
A Tracking and Visualizing System of Memory Usage along to C Source Programs

Kyoko Iwasawa
Computer Science dept.
Takushoku University

 Tokyo, Japan
kiwasawa@cs.takushoku-u.ac.jp

Takuhiro Okamuira
COMSOFT Co, Ltd.

Tokyo, Japan
shnfkrm@live.jp

Abstract— Our tracking system shows the situation of memory
usage of C programs. Its information includes both stack area
of local data and dynamic allocated area. The system shows the
results off line. First of all, it inserts recording statements to
the memory allocation and release of user programs in order to
make a log file of memory usage. After the execution of
modified user program, the system analyzes the log file to
make the usage graph. Based on the graphical image, the user
can find out where each memory event occurred on the C
source program interactively. Therefore, the user can
recognize the accurate location where the largest memory area
was used, and find which memory allocation caused memory
leak. These functions are efficient for embedded system, whose
memory size is strictly limited. In this work in progress, we are
attempting to show where user should insert free function call
by using static data flow analysis.

Keywords-C source program; memory usage; memory leak;
tracking; visualizing;

I. INTRODUCTION
C program developers have to be concerned with the

situation of memory usage of their programs. The amount of
memory usage is influential in performance of the program,
because using large memory often causes cache miss and
paging. Also, amount size of memory usage is essential for
embedded system [2]. However, it is difficult to know how
much memory is necessary and where it should be decreased.

Although, generally, it is difficult to know that when
memory usage becomes maximum size and whether there is
leak area, this information is necessary to optimize C
programs. Programmers need to know the relationship
between source code and memory usage. There are some
memory management tools for linux. One of them is valgrid
[3], which is the multipurpose code profiling and memory
debugging tool. It shows whether the memory leak occurred
and finds invalid pointer use [4]. It shows the leaked memory
address with process ID, so the users would have to look for
that address on the allocated memory address list. And it has
lots of functions, but does not mention with the size of
memory usage.

Our system shows graphically the amount of memory
usage in chronological order. For each point on the usage
graph, user is able to know the source corresponding source
statements interactively. In addition, the system corresponds

dynamic allocated memory (i.e., malloc() and calloc() call)
to its release (i.e., free() call) [1].

Section II describes the tracking and visualizing system
and its output images. Section III shows detail of the log file.
Section IV presents the algorithm to calculate the dynamic
allocated area, and Section V concludes and describes the
future work.

II. OUTLINE OF THE SYSTEM
In order to measure accurately the size of memory usage,

our system analyzes executing logs offline. Therefore, the
system parses the target C programs and inserts output
statements to record of memory events.

A. Process of Tracking and Visualizing
Figure 1 shows the analyzing process. First of all, the

system picks up statements which cause memory allocation
and release. The picked up statements are following four
kinds of statements.

(1) Entry point of functions
(2) Return statement in functions
(3) Invoke alloc function
(4) Invoke free function

(1) Source code parsing
to insert output statements for log

(2)
Execution of the modified program

(3) Log analysis
To display the memory graph with source code

(A) Target
C source program

(B) Modified
C source program

(C) Log file
(memory event information)

Control flow data flow

Interactive GUI

Figure 1: Process of the System

At point (1) and the point (2) the system inserts our

prepared function call in order to write the size of local data
on stack area, and to write when these local data are

387Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

released. At point (3) and the point (4) the system replaces
the library call with our prepared function call, which writes
the information of dynamic allocated data to the file. Then
the modified C source program (Figure 1: (B)) is generated.
After the execution of the modified program the system can
get the log file which includes the memory usage
information. Finally, memory usage graph is displayed and
users are able to know details of memory information.

B. Output of the System
After the system analyzes the log file, it visualizes the

memory usage of C program. By restructuring the log data,
memory usage graph is displayed off line as Figure 2. The
upper part of the figure shows behavior of stack area usage,
and the lower part of the figure shows the behavior of
dynamic allocated heap area. Each bar means that the four
kinds of memory events, which were described in the
previous section and denoted by (1), (2), (3) and (4),
occurred. The length of bar shows the size of memory used
by program at that point.

