
Specification of UML Classes by Object Oriented Petri Nets

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic

{koci,janousek}@fit.vutbr.cz

Abstract—The UML class diagram defines a basic architec-
tonic model of the system. Its behavior is then usually described
by other UML diagrams, such as activity diagrams, sequence
diagrams, etc. These models serve for the design purposes
and are automatically or manually transformed in the next
development stages, typically to the models with formal basis
or to implementation (production) environment. There is no
backward step allowing to investigate the system structure and
its behavior with the designed models. On the other hand, there
are approaches to system design combining design, testing,
and implementing stages into one development technique. One
of them uses Object Oriented Petri Nets (OOPN) as basic
modeling formalism. Nevertheless, OOPN lacks for advisable
architectonic view of modeled systems as it is offered by UML
class diagram. The paper is aimed at using UML class diagrams
for system architecture description and the OOPN formalism
for description of classes behavior. Since UML classes and
OOPN classes partially differs, we define formal transformation
between UML classes and OOPN classes.

Keywords-Class diagram; Object-Oriented Petri Nets; UML;
transformation.

I. INTRODUCTION

Design methodologies use models for system specifica-

tion, i.e., for defining the structure and behavior of developed

system. The most popular modeling language in software

engineering is UML [1]. It serves as a standard for analytics,

designers and programmers. But, own phraseology of UML

does not have enough power allowing to realize some

fundamental relationships and, in particular, rules, that are

branch of every modeled system. To model dynamic aspects

of the system, the designer usually describes them by static

diagrams in a design phase and he cannot make certain of his

partial ideas about the system behavior. Although the UML

language can be completed by extensions, e.g., OCL (Object

Constraint Language), making the system description more

precise, it makes the checking of models correctness or

validity by means of simulation complicated.

Therefore, new methodologies and approaches are in-

vestigated and developed for many years. They are com-

monly known as Model-Driven Software Development or

Model-Based Design (MBD) [2], [3], [4]. An important

feature of these methods is the fact that they use exe-

cutable models, e.g., Model Driven Architecture (MDA)

[5] and Executable UML [6], allowing to simulate models,

i.e., to provide simulation testing. The created models can

be (semi)automatically transformed to implementation lan-

guage (the code generation). Nevertheless, the result has to

be finalized manually, so it entails a possibility of semantic

mistakes or imprecision between models and transformed

code.

There are other similar methods that use the pure formal

models (e.g., Petri Nets, calculus, etc.) allowing to use

formal or simulation approaches to complete the design,

testing, and implementation activities. In comparison with

semi-formal models, formal models bring clear and under-

standable modeling and the possibility to test correctness

with no need for model transformations. The design method,

which is taken into account in this paper [7], [8], derives

benefit from formalisms of Object Oriented Petri Nets

(OOPN) [9], [10]. The paper is aimed at the class description

using Object Oriented Petri Nets (OOPN). Since the UML

classes and OOPN classes partially differ, we define formal

transformation between UML classes and OOPN classes and

formal constraints the classes and objects have to satisfy. The

goal is to keep an eye to the system at the architectonic view

with UML and at the behavioral view with the formalism of

OOPN.

The paper is organized as follows. First, we briefly

introduce used design methodology in Section III. Then

the formalisms will be described in Section IV. Section V

introduces relationships between UML classes and OOPN

classes and a mechanism of class transformations. The

proposed mechanism will be demonstrated with the example

in Section VI.

II. RELATED WORK

The are works that are similar to the proposed one. First,

the formalism of nets-within-nets (NwN) was introduced by

Valk [11] and Moldt [12], [13]. The formalism of NwN is

similar to OOPN, but OOPN fully support an integration

of formal description of objects and objects from target

environment, which facilitates, e.g., reality-in-the-loop sim-

ulation or usage of formal models into target application.

Second, there are tools merging UML and Petri nets, for

instance ArgoUML [14]. The difference is similar to the

previous situation—these tools allow to model systems using

361Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



combination of different formalisms, but do not allow to use

formal models in system implementation.

III. DESIGN METHODOLOGY

The design methodology [15] stems from the classic

approach of class identification and definition and extends

it to the new features. Primarily, there have to be found

essential objects of a modeled system and their relationships.

There we can successfully employ resources of UML such

us Use Case, Activity, and Class diagrams. Thus, the design

process comprises, among others, the identification of use

cases of the system and the specification of classes and

their behavior. To specify the behavior, the methodology

distinguishes roles and activity nets as a special kinds of

classes. These mentioned nets represent appropriate roles

and use cases in the system and are layered hierarchically.

