
Agile-User Experience Design: an Agile and User-Centered Process?

Lou Schwartz
Public Research Centre Henri Tudor

Luxembourg, Luxembourg
lou.schwartz@tudor.lu

Abstract—Agile-User Experience Design, also called Agile-UX,
is a trend of the last decade that mixes values and practices
from the Agile software engineering methods and the User-
Centered Design. Several practitioners have proposed different
processes to organize the work between development and
design. After a short reminder of the values of Agile and User
Centered Design methods, this paper presents five processes
proposed in the literature. The processes are discussed with
regards to their respect of the Agile and User Centered Design
values. This comparative study concludes that not one process
totally covers the Agile and User Centered Design values: they
all make a trade-off and could be completed by practices and
by a state of mind and a willingness adopted by the team.

Keywords-Agile; Agile-UX; Agile Software Techniques;
Software Engineering; User-Centered Desing;

I. INTRODUCTION
Since a decade, several software companies, or only at

the teams’ level, try to integrate Agile software development
methods and User Centered Design (UCD) [6][8][14][19].
This integration, called Agile-User Experience Design or
Agile-UX, is bound on the one hand to the interesting
performance of Agile methods to quickly provide software
that answers the users’ needs with a certain level of quality,
and on the other hand it results in the observation that this
software quality is relative, particularly related to Human
Computer Interactions aspects [3][18]. Based on this
observation, several practitioners tried to integrate UCD in
their Agile process with various degrees of success. After a
reminder of Agile and UCD methods in section II and III,
this paper will present processes used to integrate Agile and
UCD, often addressed in the literature in section IV and
discuss them regarding their respect of the agile and UCD
values in section V.

II. AGILE METHODS
The Agile methods’ goal is to enhance the value of the

delivered product in order to satisfy the customer’s
requirements. Agile methods adopt the following four values
defined in the Agile Manifesto [1]:

• Individuals and interactions over processes and tools
• Working software over comprehensive

documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.
The Agile movement was instigated and pioneered by

software developers in reaction to a frustration emerging
from history of delayed projects, budget overruns and

stressful jobs [2]. For the Agile Manifesto founders, these
problems have their origin in a too big analysis, specification
and design done before code writing that enables volatile or
useless requirements and incompleteness. With the Agile
methods, customers would obtain faster working software
that corresponds better to their real requirements, thanks to
the flexibility provided to the development process [2].

Agile methods are focused on the developers’ work and
on the development quality [4]. Even if the aim of Agile
methods is to satisfy the product owner’s (who is the
representative of stakeholders: customers and end-users)
requirements, they define neither method nor good practices
to achieve this objective, particularly for the needs elicitation
or the design part. The needs elicitation is done by the
product owner, based on his own knowledge of the domain
or of the work done by users. He can use the methods he
wants, including involving the users (e.g., by interviews,
context inquiries, etc.). The user interface design depends on
the openness to ergonomics of developers, customer and
users. So there is no guarantee about it. [4]

The use of the UCD principles and methods is one way to
ensure answering to users' needs. Based on these
assessments, Agile teams can benefit from the integration of
UCD methods with Agile to improve, in particular, the needs
elicitation and the design part.

III. USER-CENTERED DESIGN
UCD focuses on producing usable software that satisfies

real end-users and customers. This method, described by the
standard ISO 9241-210 [9] defines the process to follow to
produce software that meets the users’ requirements. It
includes in particular the design and the validation stages.

Figure 1. UCD process as described by the standard ISO 9241-210 [9].

346Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Four activities compose the UCD process (see Figure 1.):
• Understanding and specifying the context
• Specifying the user needs
• Produce design solutions to meet user requirements
• Evaluate the designs against requirements
The principles of the UCD are listed below [9]
• The design is based upon an explicit understanding

of users, tasks and environments
• Users are involved throughout the design and the

development
• The design is driven and refined by user-centered

evaluation
• The process is iterative
• The design addresses the whole user experience
• The design team includes multidisciplinary skills

and perspectives
Even if some Agile concerns could prevent a UCD

attitude [4] (the focus is often more on programming
techniques and programmers, automated tests, very short
iterations and fast increments) a reconciliation of both
approaches is possible and has often been implemented
[6][8][11][12][14][15][19]. The integration of both methods
implies focusing more on design activities. It results to a
redefinition of the process to organize the activities dedicated
to the design and the process dedicated to the development.

