
Business Process Modeling in
Object-Oriented Declarative Workflow

Marcin Dąbrowski, Michał Drabik, Mariusz Trzaska, Kazimierz Subieta
Polish-Japanese Institute of Information Technology

Warsaw, Poland
{mdabrowski, mdrabik, mtrzaska, subieta}@pjwstk.edu.pl

Abstract—The paper presents motivations, the idea and design
of an object-oriented declarative workflow management
system. The main features that differ this system from many
similar systems are: inherent parallelism of all workflow
instances and tasks, the possibility of dynamic changes of
running process instances and integration of workflow
instances with an object-oriented database. Workflow
instances, tasks, subtasks, etc., are implemented as so-called
active objects, which are persistent data structures that can be
queried and managed according to the syntax and semantics of
a query language. and also possess active parts that are
executable. The prototype has been implemented on the basis
of ODRA, an object-oriented distributed database
management system. As the workflow programming language
we use SBQL, an object-oriented database query and
programming language developed for ODRA.

Keywords-workflow; object-oriented; declarative; query
language; active object, dynamic workflow change; ODRA;
SBQL

I. INTRODUCTION
Current workflow technologies, developed mainly by

commercial companies and standardization bodies, see for
instance [1, 2, 3], present a considerably well recognized
domain, with a lot of commercial successes. The core of the
current approaches to workflows is the control flow graph,
which determines the order of tasks performed by a
particular process instance. Other issues related to
workflows, such as resource management, workflow
participant assignments, database structure and organization,
transaction processing, synchronization of parallel activities,
exception handling, tracking and monitoring of workflow
processes, are frequently treated with attention, but are seen
as secondary with respect to the work control flow. The
model based on a control flow graph is defined formally as a
Petri net [4].

There are problems that undermine applications of
workflow management systems in important business
domains. Below, we list the following features that are
frequently required in complex business applications, but are
absent or poorly supported by workflow systems:
1. Mass parallelism of tasks within workflow processes.
2. Dynamic changes of workflow instances during their

run.
3. Reactions to unexpected events or exceptions and

aborting running processes or their parts.

4. Resource management as a main workflow driving
factor.

Below, we discuss the above aspects.
Ad.1. Currently workflow systems enable parallel sub-

processes through splits and joins (AND, OR, XOR) that are
explicitly determined by the programmer. Such a form of
parallelism is insufficient for many business cases. During
the run, a process instance could be split into many parallel
sub-processes, but their number is large and unknown during
development of the process definition. For example,
processing an invoice requires splitting it into as many sub-
processes as the items that the invoice consists of. This
typical situation cannot be covered by explicit splits and
joins. Moreover, as noted by Reichert and Dadam [5], it is
often not convenient and not efficient to determine task
sequences in advance.

Ad2. Although there is a valuable research (e.g., [5, 6, 7,
8, 9, 10, 11]) aiming at dynamic changes of process
instances, especially workflow patterns [12, 13], it can be
anticipated that the scope of the changes must be limited.
There are several problems with modifications of a currently
executed process instance graph:
• Current workflow programming languages are not

prepared to deal with dynamic changes of a running
code.

• Parts of a flow control graph have no identity, they
cannot be separated from other parts and they are not
described by some metamodel (like a database
schema).

• Process instance graph elements are tightly
interconnected. If one would try to alter the code (e.g.
by removing some its part) the problem is how to fix
other elements to create a consistent whole.

• Changes can violate the consistency of process
instances, hence some discipline of changes is required.

• If many possible actors are allowed to alter a process
instance graph, then elements of the graph should
follow ACID transactions.

Ad3. Usually, programming languages have
programming means to define and process exceptions
(events). However, this concerns only situations when
exceptions are known during developing a process
definition. The behavior of business processes is frequently
unpredictable. There are exceptional situations that are
known only at the time when process instances are already
running. For instance, a new type of malicious attack on a
banking workflow system is discovered in situations when

141Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

thousands of process instances are already executed. The
workflow system administrator has practically the only
option: abort processes, change the process definition and
start processes from the beginning. From the business point
of view this could be unacceptable and might generate a
huge additional cost. Aborting already running processes is a
problem, because they engage entities and resources from the
business environment (clients, personnel, documents,
contracts, etc.). They may require a lot of compensating
actions, which must be done manually, with no help from the
workflow system.