Each role encapsulate activity nets and, moreover, each role

can encapsulate another role. It allows to get a new view to

the role based on the existing one.

Each role has its own set of allowed activities (activity

nets) described by OOPN. If anybody wants to perform the

activity, it has to ask the role for creating an instance of the

activity and then it can use this activity as a use case of the

system. The execution of nets are synchronized by means of

synchronous ports. The nested nets define synchronous port

for synchronization of executions and the net at higher layer

is controlled by calling these ports. This principle will be

demonstrated at the appropriate places in following parts.

IV. FORMALISMS

We will present a short introduction to formalisms and

models used in this section.

A. Structural and Behavioral Views with UML

The UML modeling [1] uses a notion of view. A view

of a system is a projection of the system on one of its

relevant aspects. Such a projection focuses on certain aspects

and ignores others. For our purposes, we mention only

two views. The structural view describes layout between

objects and classes, their associations and their possible

communication channels. As an example, we can mention

Class diagram. The behavioral view describes, how the

system components interact, and characterizes the response

to external system operations. For our purposes, we will not

use UML diagrams, but OOPN for behavioral view.

B. Formalism of OOPN

An Object Oriented Petri net (OOPN) is a set of classes

specified by high-level Petri nets. Formally, OOPN com-

prises constants CONST , variables V AR, net elements

(such as places P and transitions T ), class elements (such

as object nets ONET , method nets MNET , synchronous

ports SY NC, negative predicates NPRED and message

selectors MSG), classes CLASS, object identifiers OID,

and method net instance identifiers MID. We denote

NET = ONET ∪MNET and ID = OID ∪MID.

A class is mainly specified by an object net (an element of

ONET ), a set of synchronous ports and negative predicates

(a subset of SY NC and NPRED), a set of method nets (a

subset of MNET ), and a set of message selectors (a subset

of MSG) corresponding to its method nets, synchronous

ports, and negative predicates. Object nets describe possible

autonomous activities of objects, while method nets describe

reactions of objects to messages sent to them from the

outside.

An example illustrating the important elements of the

OOPN formalism is shown in Figure 1. There are depicted

two classes C0 and C1. The object net of the class C0

consists of places p1 and p2 and one transition t1. The

object net of the class C1 is empty. The class C0 has a

method init:, a synchronous port get:, and a negative

predicate empty. The class C1 has a method doFor:.

Synchronous ports are special (virtual) transitions, which

cannot fire alone but only dynamically fused to some other

transitions, which activate them from their guards via mes-

sage sending. Every synchronous port embodies a set of

conditions, preconditions, and postconditions over places of

the appropriate object net, and further a guard, and a set of

parameters. Parameters of an activated port s can be bound

to constants or unified with variables defined on the level of

the transition or port that activated the port s. An example

is shown in Figure 1, the port named get: having one

parameter o. This port is called from the transition t2 (class

C1) with unbound variable n—it means that the variable n

will be unified with the content of the place p2 (class C0).

Negative predicates are special variants of synchronous

ports. Its semantics is inverted—the calling transition is

fireable if the negative predicate is not fireable. The passed

variable cannot be unbound (the unification is impossible)

and the predicate cannot have a side effect. An example

is shown in Figure 1, the predicate named empty. This

predicate is called from the transition t3 (class C1)—it

means that the transition t3 will be fireable if the place

p2 (class C0) will be empty.

o

o := Rand next

t1

p2

p1

#e

C0 is_a PN

init: x
x

x

t1

x

return

x‘#e

o

get: o

o

C1 is_a PN

doFor: x

return

x

c := C0 new.

c init: x.

x t1

t2

c

c get: n

s := s + n
c empty

t3

c

s

c

ss
s

p1

p20

empty

Figure 1. An OOPN example.

362Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



V. RELATIONSHIP BETWEEN UML AND OOPN CLASSES

We will present a relationship between classes of UML

and OOPN and their reciprocal mapping.

A. Prerequisites

First, we define formal structures that will be used in next

definitions. In pure object systems, everything is understood

as an object, so that there is no requirement for defining

special kind of types. Nevertheless, for our purpose we de-

fine TY PE = CLASS ∪OCLASS ∪{ε}, where CLASS
is a set of domain (OOPN) classes, OCLASS is a set of

other types (e.g., classes from the production environment

or primitive types), and ε represents a special kind of type

meaning unspecified type. Let the symbol ⊳ determines a

relationship is of a type (is an instance of ). For example,

o ⊳ A means that the object (value) referred by the variable

o is an instance of a class A (is of a type A).