IV. REVIEW OF THE AGILE-UX PROCESSES PRESENTED IN
THE LITERATURE

A major issue listed in the literature about Agile-UX is
the organization of the work between development tasks and
UCD tasks in respect to the Agile and UCD values. Among
the existing work, five propositions of process design are
studied in this section.

A. Parallel tracks
To manage exchanges and to organize the work to carry

out between developers and usability experts, Sy [19]
proposes that they work in parallel tracks after the planning
iteration also called iteration “0”. It enables usability experts
to keep ahead of the developers, to have enough time to
gather users’ data, to analyze that data and to propose design
solutions. For that, designers and developers work with one
to two iterations of delay (see Figure 2.). During the iteration
i, designers:

• Gather user and context data for the iteration i+2

• Work on the designs for the iteration i+1
• Help developers for the implementation of the

designs of the iteration i
• Evaluate the software developed during the iteration

i-1
The principle of parallel tracks is well acclaimed by

usability experts who test it [6][15][19] thanks to the
proactive attitude given to them. As any method, the Sy’s
process has advantages and potential issues.

The advantages of working ahead of the development
team [14] are:

• Better definition of the conditions of satisfaction
(test acceptance criteria)

• Better planning the design
• Better inclusion of designs in the global users’

process
• Designers can be more concentrated on exceptions

rather than trying to produce the best design right the
first time.

The potential issues of parallel tracks are [14]:
• Sensation of not being one team that can give a

vision of inequality
• Exclusion or self-exclusion of usability experts of

some meetings
• Risks of the lack of communication which could

lead to misunderstanding and resentment
• Forget to rectify issues noted during previous

iteration’s tests.
To avoid these issues two solutions are proposed [14]:

encourage communication, build common channels of
communication; and give helpful assistance to developers as
soon as possible when a design is not understood.

This iterative process covers the four UCD activities and
it also respects the following UCD principles:

• Understanding of users, tasks and environment: the
activities of gathering data on user and context are
scheduled.

• Users’ involvement: users can be involved for the
gathering of data and for design, but they are
particularly consulted to test the developments.

• Evaluation: software tested by users.
• Iterative: intrinsic to the process.
• Multidisciplinary: by the involvement of designers,

developers and stakeholders.

Figure 2. Sy’s parallel tracks of work [19].

347Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

B. Design work done on parallel levels
Armitage [2] proposes another type of parallel work that

concerns only the designers’ work organization. The design
work is done on three parallel levels (see Figure 3.) from unit
to global level:

• Provide detailed designs for the requirement
developed in the current or next iteration.

• Redesign software developed in previous releases (a
release is a set of several iterations).

• Provide overall product vision, to keep a global
coherence throughout the project and developed
software.

Figure 3. Parallel design tasks presented in [2].

This process covers the four UCD activities. The
evaluation of designs against requirements is supported by
the redesign activities and an overall product vision.

This process respects the following UCD principles:
• Understanding of users, tasks and environment: the

focus is on the design in this process, that encloses
the respect of this principle

• Iterative: the process is iterative on each level
• Multidisciplinary: involvement of designers.
• However it is not clear if the evaluation of the

designs are driven and refined by users (third UCD
principle) or if the users are involved (second UCD
principle) but there is no counter-argument to respect
these principles.

C. Sequence of an iterative design phase and an iterative
development phase
Deuff et al. [8] present another proposition of process for

Agile-UX that gives a good place to an upfront designing
(see Figure 4.). They justify this iterative design phase by the
fact that time is necessary before development to build the
context (gather data on users, their tasks, the context, etc.)
and make the first design propositions. But, the time is not
available in classical Agile processes. So usability experts
have to juggle between too much tasks (gather the necessary
data, define the design, test) while trying to maintain a global
vision during iterations. To resolve this issue they propose to
cut the project in 3 phases: Design, Development and Final
test. The design and the development phases are iterative.
Even if a Final test is planned, several users’ tests are done
during the first and second phase.

This process covers the four UCD activities if the phase 1
is dedicated to understanding and specifying the context of
use, specifying the user and organizational requirements and
producing design solutions. But the description of the
process is not deep enough to ensure that phase 1 covers

these activities. The evaluation of designs against
requirements is covered by Phase 3 and by the regular tests
done throughout the project.