Ad4. In currently developed workflows, the work control
flow (a la Petri net) is on the primary plan and the resources
(people, money, time, work power, equipment,
infrastructure, offices, vehicles, etc.) are secondary and
sometimes not taken into account at all. This is unnatural for
business processes because just availability, unavailability of
resources and their monitoring, planning and anticipating are
the main factors that determine a process control flow. Just
availability of resources should trigger some tasks. Because
information on resources is usually a property of a database
supporting the workflow system, conditions within a
workflow control flow graph should include accesses to a
database. This is usually impossible in typical workflow
programming languages or burdened by an infamous effect
known as impedance mismatch [14] between querying and
programming.

The above issues were the reasons that we started the
research on a new workflow management system that will be
able to overcome limitations of the current systems
concerning mass parallelism and dynamic changes of
running workflow instances. The assumptions of our design
is that an element of a workflow instance should have a
double nature. On the one hand, it should be perceived as a
data structure (an object) that can be addressed by a database
query and programming language. The structure is to be
stored in a database and should be the subject of database
transactions. On the other hand, the element should contain
executable parts, i.e., the code of a workflow process or sub-
process.

This way, we have come to the concept of active object.
An active object is a database object that contains some static
parts (attributes) and some active parts (codes). We
distinguish four such parts: firecondition, executioncode,
endcondition and endcode. An active object waits for
execution until the time when its firecondition becomes true.
After that, the object’s executioncode is executed. The
execution is terminated when either all the actions are
completed (including actions of active sub-objects) or its
endcondition becomes true. After fulfillment of the
endcondition some terminating actions can be executed
through endcode. This may be required to terminating some
actions, e.g. closing connections, aborting transactions,
setting a new object state, etc. Active objects belong to their
classes, follow the principle of encapsulation and are
typechecked according to the strong typing system. They can
be updated as regular database objects. Preventing undesired
updates can be accomplished by well-known database
capabilities such as user rights, integrity constraints, triggers

and active (business) rules. Unexpected events can be served
by inserting new active sub-objects into running active
objects and/or by altering active objects.

Active objects accomplish an important feature: mass
parallelism of executed tasks. In principle, all active objects
act in parallel. In life, tasks performed by people can be done
in parallel with no conceptual limitations. Some tasks,
however, must wait for completing other tasks and this
model can be expressed as a PERT (Program Evaluation and
Review Technique) graph. Active objects act as PERT
graphs: if object A has to wait for object B, then the
firecondition of A tests the state of B, which should be set to
“completed” when B is terminated. This way, one can
determine the sequence of processes, but this does not
constraints one from using parallelism whenever possible.
Because the sequence of tasks is not determined explicitly,
we describe this workflow model as “declarative”. Note that
this idea of declarative workflow processes is considerably
different from the idea of the DECLARE model presented in
[15], which is a logic-oriented formalism for specification of
various dependencies between (sequences of) events. In our
case, “declarative” means that the programmer specifies a
workflow code as collections of (nested) active objects, with
fireconditions and endconditions specified by means of the
declarative query language SBQL[16].

In our idea, workflow resources, as any database
properties, can be used to form fireconditions and
endconditions. In this way the resource management is
properly shifted on the first plan. Both active objects and
resource description objects are integrated in the same
database thus can be addressed by the same integrated query
and programming language. Hence, any form of impedance
mismatch is avoided.

The widely recognized paper devoted to dynamic
workflow changes is [5]. It presents some framework for
formalizing process graphs and updating operations
addressing such a graph. There are valuable observations
concerning the necessity of dynamic workflow changes for
real business processes and the necessity of strong discipline
within the changes to avoid violation the consistency of the
processes. Numerous authors follow the ideas of this paper.
The fundamental difference of our approach is that the
process control flow graph is not explicitly determined. It
can be different from one run to next run, depending on the
state of the workflow environment, database, computer
environment, fireconditions and endconditions. The problem
of the necessity of various control flow graphs for the same
business process is one of the motivations for the research
presented in [5], but it is not easy to see how such a feature
can be achieved within the proposed formal workflow
model. In our idea the feature is an inherent property.

Some disadvantage of our concept concerns the
performance. Decreasing performance can be caused by late
binding and the necessity of cyclic checking of fireconditions
and endconditions. We believe that performance problems of
our idea can also be overcome by new optimization methods
and new computer architectures.