The class can be defined as a tuple (n, VC , IC , BC), where
n is a class name, VC is a set of instance variables, IC is an

interface (a set of operations), and BC is a behavior, usually

defined as a set of methods. The OOPN class be alternatively

defined as a tuple (n, PON , IPN , BPN ), where n is a class

name, PON is a set of places from the object net representing

instance variables, IPN ⊆ MSG is an interface, and BPN

is a behavior.

B. Interface

The interface of an OOPN class is defined as a subset of

message selectors IPN ⊆MSG, whereMSG =MSGM ∪
MSGS ∪MSGP . MSGM corresponds with method nets,

MSGS corresponds with synchronous ports, and MSGP

corresponds with negative predicates.

There are several ways how IC can be mapped to IPN .

Let fI be a non-specific mapping IC → MSGM . In this

case, each operation is mapped into a message selector

of a method net. This way is easy, but not sufficient for

design methods that use Petri Nets [15]. Therefore, the

operations from IC are classified into three groups: action

group IAct
C

⊆ IC performing some actions on the object;

test group IT
C

⊆ IC performing some tests on the object,

and access group IAcc
C

⊆ IC which sets or gets a value of an

instance variable. Analogically, let us define IAct
PN

, IAcc
PN

, and

IT
PN

for the OOPN class. Then, the second way of mapping

defines specific functions for appropriate group:

fAct

I : IAct

C → IAct

PN ,where I
Act

PN =MSGM ∪MSGS

fAcc

I : IAcc

C → IAcc

PN ,where I
Acc

PN =MSGM ∪MSGS

fT

I : ITC → ITPN ,where I
T

PN =MSGS ∪MSGP

The action and access groups are mapped into the same

subset of selectors of method nets and synchronous ports.

The synchronous ports can influence on the object net during

its firing (e.g., an object can be removed from or put into

places in an object net), so that the calling a synchronous

port from the interface has a direct effect in changing an

object net state. Consequently, it can cause an activity of

an object net. The negative predicate cannot have any side

effects from the definition, so it cannot be a part of action

and access groups. The testing group is mapped into a subset

of synchronous ports or negative predicates—it depends on

the positive or negative sense of the testing.

We can suppose, that the following statement holds for

the UML class: IAct
C

∩ IT
C
∩ IAcc

C
= ∅. It means, that each

operation is a member of only one group. For OOPN class,

we can say IAct
PN

∩(IAcc
PN

∪IT
PN

) = ∅. It means, that operations

from IAct
PN

cannot be members of other groups. Due to the

definition of synchronous ports, the same synchronous port

can serve for testing as well as for data accessing, so IAcc
PN

∩
IT
PN

not have to be ∅.

C. Instance variables and types

A mapping of instance variables is defined as an injection

fV : VC → PON , where PON is a set of places of the

object net. The consequence is that the variable is always a

multiset of values. If the only one value has to be assigned

to the place, as for an ordinary variable, it is possible to

define a constraint, see Section V-D. The place in OOPN

has assigned no type. But, for analysis and testing purpose,

it is possible to 1) assign a set of types the objects can be

of, 2) derive a set of types the objects are of from the model

analysis or simulation.

Let TP be a surjection TP : P → P(TY PE) assigning

a set of types to a given place. The type of the place can

be derived from the associations between classes, whereas

there is no necessary to define only one type (and, thus,

to allow all subtypes), but the set can be extended to next

types. Implicitly, each place has assigned a type ε.

D. Constraints

Although the OOPN classes bring more intuitive modeling

of behavior, they do not offer intrinsic definitions of invari-

ants, a state of the place, or type checking. Nevertheless,

there is very simple way how to define and test these

conditions by means of OOPN. The advantage of this

approach is that the designer has this feature under the

control. We will call these definitions as constraints. Each

such a constraint is defined formally and the definition is

followed by its implementation in OOPN showed in Figure

2.

The test of empty place is defined as ϕ(p) = ∄x ∈ p. It

is implemented by the negative predicate emptyPlace in

the OOPN formalism (see Figure 2). If there is no object in

the place, the condition is not satisfied and it implies, that

the negative predicate is evaluated as true.