Figure 4. Deuff’s process proposal [8].

This process respects the following UCD principles:
• Understanding of users, tasks and context: notably

through phase 1 of designing
• Users’ involvement: users are involved throughout

the project in particular thanks to regular testing.
• Evaluation: design and software are iteratively

evaluated by users and it is enhanced by phase 3
which plans a final users’ test

• Multidisciplinary: designers and users involvement.
The fourth (iterative) UCD principle is more or less

respected since the first and second phases are iterative but a
global loop is missing.

D. Big upfront design
Agile methods do not encourage a big upfront design

[4][14][15]. Or more precisely this upfront design is out of
the scope of the Agile methods. In fact an analysis conducted
by the product owner is necessary to define the product
backlog, but no best practice is defined to support the
product owner for this task, which is done before the start of
the development Agile process. To support the product
owner for this task, some usability experts propose to
conduct a big analysis up front. Others are against this
practice and prefer to use the iteration called “zero” to
conduct a short analysis and then go deeper throughout the
project according to the needs of analysis. Big upfront design
in Agile-UX has supporters and opponents (see TABLE I.),
their arguments are presented bellow.

1) Supporters of a big upfront design: Chamberlain [6]
in his principle 4 for integration UCD and Agile
development insists on a big upfront design before any
development: “UCD practitioners must be given ample time
in order to discover the basic needs of their users before any
code gets released into the shared coding environment.” This
time is necessary to capture users’ needs, usability goals,
context of use and design criteria. It is also used to define
users or to build personas. In some cases, at least a part of
the designs is defined in this step which is not recommended
by Nodder [14]. It's even risky according to Blomkvist [4]
and Deuff [8] to engage a project in a development without
this initial analysis and design. Agile methods are intensive
during iterations, so that usability experts do not always have
time to ask questions or to take a global view and ensure the
homogeneity and consistency of the solution.

For Brown [5], long research projects are sometimes
necessary to devote more time in analysis in order to gather
the necessary data.

348Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

TABLE I. REPARTITION OF OPPONENTS AND SUPPORTERS OF A BIG UPFRONT DESIGN AND THEIR ARGUMENTS

 [2] [4] [6]
Prj. I

[7] [5] [8] [11] [14]
Prj. PV

[15]
Prj. 1 Prj. 2 Prj. 3 Prj. 4

Supporters Do first analysis and
design X X X X X X X

Avoid risks X X
Have a global vision X X X X

 X X

Opponents Avoid risks (time &
money consuming) X X X X

Respect Agile values:
accept changes X X X X

Big upfront analysis
reduce quality X

Figure 5. One iteration in Usage-Centered Design adapted to Agile methods [7].

2) Opponents of a big upfront design: In opposition, for
Armitage [2] it is too risky and time and money-consuming
to design deeply beforehand and it is totally against Agile
practices which encourages “trial and error to reduce the risk
of building the wrong thing”. A big upfront design might
reduce quality of the software and its design [2]. Another
problem is the difficulty to accept changes later when a big
upfront design was done, which goes against the Agile
values “Responding to change over following a plan” and
“Working software over comprehensive documentation”
[2][11][15]. For Brown [5], gathering data or needing design
validation is not a justification for an upfront design phase:
these tasks can be conducted throughout the project thanks to
the planning of regular meetings with users. These meetings
can serve to discuss all the elements already built
(wireframes, personas, software, etc.) with users but also to
gather data on their tasks etc.

3) Conclusion: For Brown [5], it is a myth that no
upfront design is allowed in Agile-UX. In fact, Agile
developers all work with a kind of high-level plan also called
a roadmap. It is also necessary for usability experts to
develop a kind of roadmap in the form of, e.g., a simple
sketch, a workflow diagram, wireframes or Post-its. This
way the team has to take the time to build this global vision
while taking care not to spend too much time and fall into the
track of a design phase that never ends. This is necessary to
identify proactively technical impediments.

This process covers only three of the four UCD activities:
understanding and specifying the context of use, specifying
the user and organizational requirements, and producing
design solutions. Furthermore it depends on the tasks done in
this big upfront design phase: in fact the proposition of
designs is not always included, sometimes it is diluted in the

iterations following this first phase. So a big upfront design
is not enough to ensure that designs will meet the users’
requirements.

