tems can be viewed as a subfield of software performance
engineering [2]. Research in this field has a general goal
of being able to reason about the performance of embedded
systems, already prior to the implementation. At this early
stage, embedded systems are typically specified as (more or
less formal) models, which can be analyzed or simulated in
order to get performance predictions. Often these approaches
are complemented with architectural optimization — model-
based assessment of particular architecture candidates is en-
hanced with a mechanism for finding a good architecture.
For all but the most trivial embedded systems, evaluating all
possible architecture candidates is not feasible, so typically
architecture optimization involves a search process aided by
heuristics, whose goal is to find near-optimal architectures. In
the remainder of this section, we describe several prominent
approaches for architectural analysis and/or optimization of
embedded systems, both academic and industrial.

ProCom [8] is a component-based and model-based ap-
proach for embedded systems in the automotive domain. A
ProCom a component is a set of code, documentation, models
and extra-functional properties. By utilizing different modeling
formalisms, ProCom can analyze worst-case execution times,
end-to-end response times and resource usage of embedded
systems.

403Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

DeepCompas [9] is an analysis framework for predicting
performance related properties of real-time embedded sys-
tems. The basis of the approach are composable models of
individual software components and hardware blocks, which
are then synthesized into an executable model of the system.
Simulation-based analysis of the executable model results with
predicted performance properties for the system. DeepCompas
also makes a step towards architecture optimization, by provid-
ing support for performing trade-off analysis between several
architecture alternatives.

ArcheOpterix [10] is a framework for optimizing embedded
system architectures modeled in the Architecture Analysis and
Description Language (AADL) [11]. The quality attributes
supported by the approach include reliability, performance and
energy. One of the key characteristics of the approach is that
(through its extension called Robust ArcheOpterix [12]) it
takes into account the uncertainty of design-time parameter
estimates, and can find architectures that reduce the impact of
the uncertainties.

A defacto industry standard for model-based analysis of
embedded systems is Mathworks Simulink [13]. It is a graphi-
cal tool that comes with built-in libraries of blocks (for instance
the Stateflow toolbox for defining and executing state charts)
that enable analysis and simulation of embedded systems, and
ultimately code generation. It is also possible to define custom
blocks using the Matlab programming language, which makes
Simulink extendable with custom analysis and simulation
techniques.

Additional approaches (not limited to embedded systems)
can be found in Koziolek’s survey of component-based ap-
proaches for performance evaluation [14], and in the survey
of architecture optimization approaches by Aleti et al. [15].

IV. INTRA-CORE VS. INTER-CORE TASK COMMUNICATION

In this section, we first discuss in more detail about the
expected difference between intra-core and inter-core commu-
nication in various scenarios. Then, in a separate subsection,
we give details about the experiment setup — we describe the
hardware and software environments, the general task model
and the concrete task setup used in the experiment, and the
variation points of the experiment. Finally, again in a separate
subsection, we provide an interpretation of the experiment
results.

Since many factors other than allocation influence the
communication time, such as interruptions from other tasks,
we start by identifying the case that has the highest potential of
exhibiting a significant difference between intra-core and inter-
core communication duration. Imagine the following scenario
(Figure 1): a dual-core system, where each core has L1 cache,
and the cores share the RAM. There are two communicating
tasks: task T1 produces (writes) data which task T2 consumes
(reads), and task T2 runs immediately after task T1 completes.
The data fits in the L1 cache. If both tasks run on core1
(scenario depicted in Figure 1a), task T2 can obtain the data
directly from the L1 cache on core1, where it was written
when task T1 produced it. On the other hand, if task T1 is
running on core1 and task T2 on core2 (scenario depicted in
Figure 1b), the data produced by task T1 is stored in the L1
cache of core1 and not in the L1 cache of core2. So T2 will

L1 cache

T1 T2

core1

L1 cache

core2

RAM

(a) Intra-core communication

L1 cache

T1 T2

core1

L1 cache

core2

 RAM

(b) Inter-core communication

Fig. 1: Task communication in a dual-core system

have to fetch the data from the RAM. Accessing the RAM is
around a hundred times slower than accessing L1 cache, so
inter-core communication should be significantly slower than
intra-core communication. If the system also had shared L2
cache, the reasoning would still apply — since the latency of
L2 cache is around two to three times larger than the latency
of L1 cache, the difference in communication times should be
smaller than in the case when there is no shared cache, but
significant nevertheless.