Figure 2: Memory usage graph

 (a) free call (b) malloc call

Figure 3: Source program

When user function is invoked, the size of local data area
is added to usage size, and when return statement executes,
these local data area is released, so the length of bar is
shortened. When the C program has finished, its local data
area is always cleared. On the other hand, heap area data,
which was allocated by alloc function call, is released only
by free function call. Consequently, if there is not enough
free function call, memory leak will occur when program has
finished.

When user clicks on a bar of the graph in Figure 2, the
system shows the source program which caused this event.
Figure 3 (a) shows the free function call of the source
program, which corresponds to the clicked bar in the lower
part. It shortened because the free function call releases
memory area. A bar in the lower part lengthens, when malloc
function call allocates memory area dynamically, as shown
in Figure 3 (b). At the end of the execution, a bar in the
lower part means memory leak. User might insert free
function call, because the user can find out where this area is
allocated and its identifier from the tags on the bottom of the
graph (as seen in Figure 3:). If free function call released
linked area (linked list or tree or graph structure, etc.), the
system founds all alloc function call statements. The small
tags on the bottom of the graph mean the correspondence
free call to alloc call.

The bar in the upper part increases when user function
call invoked, and then it shortens by return. As these bars in
the upper part mean the stack area, when a program has
finished, it always becomes zero. The total length of a bar
means the size of memory, which user program was using at
that point.

III. DATA IN THE LOG FILE
The detail of the logging data (shown as Figure 4:) is

described in this section. In order to measure accurately the
size of memory usage, user program is parsed and modified.
User program is inserted the system function call to log the
memory information.

Figure 4: Log file

388Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

A. Local Data on the Stack Area
The size of local data on the stack area is accumulated

the sum of all sizes of local data (variable, array, etc.), which
are caused by nested user function call.

(1) Entry point of functions
The system inserts the function call to output file

following five items to the log file.
 Tag (“s” means entry point of function)
 Directory path and file name
 Function name
 Line number of entry point of function in Source

program
 Sum of local data size (byte) from static data

declarations

(2) Return points of functions
When return statement is executed, system records the

tag, which shows that the program returned from the
function and its stack area data is released.
 Tag (“~s” means return point of function)
 Directory path and file name

B. Dynamic Allocated Data
The size of dynamic allocated data on the heap area is

recorded by each alloc (malloc and calloc) function call and
free function call. As a result, we can get the log file as
Figure 4 shows. It includes the accurate and detailed memory
usage situation. Each record is kept in the chronological
order.

(3) Invoke malloc and calloc function
 Tag (“m” means alloc function call)
 Line number of alloc function call
 Size of allocated area (actual parameter of alloc call)
 Address of allocated area (return value of alloc

function call)

(4) Invoke free function
 Tag (“~m” means free function call
 Line number of free function call
 Size of released area (system find out its own data 

sec.4)
 Address of released area (actual parameter of free

function call)

IV. CALCULATION OF DATA SIZE
Although we would like to know the leaked memory size

and where the leaked memory was allocated on source code,
some information of dynamic allocated data was lost when
the program was finished. Therefore, the system function has
to collect information while user program is running.

In the case of linked structure (list, tree and graph, etc.),
it is difficult to accumulate released area by free function call.
The parameter of free function is the pointer of the data, so
there is no information as to the size of the data. Furthermore,

free function released all of linked data, so that the system
has to keep allocated memory information until it is released
by using linked list that we call “Alloc List”.

A. Alloc Function Call
Our system function $ALLOC, which is invoked instead

of the original alloc function, has the following three tasks.
 To allocate memory by calling original alloc

function
 To make the cell of Alloc List including the address

and the size
 To write the log file (tag, address, size, line number

of source program)

This function is given line number of source program and

the data size to allocate as formal parameters. Figure 5 shows
the process of $ALLOC. The system replaces the alloc
function call to $ALLOC function call, and links $ALLOC
function to modified program.