This process does not ensure the second (users’
involvement), the third (evaluation), the fourth (iterative) and
the sixth (multidisciplinary) UCD principles even if they are
recommended to ensure a better design. In fact the goal of
this process is to answer to the first UCD principle:
understanding of users, tasks and context.

E. Usage centered design
Constantine [7] proposes another approach, which is the

integration of Usage-Centered Design, and not User-
Centered Design, and Agile (see Figure 5.).

Usage-Centered Design is more focused on roles than on
users and on usage scenarios also knew as task cases. Roles
and tasks are identified by stakeholders (domain experts,
business people, designers, developers, users, etc.) thanks to
brainstorming. The process is composed of iterations that are
all composed of these succeeding steps: (1) Inventory roles;
(2) Refining roles; (3) Prioritizing roles; (4) Inventory tasks;
(5) Prioritizing tasks; (6) Describing tasks; (7) Organizing
tasks; (8) Paper prototype; (9) Refining of prototype. During
this time developers develop the back-end components.
When the prototype is refined, they develop the interface.

This process covers only three of the four UCD activities:
understanding and specifying the context of use, specifying
the user and organizational requirements, and producing
design solutions. The evaluation of designs against
requirements is not covered; it goes against the third UCD
principle [16].

As stakeholders are consulted to define roles and tasks,
the second (users’ involvement) and sixth (multidisciplinary)
UCD principles are respected. The process is intrinsically
iterative (principle 4.). The good definition of roles and tasks

349Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

answers to the first UCD principle, even if the process does
not ensure the understanding of the environment.

V. DISCUSSION
The facing of the presented Agile-UX processes to the

UCD activities shows that they respect generally the four
UCD activities (see TABLE II.). However the activity of
evaluation is not covered by the big upfront design or by the
Constantine’s process: they have to be completed.

None of the presented processes ensures the fifth UCD
principle (see TABLE II.), this principle aims to improve the
whole user experience by addressing the support of users in
their use of the product. This can be addressed by all
processes if the willpower to care about it exists in the
project and in the team. Sy’s, Deuff’s and Constantine’s
processes clearly involve users at least to support the
evaluation of designs and software and/or to define the
context and the needs (see TABLE II.). Armitage’s and the
big upfront design processes do not ensure this involvement
and evaluation, but the respect of these UCD principles is
recommended to improve the designing and the meeting of
the users’ needs (see TABLE II.). Sy’s, Armitage’s and
Constantine’s processes are strongly iterative (see TABLE
II.). Deuff’s process is more or less iterative, this is due to
the introduction of an upfront analysis separated from the
development phase, but each phase is iterative (see TABLE
II.). For the big upfront process it is recommended to make it
iterative but it is not ensured (see TABLE II.). Finally, all

presented processes involve at least designers (see TABLE
II.), and even if some of them do not ensure the involvement
of developers or stakeholders, including the end-users, it is at
least recommended.

Evaluate these Agile-UX processes under the Agile
values is not an easy task. Firstly, as they are processes they
can go instead of the first Agile value (Individual and
interactions over processes and tools) (see TABLE II.). We
can understand that processes promote a separate analysis
and design phase, as Deuff’s and big upfront design, are
certainly more rigid and thus do not encourage the third
Agile principle (Customer collaboration over contract
negotiation) by fixing the designs before development and
the discovery of impediments (see TABLE II.). As the
separate design phase aims to produce designs, we can
deduct that both processes do not promote the second
(Working software over comprehensive documentation) (see
TABLE II.). The more iterative attitude of the Sy’s,
Armitage’s and Constantine’s processes respects better the
third Agile principle (see TABLE II.). Sy and Constantine
both insist on the necessity to reduce documentation by
doing designs (as paper prototypes) but only when it is
essential for communication and exchange or to support
specification of the user stories, in the respect of the second
Agile value (see TABLE II.).

Finally, respecting the Agile values is more a question of
attitude adopted by the team, a question of culture, that
something intrinsic to the Agile-UX emerging processes.