If two communicating tasks do not run immediately after
each other, or if they get preempted by a higher priority task,
the data they share might be evicted from the cache, due to
other data taking its place. The longer the duration between
producing and consuming a particular piece of data, the more
likely other data will occupy the cache. In such cases even
intra-core communication will have to go through the shared
memory, thus reducing the communication time gain from
allocating communicating tasks to the same core. Similarly,
if the data being communicated does not fit in the local
cache, the communication will have to go through the shared
memory and the difference between intra-core and inter-core
communication is reduced.

A. Experiment setup

We use a system with an Intel Core 2 Duo E6700 pro-
cessor [16]. Each core of this dual-core processor has 32
kB of local L1 cache, while 4 MB of L2 cache is shared
between the cores. The cache lines in all caches are 64 bytes
long. The system runs the 32-bit version of the Ubuntu 12.04
LTS operating system (kernel version 3.2.29) patched with
the PREEMPT RT patch (version 3.2.29-rt44) [17], which
turns the stock Linux kernel into a hard real-time kernel. By

404Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

reducing the overall jitter and enabling the tasks to run at the
highest priority, in combination with a high resolution timer of
nanosecond granularity, this contributes to reducing unwanted
interference in the experiments and increasing the precision of
the measurements.

Next, we describe the task model used in the experiments.
Tasks are implemented as Posix threads [18], and have read-
execute-write semantics, meaning that they first read input
data, then preform calculations and finally write output data. A
task can either be periodic or event-triggered. A periodic task
is activated at regular time intervals, while an event-triggered
task is activated when the task it receives data from finishes
executing. We assume that the tasks exchange data through
shared memory, and that each core has access to the whole
main memory. Other models (e.g., distributed memory, where
each processor has its own local main memory), are possible
but since they are not common in embedded systems, they are
out of the scope of this paper.

As identified above, the biggest difference between intra-
core and inter-core communication should happen in the case
of two communicating tasks that share data which fits into the
L1 cache, and the reader task runs immediately after the writer
task finishes. We therefore use two tasks in the experiment, a
periodic task that writes data, and an event-triggered task that
reads the data. The event-triggered task is activated by the
periodic task immediately after it has written the data. The data
shared between the tasks is an array of integers (integer size
is 4 bytes), and each task holds a pointer to it. We use bound
multiprocessing, i.e., each task is allocated to a particular core
and cannot move to a different core during the execution of
a particular experiment. In order to reduce jitter, we run the
tasks at the highest priority and prevent memory from being
paged to the disk.

In the experiment, we measure the time it takes the reader
task to read the shared data. Between the different experiment
runs, we vary the allocation of the tasks to the cores, the
pattern of accessing the data, and the size of the data the
tasks share. Regarding the allocation, in the case of intra-core
communication both tasks run on core 1, while in the case of
inter-core communication the periodic task runs on core 1 and
the event-triggered task runs on core 2.

In order to represent different data access patterns, we vary
the stride of accessing the shared data. In other words, the tasks
access the data array with different increments (see Figure 2
for an example of different strides; the grey elements are
accessed, while the white ones are skipped). In the experiment
runs, we use the following strides: 1, 2, 3, 4, 8, 12, 16, 24
and 32. The idea behind using different strides is to compare
the reading times in the following cases: (i) when the data
is read sequentially (stride 1), (ii) when the data is read
nonsequentially with an increment smaller than the cache line
(stride 2, 3, 4, 8 and 12), and finally (iii) when the data is read
nonsequentially with an increment larger than the cache line
(stride 16, 24 and 32).