The prototype is implemented under the ODRA system
[17]. As a workflow programming language, we use SBQL,

142Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

an object-oriented query and programming language
developed for ODRA.

The paper is organized as follows. Section 2 presents the
concept of an active object. Section 3 describes the
implemented prototype. Section 4 presents a comprehensive
example of a declarative workflow. Section 5 concludes the
paper.

II. ACTIVE OBJECTS
In the following, we use the term active object as a

generalization of process instance and task instance. Because
of the relativity of objects assumed in SBQL, components of
active objects are active objects too. Due to this, there is
usually no need to distinguish between process instances and
task instances – all are represented as active objects. To
represent process and task instances, active objects are
specialized, and belong to a special class named
ActiveObjectClass, which contains basic typing information,
basic methods and other necessary invariants.

An active object is a nested object with the following
main properties:
• Unique internal object identifier.
• External (business) name that can be used in source

programs.
• Certain number of public and private attributes.
• One distinguished attribute (sub-object) containing an

SBQL procedural workflow executioncode of a process
or a task; it may contain an empty instruction only.

• One distinguished attribute (sub-object) containing an
SBQL code with a firecondition (a condition for
starting the run of the given active object).

• One distinguished attribute (sub-object) containing an
SBQL code with an endcondition (a condition for
terminating the run of the given active object). An
endcondition may be absent. In this case the action of
an active object is terminated when its executioncode is
terminated and/or when all its active subobjects are
terminated.

• One distinguished attribute (sub-object) containing an
SBQL code with an endcode (a code executed to
consistently terminate the run of the given active
object). An endcode can be absent.

• Any number of named pointer links (binary relationship
instances) to other (active or passive) objects.

• Any number of inheritance links connecting the given
object to its classes (multiple inheritance is supported).

• Any number of nested active objects. The construction
of a nested active object is identical to that of a regular
active object (the object relativism is supported). The
number of nesting levels for active objects is unlimited.

When an active object consists of active sub-objects, the
endcondition determines whether the process or task is
completed. An endcondition can accomplish all kinds of
joins (AND, XOR) of parallel processes, and much more.

For example, if within an active object Invoice there are
many (unknown number of) active sub-objects
TestingAnItem, then we can impose the endcondition of

Invoice (the end of the invoice checking process) in the form
of a query involving an universal quantifier:
forall TestingAnItem as x (x.State =
“completed” or x.State = “cancelled”)

We can also impose more complex conditions. For
instance, let the cost of an invoice item will be stored within
TestingAnItem as a Cost attribute, and assume that the entire
invoice is checked if more than 95% of its total cost is
checked. In this case, the endcondition will have the form:
sum((TestingAnItem where State =
“completed”).Cost) / Invoice.TotalCost > 0.95

Because active objects are regular objects in the SBQL
terms, they can be manipulated without limitations. For
instance, active objects can be altered and deleted. Their
state can be changed, including the code of active parts. New
active sub-objects can be inserted into an active objects. This
feature makes it possible to split the process (represented by
the active object) into any number of subprocesses (inserted
active subobjects). Proper construction of the object’s
endcondition (e.g., with the use of quantifiers) makes it
possible to do any join of them, as illustrated in examples.

Active objects are specified by their classes and follow
the strong typechecking. The definition of a workflow
process determined by its class can be instantiated by
creating an active object of this class. The object creation
follows the standard routine of SBQL. The only difference
concerns executable parts: during instantiation their codes
are created as strings and then compiled to bytecodes.

III. DESIGN AND IMPLEMENTATION OF THE PROTOTYPE
The implemented prototype makes it possible:
• Creating and modifying workflow definitions;
• Instantiating them (creating workflow instances);
• Running a workflow monitor which processes

workflow instances.
The prototype has been implemented as a web

application using several technologies. The web part utilizes
Groovy [18], Grails [19] and JavaScript [20]. The ODRA
DBMS, the ODRA wrapper and the process monitor are
written in Java.

The main part of the system resides on the Tomcat [21]
servlet container hosting most of the application logic. The
most important parts are the following:
• The module for generating GUI. It is based on the core

Grails framework technology called GSP (Groovy
Server Pages). It is similar to well-known JSP (Java
Server Pages);

• The application logic which manages the workflow
model on the functional level. It provides an interface
to administrative tasks in a workflow system for all
applications. It is suitable not only for our custom built
GUI interface, but also for any Java-based application.