The cell of Alloc List has the address which is returned
by alloc function and allocated memory size (byte), which is
actual parameter of alloc function. Each cell is connected in
chorological order as Alloc List.

void*
$ALLOC(n,no1){
p1 = alloc(n);
$AddAllocList(MakeCell(p1, n));
$output_log(“m”, no1, n, p1);
return p1; /*4*/

}

m,no1,n,p1
m,no2,m,p2

Log file

int func(){
no1:p1=$ALLOC(n,no1);

・・・
no2:p2=$ALLOC(m,no2);

・・・
no3:$FREE(p1);
}

Alloc List

cell
(address
size)

Modified user source
program

Figure 5: $ALLOC function and Alloc List

B. Free Function Call
Our system function $FREE, which is invoked instead of

the original free function call, has following the four tasks.
 To find address given as formal parameter from

Alloc List.
 To write log file (tag, address, size, line number)
 To search linked area to release recursively from

Alloc List
 To release area by calling original free function

This function is given the address that is at the top of

release area, and line number of source code as formal
parameters. Figure 6 shows the process of $FREE function.
The system replaces the free function call by the $FREE
function call, and links $FREE function to modified program.

The system finds the address, which is the actual
parameter of original free function call, from Alloc List, and

389Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

writes the line number, size, and address. Then, the system
has to find any linked area which would be released by the
same free function call, so it searches any allocated address
between given address and given address + size. If system
finds out the address that is kept in Alloc List, it will search
the next linked area recursively. While finding each area,
system gets which alloc function call corresponds to this free
function call.

void
$FREE(p1,no3){
$searchAllocList(p1);
$output_log(“~m”,no3,n,p1);
$serchAddress(p1,n,no3);
free(p1);

}

void
$serchAddress(p1,n,no3){
while(all address q,
in the data area[p1:p1+n]){
if($searchAllocList(q)）{
$output_log(“~m”,no3,m,q);
$serchAddress(q,m,no3);
/* recursively */

}}}

m,no1,n,p1
m,no2,m,p2
~m,no3,n,p1
~m,no3,m,p2

Log file

p1

q

p1+n

q+m

int func(){
p1=$ALLOC(n,no1
);
・・・
・・・
$FREE(p1,no3);
}

qq

Alloc
List

Data area of
user program

n

m

Modified
user source
program

Figure 6: $FREE function and Alloc List

V. CONCLUSION AND FUTURE WORKS
Our tracking and visualizing system shows the situation

of memory usage of C programs. It includes both stack area
of local data and dynamic allocated area. It makes a log file
about memory usage by modified user program execution,

and then analyzes the log file to make the memory usage
graph. Based on graphical image, the user can find out where
each event occurred on the C source program interactively.

Therefore, the user can recognize the accurate location
where the largest memory area was used on source program
and which memory allocation caused memory leak. It is
efficient to optimize the usage memory size of C programs,
because usually finding out the memory size on each line is
very difficult. These functions are efficient for embedded
system, whose memory size is limited strictly. The system
just begins working and we could try some small test
programs. These programs make and modify queue structure
and binary tree structure. We have to evaluate the system
performance by using more practical programs. More
information is necessary for users to optimize the program.

For the future work, we would like to show the last
access of dynamic allocated memory. This is the reason why
it means the earliest point that the allocated memory can be
release. We are considering using static data flow analysis
and static type analysis. Tracking only uncertain reference as
a result of static analysis, we can reduce log data and
analyzing time.

REFERENCES
[1] B. W. Kernighan and D. Ritchie, The C Programming Language (2nd

Edition) , Prentice Hall, 1988.
[2] CoActionOS, [http://www.coactionos.com/embedded-design/101-

understanding-memory-usage-in-c.html](Aug. 2013)
[3] [http://www.valgrind.org](Aug. 2013)
[4] A. Allain, "Using Valgrind to Find Memory Leaks and Onvalid

Memory Use",
[http://www.cprogramming.com/debugging/valgrind.html](Aug.
2013)

390Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://www.coactionos.com/embedded-design/101-understanding-memory-usage-in-c.html
http://www.coactionos.com/embedded-design/101-understanding-memory-usage-in-c.html
http://www.cprogramming.com/debugging/valgrind.html

	I. Introduction
	II. Outline Of The System
	A. Process of Tracking and Visualizing
	B. Output of the System

	III. Data in the Log File
	A. Local Data on the Stack Area
	B. Dynamic Allocated Data

	IV. calculation of data size
	A. Alloc Function Call
	B. Free Function Call

	V. Conclusion And Future Works
	References