In a particular experiment run, the writer and the reader
tasks access the same amount of data and with the same stride.
The amount of data shared between the tasks in different runs
is the following number of integers: 128, 256, 512, 4 096,
8 192, 16 384, 262 144, 524 288, 1 048 576, 1 310 720. In order

stride 1

stride 2

stride 4

Fig. 2: Stride examples

to access N integers with stride S, we allocate a block of data
whose size is N * S * 4 bytes. This means that the data we
allocate in the different runs varies from 512 B (128 integers
with stride 1) to 160 MB (1 310 720 integers with stride 32),
and thus covers data that fits into the L1 cache, data that is too
large for the L1 cache but fits into the L2 cache, and finally
data that is too large for the L2 cache but fits into the RAM.

B. Experiment results

We varied 2 allocations, 9 strides and 10 data sizes, which
means that 180 experiment runs were performed in total. In
each run, we collected 10 000 measurements of the time it
took the event-triggered task to read the data sent by the
periodic task. The complete experiment results are available
in [19]. Here, we illustrate the results by focusing on three
representative data sizes: one that fits into L1 cache (256
elements: from 1 kB for stride 1 to 32 kB for stride 32), one
that fits into L2 cache (8 192 elements: from 32 kB for stride
1 to 1 MB for stride 32) and one that fits into RAM (1 048 576
elements: from 4 MB for stride 1 to 128 MB for stride 32). In
Figure 3, we show the results as three graphs, one for each data
size. As the data size increases, so does the reading time, which
is the reason for the difference in the time scales between the
graphs. Each graph has two entries for every stride: one for
intra-core communication (depicted in black) and one for inter-
core communication (depicted in red). Each entry is a boxplot
describing the 10 000 measurements. The ends of the boxes
show the first and third quartiles, the band inside the box is
the second quartile (median), while the whiskers extend to
the most extreme data point which is no more than 1.5 times
the interquartile range away from the box. For the sake of
readability of the graphs, the outliers are omitted.

Comparing the three graphs, we can identify a trend of
a relative decrease in the difference between intra-core and
inter-core communication when increasing the amount of data
shared between the tasks. If we take stride 16 as an exam-
ple, intra-core communication is 144% faster than inter-core
communication when the tasks share 256 integers. When the
tasks share 8 192 integers, this difference decreases to 6%,
and finally when 1 048 576 elements are shared the difference
is 1%. As identified in the beginning of the section, this is
expected behavior. If the shared data is bigger than the L1
cache, only the end portion of the data will be present in the
L1 cache after the writer task has finished writing the data.
Since the reader task reads the data from the beginning, it
has to be fetched from one of the shared memories (the L2
cache or the RAM, depending on the size of the shared data),
regardless of whether the tasks run on the same core or on
different cores.

405Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

stride

ti
m

e
,

m
ic

ro
se

c
o

n
d

s

1 4 8 12 16 24 32

0
1

2
3

4
5

6
7

Communication

inter−core

intra−core

(a) 256 elements

stride

ti
m

e
,

m
ic

ro
se

c
o

n
d

s

1 4 8 12 16 24 32

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Communication

inter−core

intra−core

(b) 8 192 elements

stride

ti
m

e
,

m
ic

ro
se

c
o

n
d

s

1 4 8 12 16 24 32

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

Communication

inter−core

intra−core

(c) 1 048 576 elements

Fig. 3: Experiment results

Looking only at the case where the shared data fits into L1
cache (Figure 3a), we see the expected significant difference
between intra-core and inter-core communication. The inter-
core communication takes roughly three times as long, which
corresponds to the difference in latency between L1 and L2
cache. However, the difference is present only at the higher
strides. If the shared data is accessed sequentially (stride
1) there is no significant difference between intra-core and
inter-core communication. The reason lies in the way data
is transferred between cache and RAM — as mentioned in
Section II, this is done at cache line granularity. One cache
line of 64 bytes corresponds to 16 integers. So even in the
case when the data is not present in the L1 cache, as soon as
the reader task reads the first integer from one of the shared
memories, one whole cache line is transferred to the L1 cache,
containing the currently read element and the 15 subsequent
elements. Thus, the next 15 elements will be read from the
L1 cache. This continues in the same fashion: after reading
one element not present in the L1 cache, the next 15 are read
from the L1 cache. In other words, in the case of inter-core
communication where we intuitively expected 16 cache misses,
we got one cache miss followed by 15 cache hits. Increasing
the stride increases the share of the elements that create cache
misses and decrease the share creating cache hits. This explains
the increase of the times it takes to read the shared data in
Figure 3a as we increase the stride. When the stride reaches
16, and thus the difference between two read elements reaches
the length of the cache line, then reading every element creates
a cache miss. The same happens with the strides higher than
16. Therefore, the reading times stay roughly the same even
with further increasing the stride. On the other hand, in the
case of intra-core communication, the data being read is always
present in the L1 cache, regardless of the stride, and the reading
times are roughly the same.

V. CONCLUSION

The experiment confirmed that when tasks share data that
is bigger than the local cache, we do not see a significant
difference between intra-core and inter-core communication
time. On the other hand, when the shared data does fit into

the local cache, the experiment only partially confirmed the
intuitively expected difference in communication times. Inter-
core communication took roughly three times as long as
intra-core communication (which conforms with the difference
between the latencies of the L1 and L2 caches), but only
when the shared data was not read sequentially. In the case of
sequential data access, the difference between intra-core and
inter-core communication was marginal, due to the way data is
transferred between the different memories. It can be expected
that data would in fact typically be accessed sequentially,
meaning that even in the case of data that fits into the local
cache, we would not witness a significant difference between
intra-core and inter-core communication.

When the tasks do not share a set of data elements, but
rather a very small amount of data (for instance only one
integer), then inter-core communication would be significantly
slower than intra-core communication. However, this would
likely not have a large impact on the response time, since the
time it takes to access one data element is typically negligible
in comparison with the time that a task spends performing
calculations.

In summary, we have seen that the difference between
intra-core and inter-core communication in most cases is
smaller than what could be anticipated from the difference
in the latencies of the local and the shared memory. This
was shown for the case when the tasks that share data run
immediately after each other, which is the most favorable case
for exhibiting a significant difference between intra-core and
inter-core communication. A typical application would consist
of a set of tasks, meaning that tasks that share data would
not always run in immediate sequence, and that the difference
between intra-core and inter-core communication would be
further reduced.

In the context of design-time architecture-level analysis
of multicore embedded systems, this has the following con-
sequences. In order to identify whether a particular case
exhibits a significant difference between intra-core and inter-
core communication, we need detailed information about data
access patterns. This information is typically not available prior

406Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

to the implementation, when we envision the analysis to be
performed. However, as seen from the experiments, in the
typical case the difference between intra-core and inter-core
communication is not significant enough to hinder performing
early performance predictions. Early analysis relies on a set
of abstractions and estimates, and for a sufficiently precise
performance prediction, a small difference in a particular input
to the analysis (in this case the difference between intra-core
and inter-core communication time) can normally be ignored.

In the future, we plan to investigate other types of task
communication, e.g., message passing. Furthermore, we want
to perform a similar experiment on distributed embedded
systems, consisting of several interconnected multicore units.
Here, the difference between local (intra-node) and global
(inter-node) communication should be significant, as intra-
node communication uses shared memory, while inter-node
communication is preformed over the network.

ACKNOWLEDGMENT

This work was supported by the Swedish Foundation for
Strategic Research via the Ralf3 project, and by the Swedish
Research Council project CONTESSE (2010-4276). We would
like to thank Tiberiu Seceleanu and Aneta Vulgarakis (ABB
Corporate Research, Västerås, Sweden), and Michael Wahler
(ABB Corporate Research, Baden-Dättwil, Switzerland) for
valuable input and discussions.

REFERENCES

[1] T. Ulversoy, “Software defined radio: Challenges and opportunities,”
Communications Surveys Tutorials, IEEE, vol. 12, no. 4, pp. 531–550,
2010.

[2] M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software
Performance Engineering,” in Workshop on the Future of Software
Engineering, 2007, pp. 171–187.