TABLE II. AGILE-UX PROCESSES FACING TO UCD ACTIVITIES AND PRINCIPLES AND TO AGILE VALUES

 Sy’s process Armitage’s
process

Deuff’s process Big upfront
design

Constantine’s
process

UCD
Activities

1. Specify context X X X X X
2. Specify users’ needs X X X X X
3. Design X X X X X
4. Evaluate X X X NO NO

UCD
principles

1. Design based on explicit
understanding of users, tasks
and environment

X X X X X

2. Users involved X Not ensured X Not ensured but
recommended X

3. Design driven and refined by
user-centered evaluation X Not ensured X Not ensured but

recommended NO

4. Iterative process X X More or less Not ensured but
recommended X

5. Process addresses the whole
user experience Not ensured Not ensured Not ensured Not ensured Not ensured

6. Team includes
multidisciplinary skills X X X Not ensured but

recommended X

Agile
Values

1. Individual and interactions
over processes and tools Not ensured Not ensured Not ensured Not ensured Not ensured

2. Working software over
comprehensive documentation

Not ensured but
promoted Not ensured Not ensured Not ensured Not ensured but

promoted
3. Customer collaboration over
contract negotiation Not ensured Not ensured Not ensured Not ensured Not ensured

4. Responding to change over
following a plan X X More or less NO X

350Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

VI. CONCLUSION AND FUTURE WORK
Even if the parallel tracks process is generally accepted,

some other processes are proposed. This echoes Brown [5]
who explains that one myth of Agile-UX is to believe that
there is only one way to do it. Every team has to find its
proper way to process Agile-UX because “different
challenges require different solutions”. This corresponds
perfectly with Agile values, notably “Individuals and
interactions over processes and tools”.

Following the analysis of the different Agile-UX
processes proposed in literature, we can observe that no one
covers entirely all the UCD activities, UCD principles and
Agile values. To ensure the respect of all these principles,
each analyzed process should be completed by practices or
by cultural aspects. For instance Constantine’s process
should be completed by tests. Armitage’s process works
more on the global vision than the other processes, it may be
associated with Sy’s process to improve it. Deuff’s process
makes a major contribution on the organization of the tests
(not detailed in this paper) but the separation of an analysis
phase and a development phase are in contradiction with
Agile that fights against upfront analysis and design phase by
its fourth principle (Responding to change over following a
plan). This analysis brings out questions to investigate in
future work:

• Which practices are necessary to complete the Agile-
UX processes?

• What can be an Agile-UX process that respects all
UCD and Agile principles?

• How may the people and the cultural question
enhance the Agile-UX processes?

• How to ensure the respect of the fifth UCD
principle: process addresses the whole user
experience?

ACKNOWLEDGMENT
Many thanks to my colleagues (in particular Sylvain

Kubicki) who support my work on Agile-UX through
exchanges and experimentations and those who have helped
me in particular to write this paper: Muriel Foulonneau and
Jocelyn Aubert.

REFERENCES
[1] A. Alliance, Agile manifesto, 2001, Online at http://www.

agilemanifesto.org, 08.01.2013.

[2] J. Armitage, Are Agile methods good for design?, interactions, 11(1),
2004, pp. 14-23.

[3] A. Bankston, Usability And User Interface Design In XP, 2003,
White Paper, http://www.ccpace.com/resources/documents/usability
inxp.pdf, 08/01/2013.

[4] S. Blomkvist, Towards a model for bridging Agile development and
user-centered design, In Human-Centered Software Engineering—
Integrating Usability in the Software Development Lifecycle, 2005,
pp. 219-244, Springer Netherlands.

[5] D. D. Brown, Five Agile UX Myths, Journal of Usability Studies,
8(3), 2013, pp. 55-60.

[6] S. Chamberlain, H. Sharp, and N. Maiden, Towards a framework for
integrating Agile development and user-centred design, In Extreme
Programming and Agile Processes in Software Engineering, 2006, pp.
143-153, Springer Berlin Heidelberg.

[7] L. L. Constantine and L. Lockwood, Process agility and software
usability: Toward lightweight usage-centered design, Information
Age, 8(8), 2002, pp. 1-10.

[8] D. Deuff, M. Cosquer, and B. Foucault, Méthode centrée utilisateurs
et développement Agile: une perspective «gagnant-gagnant» au
service des projets de R&D, In Conference Internationale
Francophone sur I'Interaction Homme-Machine. Sept. 2010, pp. 189-
196, ACM.