The test of nonempty place is defined as ψ(p) = ∃x ∈ p. It

is implemented by the synchronous port nonEmptyPlace

in the OOPN formalism (see Figure 2). If there is at least

363Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



p

nonEmptyPlacexemptyPlace x

oneItemInPlace

x ~= y

x
y

twoOrMoreItemsInPlace

x ~= y

y

x

typeConsistency

self checkTypes: x

xcheckTypes: x

x isKindOf: A || 

x isKindOf: B || ...

Figure 2. Invariants and testing conditions.

one object in the place, the condition is satisfied and the

synchronous port is evaluated as true.

The test of at most one item (or the capacity of the place is

1) is defined as τ(p) = ∄x, y ∈ p : x 6= y. It is implemented

by the negative predicate oneItemInPlace in the OOPN

formalism (see Figure 2). If there is no object or only one

object in the place, the conditions are not satisfied and the

negative predicate is evaluated as true. In the other cases, it

is evaluated as false.

The test of two or more items is defined as ς(p) = ∃x, y ∈
p : x 6= y. It is implemented by the synchronous port

twoOrMoreItemsInPlace in the OOPN formalism (see

Figure 2). If there are at least two different objects in the

place p, the synchronous port is evaluated as true.

The test of type consistency is defined as θ(p,ET ) =
ψ(p) ∧ ∃x ∈ p : ∄t ∈ ET ∧ x ⊳ t. It is implemented by the

synchronous port typeConsistency and the associated

negative predicate checkTypes: in the OOPN formalism

(see Figure 2). If there is an object x in the place p and there

is no type t from the expected types set ET , the conditions

of the negative predicate are not satisfied and it implies the

negative predicate is evaluated as true. Then the synchronous

port is evaluated as true for the object x—it means that this

object x does not satisfy the expected types of the place p.

E. Behavior

The behavior BPN is not simply a set of methods because

the synchronous ports from interface can influence on the

object net during its firing, as mentioned in Section V-B.

The object net n ∈ ONET is defined as a graph of

Petri nets. The concrete behavior is usually provided by

its part—a valid subnet of the Petri net graph. So we

can define S(ONET ) as a set of all valid subnets of the

object nets. Then, the behavior BPN can be defined as

BPN ⊆MNET ∪ S(ONET ).

VI. EXAMPLE

This section will present the relationship between UML

and OOPN classes. To demonstrate this relationship, a very

small part of the PNtalk system [16] was chosen. PNtalk is

the tool intended to model and to simulate systems using

OOPN. We depict a functionality of the method look-up.

A. UML Class Diagram

By following the design methodology [7], [15], we have to

identify roles and use cases and classify them into classes.

In the example, the only one role of object is identified

and its use case lookFor (it does not strictly correspond

with the real system, but for demonstration it is sufficient).

These elements are classified into two classes, the class

Object for the role and LookFor for the activity of

method searching (the use case).

Figure 3. The class diagram of the method look-up.

The Object has attributes of the object name, the

object’s superobject (in the terms of inheritance hierarchy),

and the list of object’s methods. It offers methods for

getting values of attributes (see the stereotype <<Acc>>

in Figure 3) and methods for testing the object’s state (see

the stereotype <<T>> in Figure 3).

The LookFor has an attribute of the role the activity

is intended for. It offers a method for the look-up (see the

stereotype <<Act>> in Figure 3), a method for testing the

result of searching (see the stereotype <<T>> in Figure 3),

and methods for getting values (see the stereotype <<Acc>>

in Figure 3).

B. The class Object

Let us analyze the class Object. It contains three

instance variables, so that there will be three places in

the OOPN class, according to the function fV (Object) =
{name → name, methods → methods, superObj →
superObject}.
We can identify the following operations from

the interface: IAct
C

(Object) = ∅, IAcc
C

(Object) =
{getName, getMethod, getSuperObj}, IT

C
(Object) =

{hasSuperObj, containsMethod}. The class Object

offers no operations in IAcc
C

, so that there is

nothing to transform. There are three operations in

IAcc
C

(Object), that are transformed into synchronous ports:

fAcc
I

(Object) = {getName → name:, getMethod →
method:named:, getSuperObj → superObject:}.
The test group IT

C
(Object) offers two operations,

that are transformed into synchronous ports and

negative predicates: fT
I
(Object) = {hasSuperObj →

{superObject:, notSuperObject}, containsMethod →

364Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



methods

notMethodNamed: n method: m named: n(n,m)

name

name: nn

(n,m)

superObject

notSuperObject superObject: ooo
nil o ~= nilo ~= nil

Figure 4. The OOPN class Object.