[3] J. Feljan, J. Carlson, and T. Seceleanu, “Towards a model-based
approach for allocating tasks to multicore processors,” in 38th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA), 2012, pp. 117–124.

[4] Cortex-A15 MPCore, http://www.arm.com/products/processors/
cortex-a/cortex-a15.php, [Accessed: 2013-08-20].

[5] Qualcomm Krait 400, http://www.qualcomm.com/snapdragon/
processors/800, [Accessed: 2013-08-20].

[6] D. Levinthal, “Performance Analysis Guide for Intel Core i7
Processor and Intel Xeon 5500 processors”, http://software.intel.com/
sites/products/collateral/hpc/vtune/performance analysis guide.pdf,
[Accessed: 2013-08-20].

[7] U. Drepper, “What every programmer should know about memory”,
http://lwn.net/Articles/250967, [Accessed: 2013-08-20].

[8] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and I. Crnković, “A
component model for control-intensive distributed embedded systems,”
in Proceedings of the 11th International Symposium on Component-
Based Software Engineering (CBSE), 2008, pp. 310–317.

[9] E. Bondarev, “Design-time performance analysis of component-based
real-time systems,” Ph.D. dissertation, Eindhoven Universty of Tech-
nology, 2009.

[10] A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya, “ArcheOpterix:
An extendable tool for architecture optimization of AADL models,”
in ICSE Workshop on Model-Based Methodologies for Pervasive and
Embedded Software, 2009, pp. 61–71.

[11] SAE standard, no. AS5506, “Architecture Analysis & Design Language
(AADL),” 2012.

[12] I. Meedeniya, A. Aleti, I. Avazpour, and A. Amin, “Robust
ArcheOpterix: Architecture optimization of embedded systems under
uncertainty,” in 2012 2nd International Workshop on Software Engi-
neering for Embedded Systems (SEES), 2012.

[13] Mathworks Simulink, http://www.mathworks.se/products/simulink/,
[Accessed: 2013-08-20].

[14] “Performance evaluation of component-based software systems: A
survey,” Performance Evaluation, Special Issue on Software and Per-
formance, vol. 67, no. 8, pp. 634–658.

[15] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software architecture optimization methods: A systematic literature
review,” IEEE Transactions on Software Engineering, vol. 39, no. 5,
pp. 658–683, 2013.

[16] Intel Core 2 Duo E6700 processor, http://ark.intel.com/
products/27251/Intel-Core2-Duo-Processor-E6700-4M-Cache-2
66-GHz-1066-MHz-FSB, [Accessed: 2013-08-20].

[17] PREEMPT RT patch, https://rt.wiki.kernel.org/index.php/Main Page,
[Accessed: 2013-08-20].

[18] POSIX, http://pubs.opengroup.org/onlinepubs/9699919799, [Accessed:
2013-08-20].

[19] J. Feljan and J. Carlson: “The Impact of Intra-core and Inter-core Task
Communication on Architectural Analysis of Multicore Embedded Sys-
tems — Experiment Results”, http://www.idt.mdh.se/∼jcn01/research/
multicore, [Accessed: 2013-08-20].

407Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.qualcomm.com/snapdragon/processors/800
http://www.qualcomm.com/snapdragon/processors/800
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://lwn.net/Articles/250967
http://www.mathworks.se/products/simulink/
http://ark.intel.com/products/27251/Intel-Core2-Duo-Processor-E6700-4M-Cache-2_66-GHz-1066-MHz-FSB
http://ark.intel.com/products/27251/Intel-Core2-Duo-Processor-E6700-4M-Cache-2_66-GHz-1066-MHz-FSB
http://ark.intel.com/products/27251/Intel-Core2-Duo-Processor-E6700-4M-Cache-2_66-GHz-1066-MHz-FSB
https://rt.wiki.kernel.org/index.php/Main_Page
http://pubs.opengroup.org/onlinepubs/9699919799
http://www.idt.mdh.se/~jcn01/research/multicore
http://www.idt.mdh.se/~jcn01/research/multicore