• The ODRA wrapper simplifies all tasks related to the
ODRA DBMS. ODRA is responsible for storing
workflow related information (definitions, instances)
and executing SBQL codes within active objects.

143Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

• The process monitor accomplishes time sharing among
active parts. It periodically switches the control flow
among all currently executed parts of active objects and
their subobjects.

• The cache memory speeds up the access to commonly
utilized DB objects.

The client component is executed in the standard-
compliant web browser and consists of the following
features:
• Regular web forms which are used for creating and

updating instances and definitions.
• An AJAX part written in JavaScript using the jQuery

library. Such an approach makes it possible to use
powerful widgets like definitions/instances trees (Fig.
1) or SBQL code editor with syntax highlighting.
Another advantage was lack of reloading a web page
(post/get) in some cases, i.e., auto refreshing of
instances’ status in the tree. As a result overall user
experience was greatly enhanced.

Figure 1. A workflow instances tree

The last two remaining architecture’s items are: the
ODRA system and a mail server. The last one is utilized for
sending progress messages to parties involved in a workflow.

The schema of a database used to store workflow data, is
presented in the Fig. 2. The process objects represent
structures created by the workflow programmer before it is
actually ran. Once a process is initiated, all data, including
the data of sub-processes, is copied to the corresponding
ProcessInstance objects. The parent-child bidirectional
pointer, combined with SBQL query operators, gives a great
flexibility in expressing conditions and codes. For instance:
• Find all my children (the code is written with regard to

one particular ProcessDefinition).
• Find my parent.
• Find a process with a given status.
• Find a process with a given name.

ProcessDefinition
globalId
name
fireCondition
execCode
endCondition
endCode
timeout
getAttribute(name)
setAttribute(name, value)

ProcessDefinition
globalId
name
fireCondition
execCode
endCondition
endCode
timeout
getAttribute(name)
setAttribute(name, value)

ProcessInstance
globalId
name
fireCondition
execCode
endCondition
endCode
timeout
status
processId
instanceId
timeOfLastCheck
getAttribute(name)
setAttribute(name, value)

ProcessInstance
globalId
name
fireCondition
execCode
endCondition
endCode
timeout
status
processId
instanceId
timeOfLastCheck
getAttribute(name)
setAttribute(name, value)

Attribute
name
value

Attribute
name
value

parent
0..1

*
child

parent
0..1

*
child

parent
0..1

*
child*

attributes
*

attributes

Figure 2. ODRA database schema

These constructs can be easily combined for more
complex search, for instance:
• Find a child that has a certain name and status.
• Check if all my children have the status ‘Finished’.
• Find my “brother” (using parent.children).
• Find all my “nephews” (using parent.children.children).

To allow processes to store “ad-hoc” some additional
data we have provided the Attribute class with a set of
methods in the ProcessDefinition and ProcessInstance
classes. Attributes can be easily used to control the flow
(when the conditions are based on them) and enable the
communication between processes (as one process can query
other process attributes and can change their values).

The ProcessMonitor is a Java based application, that can
be run as a separate thread on a separate machine. Its duty is
to periodically check (basing on timeouts) each
ProcessInstance. Then, according to the values retrieved
from condition codes, the ProcessMonitor executes the inner
code of the process and pushes it forward through the
workflow.

IV. SAMPLE DECLARATIVE WORKFLOW DEFINITION
As an illustration, we have created a sample workflow,

which utilizes basic concepts of our idea. The workflow
application supports processing of a credit request within a
bank. It is a complex structure of active objects representing
various tasks. The structure is presented in Fig. 3. Apart from
objects representing processes, there are resource objects that
are available through names such as Customer,
ApplicationForm, Account and Contract. A rough scenario
for the Request process is described below.
1. A customer submits an application for a credit in the

form of an ApplicationForm object.
2. After checking that all of necessary resources are

available the Analysis sub-process is activated.
3. The data is checked formally by the analyst for formal

and business correctness (Initial formal check).
4. If the data is incorrect, the customer is informed about

that and further processing of the application is
suspended (Suspension) until reaction of the customer is
received. If there is no reaction the application is
rejected, and the customer is informed about that by an
appropriate e-mail message (Rejection).

144Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

5. If the data is correct the client rating is calculated
(Calculate Client Rating).

6. After successful calculating of the client rating, a check
is performed if the amount of the credit does not exceed
the general bank limit (Calculate general limit).

7. A positive result of the Analysis sub-process activates
the Verification sub-process.

8. Verification consists of two stages:
a. Checking if the customer is not present in the

government registry of persons having debts;
b. Checking if the customer has an account within the

bank; if not, creating such an account.
9. If this sub-process is successfully completed, the sub-

process Ratification is triggered.
10. The sub-process Ratification is split into sub-processes:

a. Checking if the customer’s current income is
sufficient for the requested credit (Final check).

b. Preparing contract for the customer (Preparing
contract);

c. Sending information to the customer (Information
to customer);

d. Signing the contract with the customer (Signing
contract);

e. Transfer of the money to the customer’s account
(Money transfer);

f. Checking and sending information to the
government registry of customers that apply for
credits (to avoid many applications of the same
customer to different banks submitted at the same
time).

11. If these tasks are completed (successfully for the
customer or not), the process instance is terminated.

12. If at any stage the application is rejected the appropriate
information is sent to the customer.

Let us consider the Ratification sub-process in more
detail. It consists of six sub-processes: Final check,
Preparing contract, Information for customer, Signing
contract, Money transfer and Information to debts registry.
In order to start the Ratification process the fire condition
should check if the parent’s attribute ‘state’ is empty and the
Verification process has got finished status. This condition
means that the application has not been rejected yet and the
Verification sub-process is finished. After satisfying the fire
condition, Ratification process changes its status to Active
and all of its children changes status to Waiting. A
Ratification process is ended when all its children are
completed or when the application is rejected.

Request

Analysis

Initial formal check

Check client rating

Calculate general limit

Verification

Check debts registry

Check client account

Ratification

Final check

Preparing contract

Information for customer

Money transfer

Info to debts registry

Signing contract

Rejection

Information for customer

Suspension

Information for customer

Suspending

Activating

Figure 3. Structure of the Request process

When the Ratification is active, the fire condition of the
child with the name Final check is checked. It fires as soon
as its parent has got active status. When the process
activates, the code of this task is executed. The purpose of
this code is to check if the customer can afford such a credit
and according to that sets the proper value to the attribute
“state” of the Request object. The endcode of the Final
check is absent, hence the process ends immediately after
completing the execution code.

The next process in order is Preparing contract. It fires
as soon as Final check is finished and the state attribute of a
Request process has the “accepted” value. The purpose of
this process is to create a new Contract object assigned to an
application form filled by the customer with start date equal
to the current date and with an attachment being a reference
to the application form of the customer. If the contract has
been successfully created the process ends.

Finishing of Preparing contract process activates
Information for customer. The main task of this process is to
send an e-mail to the customer with the information that the
contract is ready to sign up. Depending on the result of this
operation the attribute mailSent is set with a proper value. If
sending does not succeed, the status of the process is
changed to Waiting, so the next process monitor check will
trigger its run again. When the e-mail is sent the process
ends. After informing the customer on the contract, the
processing waits for the signature. The next process Signing
contract provides information if a contract has been already
signed or not. It is started after finishing Preparing contract
and is active till a contractSigned attribute is false.

When the contract is signed, the bank transfers the
money into the customer account. The Money transfer
process is responsible for this action. It is activated when the
Signing contract process is finished.

The execution code for this process updates the amount
attribute from the customer’s Account object with the value

145Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

of the creditAmount attribute from the specific
ApplicationForm object. The process ends immediately after
completing this action (no endcondition).

The last action in the ratification procedure is sending an
info about a customer to a debts registry. After completing
all the sub-processes the Ratification process is finished.

The manager of workflow processes can do any changes
to process instances, including currently running instances by
simple database updates. For instance, for any reason he/she
can delete active object Check client rating from active
object Analysis for the given customer Request. It is possible
that in such a case the endcondition of the Analysis object
should be changed too.

V. CONCLUSION AND FUTURE WORK
The perception of workflow processes as autonomous

objects can be very useful in terms of maintaining and
managing process definitions and execution. Controlling the
process execution with fire and end conditions gives a
workflow creator a powerful tool to create very flexible and
advanced control structures. Moreover every process
attribute such as conditions, execution code etc. can be
accessed in every moment of the process lifetime, which
gives the opportunity to apply a changes to an already
working workflow instance if needed. The mentioned
features had been successfully implemented in working
prototype. It gives a foundation to achieve important features
like mass parallelism and flexible resource management.