{method:named:, notMethodNamed:}}. The syn-

chronous ports allow to get a value of instance variables

(using the unification principle) and, at the same time, to test

if the variable contains a given value. So, the test operation

is transformed usually into a pair of a synchronous port (it

allows also for accessing, so that it is a part is the access

group) and a negative predicate.

Finally, the interface of the OOPN class Object is

defined as follows: IAct
PN

(Object) = ∅, IAcc
PN

(Object) =
{name:,method:named:, superObject:}, IT

PN
(Object) =

IAcc
PN

(Object) ∪ {notMethodNamed:, notSuperObject}.
The graphic notation is shown in Figure 4.

C. The class LookFor

Let us analyze the class LookFor. It contains one in-

stance variable, so that there will be one place in the OOPN

class, according to the function fV (LookFor) = {role →
role}.
We can identify the following operations from the in-

terface: IAct
C

(LookFor) = {lookFor}, IAcc
C

(LookFor) =
{getMethod, getRole}, IT

C
(LookFor) = {found}. There

self role: o. 

o notMethodNamed: n.

o superObject: so.

an := Activity new for: so.

self role: o.

o notMethodNamed: n.

o notSuperObject: so.

self role: o.

o method: m named: n.

(an, n)

an lookFor: n.

(an, n)

an

an found: m. an failed.
mm

n
n n

m

lookFor: n n

role: r

r

failedfound: mm

p1
role

p3

p2

p4

p5

t2

t1

t3

t4 t5

t6

Figure 5. The OOPN class LookFor.

is one operation in IAct
C

(LookFor), which is trans-

formed into the synchronous port fAct
I

(LookFor) =
{lookFor → lookFor:}. There are two operations in

IAcc
C

(LookFor), that are transformed into the synchronous

ports fAcc
I

(LookFor) = {getRole→ role:, getMethod→
found:}. There is one operation in IT

C
(LookFor), which

is transformed into the synchronous port and the negative

predicate fT
I
(LookFor) = {found → {found:, failed}}

testing the positive or negative state of the search result.

Finally, the interface of the OOPN class LookFor

is defined as follows: IAct
PN

(LookFor) = {lookFor:},
IAcc
PN

(LookFor) = {role:, found:}, IT
PN

(LookFor) =
IAcc
PN

(LookFor) ∪ {failed}. The graphic notation is shown

in Figure 5.

D. Behavior

The behavior of the activity net LookFor can be divided

into three basic subnets (the subnet is described as a set of

vertexes, i.e., places and transitions): δ1 = {p1, t1, p2}, δ2 =
{p1, t2, p3, t3, p4, t4, p2, t5, p5}, and δ3 = {p1, t6, p5}. The
δ1 is a behavior for a situation if the method is found directly

in the object (see the transition t1). The δ3 is a behavior for a
situation if the method is not found directly in the object and

the object does not have an superobject (see the transition

t6). The δ2 is a behavior for a situation if the method is not

found directly in the object and the object has an superobject.

Then the new activity net is created for the superobject (see

the transition t2). Then the operation lookFor: is called (the

transition t3) and the result is tested (the transitions t4 and

t5). The places p2 and p5 store the state of the operation,

which can be tested by found: and failed. The synchronous
port found: serves even as an access operation for getting

the found method.

E. Constraints

Now, we demonstrate an usage of constraints in the class

definition. We chosen the place superObject from the class

Object. First, the place is initialized by a special value

nil representing an information that the object does not

have a superobject. If the object has an superobject, the

value nil is replaced. So there is one invariant: the place

superObject contains just one value. This constraint is

tested by ς(superObject). Second, the place can contain

only objects of a type Object. This constraint is tested by

θ(superObject, {Object}). Declaration of both constraints

in the OOPN class is shown in Figure 6a.

The constraints are realized by synchronous ports or

negative predicates. Their definition does not evocate any

activity or testing without its calling. Hence, it is possible

to define many constraints on the classes with no influence

on the system performance. In order to activate the tests,

they have to be called, as shown in Figure 6b. The tested

object is stored in the place p and the associated transitions

provide the appropriate tests. These transitions can be a part

365Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



superObject

nil

ς: twoItemsInPlace (Object): testTypeθ

p

o twoItemsInPlace

self warning: ’...’

o testType

self warning: ’...’

o o

a) constraints definition

b) constraints testing

Figure 6. The class Object: a) constraints definition and b) testing.

of any object nets (then the transition is fired immediately

the condition occurs) or any method net (then the tests are

provided on demand).