[9] I. DIS, 9241-210: 2010, Ergonomics of human system interaction-
Part 210: Human-centred design for interactive systems, 2009,
International Organization for Standardization (ISO), Switzerland.

[10] Extreme Programming: a gentle introduction, http://www.
extremeprogramming.org/, 08.01.2013.

[11] J. Ferreira, J. Noble, and R. Biddle, Up-front interaction design in
Agile development, In Agile Processes in Software Engineering and
Extreme Programming, 2007, pp. 9-16, Springer Berlin Heidelberg.

[12] Z. Hussain, W. Slany, and A. Holzinger, Current state of Agile user-
centered design: A survey. In HCI and Usability for e-Inclusion,
2009, pp. 416-427. Springer Berlin Heidelberg.

[13] D. Kane, Finding a place for discount usability engineering in Agile
development: throwing down the gauntlet, In Agile Development
Conference, 2003, ADC 2003, Proceedings of the, Jun. 2003, pp. 40-
46. IEEE.

[14] P. McInerney and F. Maurer, UCD in Agile projects: dream team or
odd couple?, Interactions, 12(6), 2005, pp. 19-23.

[15] C. Nodder and J. Nielsen, Agile usability: best practices for user
experience on Agile development projects, Nielsen Norman Group,
2010.

[16] A. Nummiaho, User-Centered Design and Extreme Programming, In
Software Engineering Seminar, 2006, pp. 1-5.

[17] D. Rawsthorne and D. Shimp, Scrum In A Nutshell, SCRUM
alliance, http://www.scrumalliance.org/articles/151-scrum-in-a-nut
shell , 08.01.2013.

[18] A. Seffah, J. Gulliksen, and M. C. Desmarais, Human-Centered
Software Engineering - Integrating Usability in the Software
Development Lifecycle, 2005, p. 32, Springer

[19] D. Sy, Adapting usability investigations for Agile user-centered
design, Journal of usability Studies, 2(3), 2007, pp. 112-132.

351Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

	I. Introduction
	II. Agile methods
	III. User-Centered Design
	IV. Review of the Agile-UX processes presented in the literature
	A. Parallel tracks
	B. Design work done on parallel levels
	C. Sequence of an iterative design phase and an iterative development phase
	D. Big upfront design
	1) Supporters of a big upfront design: Chamberlain [6] in his principle 4 for integration UCD and Agile development insists on a big upfront design before any development: “UCD practitioners must be given ample time in order to discover the basic needs of their users before any code gets released into the shared coding environment.” This time is necessary to capture users’ needs, usability goals, context of use and design criteria. It is also used to define users or to build personas. In some cases, at least a part of the designs is defined in this step which is not recommended by Nodder [14]. It's even risky according to Blomkvist [4] and Deuff [8] to engage a project in a development without this initial analysis and design. Agile methods are intensive during iterations, so that usability experts do not always have time to ask questions or to take a global view and ensure the homogeneity and consistency of the solution.
	2) Opponents of a big upfront design: In opposition, for Armitage [2] it is too risky and time and money-consuming to design deeply beforehand and it is totally against Agile practices which encourages “trial and error to reduce the risk of building the wrong thing”. A big upfront design might reduce quality of the software and its design [2]. Another problem is the difficulty to accept changes later when a big upfront design was done, which goes against the Agile values “Responding to change over following a plan” and “Working software over comprehensive documentation” [2][11][15]. For Brown [5], gathering data or needing design validation is not a justification for an upfront design phase: these tasks can be conducted throughout the project thanks to the planning of regular meetings with users. These meetings can serve to discuss all the elements already built (wireframes, personas, software, etc.) with users but also to gather data on their tasks etc.
	3) Conclusion: For Brown [5], it is a myth that no upfront design is allowed in Agile-UX. In fact, Agile developers all work with a kind of high-level plan also called a roadmap. It is also necessary for usability experts to develop a kind of roadmap in the form of, e.g., a simple sketch, a workflow diagram, wireframes or Post-its. This way the team has to take the time to build this global vision while taking care not to spend too much time and fall into the track of a design phase that never ends. This is necessary to identify proactively technical impediments.

	E. Usage centered design

	V. Discussion
	VI. Conclusion and Future Work
	Acknowledgment
	References