The idea is very new, hence it presents a lot of
opportunities for future research. One of the research lines
concerns mass parallelism of processes and tasks executed
on many (thousands of) servers. This require developing and
implementing a process monitor and a task balancing tool.
Another research concerns a user-friendly API for dynamic
process changes. Proper modifications of notations such as
BPMN (Business Process Modeling Notation) [22] and
execution languages such as XPDL (XML Process
Definition Language) [23] and BPEL (Business Process
Execution Language) [24] could also be the subject of
research. There is also a need for preventing running
processes from undesired changes using such means as user
rights, semi-strong type checking, triggers and business
rules.

REFERENCES
[1] IBM developer works: Business Process Execution Language for

Web Services, ver. 1.1, May 2003.
[2] OMG. Business Process Modeling Notation (BPMN) specification.

Final Adopted Specification. Technical Report, 2006

[3] WfMC, WorkFlow process definition interface – XML Process
Definition Language. WfMC TC 1025 (2.1); October, 10, 2008

[4] Petri nets: http://www.petrinets.info/
[5] M. Reichert and P. Dadam. ADAPTflex: Supporting dynamic

changes of workflow without loosing control. Journal of Intelligent
Information Systems, 10(2), pp. 93-129, 1998

[6] C.A.Ellis. K.Keddara, GRozenberg. Dynamic change within
workflow systems. Proc. ACM Conf. on Organisational Computing
Systems (COOCS 95)

[7] C.A.Ellis. K.Keddara, and J.Wainer. Modelling workflow dynamic
changes using time hybrid flow. In Workflow Management: Net
based Concepts, Models, Techniques and Tools (WFM’98), 98(7),
Computing Science Reports, pp. 109-128. Eindhoven University of
Technology, 1998

[8] D.C.Ma, J.Y.-C.Lin, M.E.Orlowska. Automatic merging of work
items in business process management systems. Proc. 10th Intl. Conf.
on Business Information Systems (BIS2007), Poznań, Poland, 2007

[9] W.M.P. van der Aalst. Generic workflow models: How to handle
dynamic change and capture management information? Proc. 4th Intl.
Conf. on Cooperative Information Systems (CoopIS'99), Los
Alamitos, CA, 1999

[10] S.Sadiq, O.Marjanovic, M.E.Orlowska. Managing change and time in
dynamic workflow processes. Intl. Journal of Cooperative
Information Systems (IJCIS), 9(1-2), 2000

[11] S.Sadiq, M.E.Orlowska. Architectural considerations in systems
supporting dynamic workflow modification. Proc. 11th Conf. on
Advanced Information Systems Engineering, CAiSE99, Heidelberg,
Germany, 1999

[12] W.M.P. van der Aalst, A.H.M.Hofstede, B.Kiepuszewski,
A.P.Barros. Workflow patterns. Distributed and Parallel Databases,
14(3), pp. 5-51, 2003

[13] G. Vossen, M. Weske: The WASA Approach to Workflow
Management for Scientific Applications . In: Workflow Management
Systems and Interoperability. ASI NATO Series, Series F: Computer
and Systems Sciences, Vol. 164, pp. 145-164. Berlin: Springer 1998

[14] Impedance mismatch:
http://www.sbql.pl/Topics/ImpedanceMismatch.html

[15] F. M. Maggi, A. J. Mooij, and W. M. P. van der Aalst, User-Guided
Discovery of Declarative Process Models , 2011 IEEE Symposium on
Computational Intelligence and Data Mining, 2011

[16] SBQL: Stack-Based Query Language: http://www.sbql.pl/
[17] ODRA: Description and Programmer Manual.

http://www.sbql.pl/various/ODRA/ODRA_manual.html, 2008

[18] Groovy: A dynamic language for the Java Platform.
http://groovy.codehaus.org/

[19] Grails: http://grails.org/

[20] Javascript: http://www.w3schools.com/js/default.asp

[21] Apache Tomcat: http://tomcat.apache.org/

[22] BPMN: Business Process Modeling Notation: http://www.bpmn.org/

[23] XPDL: XML Process Definition Language:
http://www.wfmc.org/xpdl.html

[24] BPEL: Business Process Execution Language: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel

146Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