VII. CONCLUSION AND FUTURE WORK

The paper dealt with a formal approach to describe

system structure and behavior. Proposed approach extends

system modeling using formalism of Object Oriented Petri

Nets (OOPN) with selected UML diagrams. First, the

class diagram was taken into account. The approach stems

from UML classes for system structure specification, where

classes behavior is modeled by OOPN. Since the UML

classes and OOPN classes differ, the transformation tech-

nique has been introduced. The presented approach is a

part of the development methodology, which allows to use

formal models in all phases of system development. Formal

models should be used as basic design, analysis and also

programming means with a vision to allow for combining of

simulated and real components and to deploy models as the

target system with no code generation. Using UML classes

together with formalism of OOPN satisfies the development

methodology, because one-to-one assignability enables to

keep an eye to the system with UML and OOPN formalisms

and, together, to use OOPN models as a programming

means. In the future, we plan to complete transformation

mechanisms with class associations, extend modeling with

use case diagrams, and investigate simulation techniques for

an assistance in the system modeling.

Acknowledgment: This work has been supported by the

European Regional Development Fund in the IT4Innovations

Centre of Excellence project (CZ.1.05/1.1.00/02.0070), by

BUT FIT grant FIT-S-11-1, and by the Ministry of Educa-

tion, Youth and Sports under the contract MSM 0021630528.

REFERENCES

[1] J. Arlow and I. Neustadt, UML and the Unified Process:
Practical Object-Oriented Analysis and Design. Addison-
Wesley Professional, 2001.

[2] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development. Springer-Verlag, 2005.

[3] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi,
Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley, 2004.

[4] M. Broy, J. Gruenbauer, D. Harel, and T. Hoare, Eds., Engi-
neering Theories of Software Intensive Systems: Proceedings
of the NATO Advanced Study Institute. Kluwer Academic
Publishers, 2005.

[5] D. S. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing, ser. 17 (MS-17). John Wiley & Sons,
2003.

[6] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie,
Model Driven Architecture with Executable UML. Cam-
bridge University Press, 2004.

[7] R. Kočı́ and V. Janoušek, “System Design with Object
Oriented Petri Nets Formalism,” in The Third International
Conference on Software Engineering Advances Proceedings
ICSEA 2008. IEEE Computer Society, 2008, pp. 421–426.

[8] R. Kočı́ and V. Janoušek, “OOPN and DEVS Formalisms
for System Specification and Analysis,” in The Fifth Interna-
tional Conference on Software Engineering Advances. IEEE
Computer Society, 2010, pp. 305–310.

[9] M. Češka, V. Janoušek, and T. Vojnar, PNtalk — a Com-
puterized Tool for Object Oriented Petri Nets Modelling, ser.
Lecture Notes in Computer Science. Springer Verlag, 1997,
vol. 1333, pp. 591–610.

[10] R. Kočı́ and V. Janoušek, Simulation Based Design of Control
Systems Using DEVS and Petri Nets, ser. Lecture Notes in
Computer Science. Springer Verlag, 2009, vol. 5717, pp.
849–856.

[11] R. Valk, “Petri Nets as Token Objects: An Introduction
to Elementary Object Nets.” in Jorg Desel, Manuel Silva
(eds.): Application and Theory of Petri Nets; Lecture Notes
in Computer Science, vol. 120. Springer-Verlag, 1998.

[12] D. Moldt, “OOA and Petri Nets for System Specification,” in
Object-Oriented Programming and Models of Concurrency.
Italy, 1995.

[13] L. Cabac, M. Duvigneau, D. Moldt, and H. Rölke, “Modeling
dynamic architectures using nets-within-nets,” in Applications
and Theory of Petri Nets 2005. 26th International Conference,
ICATPN 2005, Miami, USA, 2005, pp. 148–167.

[14] Tigris.org, “ArgoUML: open source UML modeling tool,”
http://argouml.tigris.org/, 2012.

[15] R. Kočı́ and V. Janoušek, “Modeling and Simulation-Based
Design Using Object-Oriented Petri Nets: A Case Study,” in
Proceeding of the International Workshop on Petri Nets and
Software Engineering 2012, vol. 851. CEUR, 2012, pp. 253–
266.

[16] V. Janoušek and R. Kočı́, “Embedding Object-Oriented Petri
Nets into a DEVS-based Simulation Framework,” in Proceed-
ings of the 16th International Conference on System Science,
ser. volume 1, 2007, pp. 386–395.

366Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances


