
Automated Reuse of Software Reuse Activities
in an Industrial Environment – Case Study Results

Marcus Zinn
University of Plymouth

Plymouth, UK
marcus.zinn@plymouth.ac.uk

Klaus-Peter Fischer-Hellmann
University of Applied Science

Darmstadt, Darmstadt, Germany
k.p.fischer-hellmann@digamma.de

Ronald Schoop
Schneider Electric Automation

Seligenstadt, Germany
ronald.schoop@schneider-electric.com

Abstract - The reuse of prefabricated software units, such as
classes, components and services is one of the central topics of
software engineering and requires lot of knowledge and
experience. Instead of focusing on the knowledge management
processes and a resulting lifelong learning process of
individuals, this paper shows an experimental study based on
an approach of automation of knowledge based reuse activities.
This is done by employing a unified view of software
construction activities and software units used by these
activities in an industrial environment. It concludes that
software engineers of different industrial business units and
knowledge levels can be supported by performing different
software construction activities with only one approach, the
result of which avoids a long learning process for software
engineers.

Keywords-Automated software unit reuse; software reuse
activities; industrial environment; case study.

I. INTRODUCTION

The reuse of software units (like classes, components, or
services) requires professional knowledge or expertise. A
software unit is a technical unit, and can, therefore, be
defined like a software component in the context of this
paper:
 “A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition of third
parties”. [1]

Typically, software engineers have to acquire this
knowledge. In industrial environments, the knowledge
depends not only on the technical properties of a software
unit but also on the technical environment, technical topic

(e.g., embedded devices) and the business topics (e.g.,
Automation, Datacenters, Mines & Minerals). Today
knowledge about software units in a reuse context is a broad
field. As adequate description of knowledge in the context
of this paper following definition is used:

“... the capability of a man (or an intelligent machine) to
use information for problem-solving” [2]

Starting from this point of view a software engineer has
to have different kinds of information to perform software
reuse, as for example: (1) Information about technical
properties such as programming language, necessary

technical environment, and dependencies. A software
engineer has to know this information. [3]

(2) Information about interfaces and business context. A
software unit solves at least one problem. Typically, the
interfaces and provided data types are related to this fact. By
handling such a software unit a software engineer have to be
aware about this information. [3] (3) Information about the
reusable artefact. Today a reusable software unit is more
than a single binary file. Related information like test cases,
documentation, and versioning are also reusable and
sometimes implied. A software engineer has to deal with
this related information. [4] (4) Information about related
reuse concepts and processes. Software unit reuse is not
undertaken if a software engineer decides to perform reuse.
Many activities such as search, validation, integration,
transformation, and testing are part of a reuse process. A
software engineer must be aware of the existence of
different reuse processes and technologies.

As a result of these perspectives, reusing a software unit
may define as the use of different information about a
software unit and a given environment to perform a number
of reuse activities. The result is a reused software unit in a
software development project.

Based on the high number of different technologies,
business context, reuse artefact information and possible
reuse concepts or technologies, the amount of necessary
knowledge is high. This results in a problem for software
engineers. Each time they wish to reuse a software unit they
have to know about the relevant activities, and the related
knowledge and information. If this knowledge is missing
the reuse cannot be carried out successfully.

A solution may be the automation of reuse activities. As
shown in the automation industry, this requires the
development of supporting systems that are able to perform
activities for a user. By automating software reuse activities,
software engineers are able to perform these activities
without having acquired the complete knowledge. Such an
approach would reduce the problem of missing knowledge
and was discussed in the past [5] and [6] under the name of
“Service based Software Construction Process (SSCP)”.
However, the experimental proof of this concept is still
missing.

This paper describes the setup and the results of the first

331Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

phase of an experiment validating the concept of SSCP,
which is described by the following hypothesis:

“Automated Software reuse activities will reduce the
problem of missing knowledge in software unit reuse”

This work forms part of the research on a Service-based
Software Construction Process (SSCP) incorporating the
field of Software Unit Reuse. The goal of this research is to
identify a semantic model (about finding, adapting,
integrating, and deploying of software units) combined with
service technology that supports software engineers by
performing software reuse (finding, adapting, integrating,
and deploying) without having all needed information. The
paper contributes to the research area by demonstrating the
positive effect of automated software reuse activities, based
on software reuse knowledge on the problem of missing
knowledge in software unit reuse, in a real world
experiment.

After the problem statement in the next section, the
Section 3 shows the focused solution of this paper. This is
used in Section 4 to describe the experiment setup and
execution. Section 5 discusses the experiment results
followed by the conclusion section (Section 6)

II. THE PROBLEM OF REUSE IN MULTIPLE INDUSTRIAL

SOFTWARE DEVELOPMENT TEAMS

Typical aims of software reuse are to reduce costs and
time in development projects [6]. These are two reasons
why reuse of software units is an important part of software
development in industrial areas [5]. However, the use of
reuse in industrial projects does not guarantee a successful
project, a fact, which has been demonstrated by several
project studies in the past [6]. Typical problems are [6], e.g.
,: Misconceptions (reuse == repository, reuse == OO), No
non-reuse specific processes modified, No reuse specific
processes installed, No training/awareness actions, Reusable
assets produced but then not used, Multi contractor / Multi
company project, and No production of assets.

The last problem ‘No production of assets’ differs from
the others. This problem deals with the fact that a software
unit must be developed in order to be reusable [7]. If this is
not the case, the amount of required resources is decreased
by reuse [6][7]. Based on this statement, the effort to reuse
increases after the creation of a software unit and should
remain at the same value continuously for each reuse.

An internal study conducted by Schneider Electric [8]
indicates a complex but interesting picture. A set of around
50 software units (so-called ‘bricks’ in industry area) has
been created and widely reused. The average reuse number
is between 9 and 10. The distribution of reuse for different
bricks is shown in Figure 1. It starts with a minimum of 3
reuses (the point where typically a cost breakeven would
start compared to a non reuse approach) and spans up to 36
reuses.

Relating to the above mentioned fact ‘No production of

0

5

10

15

20

25

30

35

40

C2 C4 S7 S9 S2 S3 S4 C1 C3 S6 S8 S5 S1

Figure 1. Distribution of reusable bricks [8]

assets’ the study of Schneider Electric shows a dilemma of
reuse in industrial environments. A reusable software unit
creates additional reuse effort during the creation phase and
in reuse phases of each development team which reuses this
unit.

Creation Phase Dilemma (CPD): The creation of
reusable software includes different phases, which focus the
reusability. Typical examples are given by Software Product
Line approaches [7]: (1) Generalisation – The interfaces and
functions of a software unit must be generalised to increase
the reuse probability. (2) Integration – The software unit
must be built in a way that it can be integrate in the
development projects of other teams. (3) Support – The
software unit must be ‘equipped’ with additional reuse

artefacts, which support the reuse, e.g., reuses
documentation. Additionally, such a unit have to be
installed in a system, which provides access to it.
All of these steps require knowledge from an expert user.

Reuse Phase Dilemma (RPD): Each development team
has now different challenges for reusing such a software
unit. Typically, each team has to find and download the
software unit [8]. In the next steps, they have to understand
and integrate the unit into their development projects [7].
Sometimes software units must be adapted (transformed) for
that specific application [9]. Figure 2 shows also the typical
support and maintenance effort, which is created during
these steps. This effort is the results from the problem that
the development teams have not enough knowledge to
perform the described reuse steps.

CPD and RPD are typical theoretical examples discus-

Figure 2. Support and maintenance effort [8]

332Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

sions of problems. The reality creates two additional
dilemmas in the context of CPD and RPD. (1) Creator
dilemma (CD): The creation team is not available for
support at the time of reuse (people are loaded with other
projects or change team or organization) (2) Reuser
dilemma (RD): The reuse teams are different for each
development projects, and therefore the exchange of a
‘learning curve’ between the teams is not possible.

Figure 2 shows that each development team has nearly
the same problems and need nearly the same amount of
resources. The challenge of reuse based software
development in industrial areas is to reduce the sketched
dilemmas. The purpose of this study is to show that reuse of
a single software unit in multiple teams does not need this
amount of resource on both sites: creator and reuser.

III. CONTEMPORARY SOLUTIONS

Nowadays, there are different approaches for the above-
mentioned problems. The first approach is so called
information systems, which, in general, enable the storage
of information. This enables a user to search for
information. However, such systems are not designed
specifically to address the issue of transformation, but treat
the subject of information generally [10]. Generally, such
systems can be used to save information about an area of
knowledge in textual form, but without the context of
knowledge (see [10]). Each software construction activity
may be described in this form and may be stored in an
information system. The user is now faced with the problem
of obtaining this information and interpreting it correctly in
order to perform a successful transformation. Usually,
information systems are not intended to apply their stored
information automatically. But they can be extended for this
task [10].

Despite this lack of functionality, information systems
comprise a part of this article’s advocated solution.
Extensions of information systems are so-called Knowledge
Base System (KBS) [10]. Such systems are defined as:

 “… a method that simplifies the process of sharing,
distributing, creating, capturing, and understanding a
company’s knowledge.” [11]

Knowledge systems are not fundamentally designed for
the subject of software construction activities. Furthermore,
the authors of this article believe knowledge systems are
missing a fundamental property: the automated application
of stored knowledge for specific tasks. However, there is a
lack of systems that have asserted themselves and are not
focused on the typical software construction activities of
software units. The latter property 'application of
knowledge', is also a part of the solution discussed in this
article. Basically, the knowledge that is necessary for
perform an reuse activity can be stored in knowledge

systems.
The area of software development has currently seen a

number of interesting approaches dealing with specific
subjects of a software reuse activity. Most of them are
specific for one reuse activity type. For example there are
two existing approaches for the activity of software unit
transformation which are of interest: Model transformation
[12] and generative programming [13]. Both approaches
have existed for some time and form the basis for
approaches that are being used today. Both support software
engineers in generating reusable transformation models or
rules. However, additional knowledge is necessary to make
use of both approaches. This can be found in other activity
areas like deployment [14] and Integration [15]. For the
integration of software units into Integrated Development

Environments (IDE) very specialised solutions exits e.g.,
Packaging for Eclipse or Packaging for Visual Studio. But
these products are too specialised and require different kinds
of specialised knowledge from the user.

The above mentioned solutions have one common
problem. They assume a high learning curve. But learning
how to implement every existing technology or solution for
knowledge based problems cost too much time. It is
necessary to identify a solution, which is able to support
software engineers by performing software reuse activities
without a lifelong learning process.

IV. FOCUSED SCENARIO

The basic idea of the targeted solution is that an expert
applies knowledge (knowledge extraction) about the
software reuse activity of a specific software unit to a
system, which is able to perform the activity automatically
with a minimum of human interaction based on knowledge.
Users who do not have the necessary knowledge are now
able to perform this activity (knowledge injection). A
learning process for this specific activity and the specific
software unit is not necessary. Figure 3 shows this scenario.

The idea was presented in previous [5][6] where its
advantage was demonstrated for two reuse activity
examples: Integration of software units into integrated
development environments (IDEs) [15], and deployment of
software units into embedded devices [14].

Figure 3. Concept of the focused solution

333Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

For the experiment demonstrated in this publication the
software construction activities ‘Integration’ and
‘Transformation’ were chosen.

V. THE EXPERIMENTAL SETUP

A. Technical structure and infrastructure

The following section utilises this theoretical description
to create the basis for the activities of integration,
transformation and deployment of real models. The
experiment is performed by software engineers using these
models. Theses engineers try to perform different
transformation and integration software construction
activities with and without the support of the proposed
solution. The second step comprises a description of the
design and implementation of the experiment. These
descriptions are intended for the replication of the
experiment, and to ensure the sustainability of the
experiment for the study’s results. The setup of the
experiment is divided into three distinct areas:

(1) Description of the environment,
(2) Description of the technical structure of the

experiment, the necessary elements, and
(3) Description of the measurement process.

 Description of the environment: The experiment was

conducted at a German location of the company Schneider
Electric (Address Steinheimer Strasse 116, 63500
Seligenstadt, Germany). The company has participated by
means of employees at this site and from other international
locations using the company intranet. The experiment itself
was conducted in normal offices, which provide a
connection to this intranet source.

 Description of the technical structure of the
experiment, the necessary elements: The technical design
of the experiment is mainly a hardware and software
infrastructure. Figure 4 shows this structure in the
environment of the Schneider Electric intranet. Six
important elements are involved. The first element is the
intranet (1), which is used to connect the various other
elements of the technical structure. The second elements (2)
are the connected databases, including the software units
and complete information about the re-use activities. Four
databases are important for the experiment:

1) SOA4D: This is an open source repository software

unit with further information about device profiles,
including four web services. This repository is based
on the Forge technology and offers a web interface.

2) Prometheus SQL: this is a specially developed
Repository. It belongs to the approach and uses a

Microsoft SQL database and Microsoft SQL
database interface.

Figure 4. Experimental environment and setup

3) DDXML repos: This is a Schneider Electric internal
repository that contains XML elements describing
embedded devices. Communication with this
repository will be achieved via a Web service.

4) Brick Catalogue: This is, Schneider Electric internal
repository used by all Schneider Electric business
units containing software unit.

The third element (3) in the experiment’s design is the

Prometheus Server. This comprises the core of the technical
structure. The server maintains information about software
units and software construction activities in the connected
databases and makes this information available to the user.
Finally, the Prometheus Server performs requested activities
and presents the available results to users. The fourth
element (4) is a website through, which the user can
communicate with the Prometheus Server. The website runs
on a further server and contains a web application giving the
user the ability to query information from the server or to
perform reuse activities on the server. This web application
is named ‘Ecostruxure repository’ and for this experiment
the 4.1 version was used. The basic technology of the Web
application is Microsoft Silverlight version 4.0. The website
used the endpoint ‘/RepositorySearch.html’ and was
available within the company’s intranet. The fifth element
(5) of the structure is a VM-Ware server. This server is used
to fulfil the experiment’s required operating system
environment and runs as a virtual machine (VM) to make
this available. For the connection to the server VM-Ware
Workstation software with version 8.0 was installed on a
laptop (6). These elements are common office laptops used
within the company Schneider Electric. The laptops were
used with the VM-Ware Workstation software with version
8.0. In addition to the computer network environment, there
is the possibility to use telephone, internet, voice,
conversation, or literature. This is also reflected in the
working environment within the company’s sites.

334Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 5. - Basic experiment scenario

Figure 4 shows the scenario based on the experimental
setup. Users are able to view the test environment (operating
system, the virtual machine) from element (5) (VM-Ware
server) by using element (6) (office laptop). Within this test
environment, all necessary software applications are found
by means searching for information on the Internet, or
performing activities on the intranet, as well as various
means of communication usually employed by Schneider
Electric (FTP, Skype, TELNET). Furthermore, users can
now click element (4) (the website) to access and use the
Web application, which allows communication with element
(3) (Prometheus server). The Prometheus server
communicates with the databases that are marked as
element (2). Also the Prometheus server interacts with the
elements (5) (VM-Ware server) by using element (6) (office
laptop) (see Section III). Figure 5 shows this interaction
scenario.

Figure 6 shows the different measurement variants in the
experimental setup. This can be accomplished by three
different (technical) variants. The first is the purely visual
recognition of the user’s actions and does not require any
technical measure (called ‘Observer’). The second is to
record the user’s interactions with the virtual machine as
video recording (called ‘Recording’). For this, the installed
VM Ware Workstation software with version 8.0 is used,
which already includes the feature of video recording. The
third variant is to log the information (called ‘Logging’).
This is done in three elements of the experiment’s design:
 Create the user data in virtual machines. These data can

be analysed after the experiment.
 The Prometheus Server attracts all incoming server

requests and performed activities. This information can

Figure 6. Overview measurement utilities

also be queried after the end of the experiment and used
for analysis.

 The data and information are generated and stored in the
databases through the interaction of the user.

Description of the technical setup for the measurement
and the measurement process itself:
(1) Experimental groups and scenarios: There are a total
of three experimental groups: the first group (1) consists of
experts for one particular software unit. These individuals
receive expert status either because they have created this
software unit or are well acquainted with its use. The
selection of experts is performed via the Internet from
public data of Schneider Electric software units. These data
also contain the contact person responsible for this software
unit. These people are also asked directly whether they have
created the software unit and / or have used it frequently.
Altogether the study requires 5 experts. The second
experimental group (2) consists of 10 software engineers
with the following characteristics: first, the people should
actively participate in the software development of a project
at the time the experiment takes place. On the other hand, it
is important that these people do not have the same expert
status as the previously selected 5. The last criterion is that
these people are neither expert in the software unit nor in the
technology standard development platform for this unit.

The third group (3) is similar to the second experimental
group and consist of 10 participants. Therefore, the same
rules used for selection of the second experimental group
apply.

Note: In this the next phase of the experiment, the total
number of participants will be increased up to 30 per group.

Procedure: In principle, there are 3 different experimental
groups required to perform seven scenarios. Table 1 shows
the different scenarios related to the different groups.

TABLE I. SCENARIOS OF THE EXPERIMENT

Scenario Description / (GroupID)
(1)
Observation
of experts

The experts from experimental group (1) performs
transformation and / or integration activities
(manually). / (1)

(2) Collection
of software
units and
activities

Collection of software units and activities: In this
scenario, each of the selected experts from
experimental group (1) insert the knowledge about
the unit and the specific transformation and, or
integration activity into the Prometheus Server./ (1)

(3)
Prometheus
Validation

The experts perform the same activities as in
scenario (1) but now with Prometheus Server
support. The expert validates the results. / (1)

(4) Reuse
activities with
Prometheus

Participants from the group (2) are asked to take
over one transformation and integration task. They
have to use the Prometheus Server for this purpose.
/ (2)

(5) Reuse
activities
without
Prometheus

In this scenario, the people placed in the
experimental group (3) are asked to take over a
transformation or integration task. Activities are
repeated so they correspond to those of the experts
from scenario (1), The Prometheus Server is not

335Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

used / (3)
(6)/(7)
Validation of
the results

Validation of the results: This scenario will test the
results of the experimental group (2) and (3) by the
experts for the respective software unit from
experimental group (1) and (2). / (1)

 (2) Measurement

In the following section, the methodology of
measurement of the experiment will be explained. This
includes the definition of the measurable variables and the
process of measuring.

Definition of variables: The results of the measurement
procedures are stored in the form of variables. In addition,
each variable is assigned a unique name within the
experiment. In this section, all variables are named and
briefly presented. Table 2 shows the different measurable
variables in the different scenarios.

TABLE II. OVERVIEW OF VARIABLES

Sc. ID
/ ID

Name: Description

(1,3,4,
5)/
(A)

ActivityDuration: How long does it take an expert/user
to perform an activity? This variable contains a value that
expresses how long the expert takes for the preservation
of the task.

(1,3,4,
5)/(B)

TaskAnalysisActivityDuration: How long did it take the
expert/user to analyse the task initials? This variable
describes the time between being presented with the task
and the start of work on the computer.

(1,3,4,
5)/(C)

TaskActivityDuration: How much time does expert/user
spend working on the computer in order to perform the
activity? This variable describes the time between the start
and completion of work on the computer activity.

(1,3,4,
5)/(D)

ActivityCarriedOutSuccessfully: Has the expert/user
completed the activity successfully? This variable
represents whether an activity was successful or not.

(1,3,4,
5)/(E)

UseKnowledgeSources: What kind of knowledge sources
did the expert/user use to perform the activity? This
variable describes the sources consulted to perform the
activity such as the Google phone or contacting another
expert for information.

(1,3,4,
5)/(F)

MadeSubTasks: What sub tasks did the expert undertake
in order to perform an activity?

(2)/(G) EnterUnitDuration: How long does it take the user to
enter all necessary information about a software unit into
the Prometheus system? This variable contains a value of
the expert testimony of how much time was needed from
commencing work on the computer to enter the
information of its software unit.

(2)/(H) EnterActivityDuration: How long does the expert take
to enter an activity for a software unit in the Prometheus
system? This variable contains a value of the experts’
statement of how long since commencing work on the
computer it took to input the specific activity of entering
the activities information.

(2)/(I) TotalInputDuration: How long does it take the expert to
enter all the information into the Prometheus system? This
variable contains a value of expert testimony on how long
the whole process of entering all their data took.

(2)/(J) SuccessfulEntry: Could the expert enter all the important
information? This variable tells us whether an expert
could enter all the information about a software module
and complete activities in the system.

(2)/(K) MadeSubTasks: What sub tasks did the expert undertake
in order to perform an activity?

(3,6,7)/
(L)

ResultIsValid: Is the result of an activity conducted by
Prometheus or without equivalent to the result of the same
activity conducted by an expert? This variable indicates
whether the expert considers the result of activities
performed by Prometheus or without it as good as the
result, which was achieved through manual execution of
the same activity.

Measurement Execution Process: In Figure 6, three
variants of measurement used to measure the variables were
introduced. The following section shows, which of these
techniques are used for the different variables.

In Scenarios (1), (3), (4), and (5), seven measurements
are raised per cycle: (A) The variable ‘ActivityDuration’ is
measured by the observer (measurement variant 1). Here,
the observer measures from the time, which he assigns the
task to the expert/user up to the time the expert says the task
was completed. The time is recorded in whole minutes. (B)
The variable ‘TaskAnalysisActivityDuration’ is determined
by the interaction of measurement variant (1) and (2). Here,
the observer notes the time at which the task is assigned to
the expert/user (see variable ‘ActivityDuration’). The end of
this phase can be measured at the time when the expert
commences an activity on the virtual machine. The time is
recorded in whole minutes. (C) The variable activity of
’TaskActivityDuration’ determines the interaction of the
measurement variants (2) and (1). The point in time at
which the activity is started on the virtual machine is
measured. The endpoint is the time the expert/user tells the
observer that the task was completed. The time is recorded
in whole minutes. (E) The variable ‘UseKnowledgeSources’
is determined by the measurement variants (1) and (2). The
observer notes all information coming from the expert’s
behaviour that cannot be measured by measurement variant
(2). The type of measurement (2) also used to analyse,
which sources of information accessed through the use of
the virtual machine. Typically such sources can be classified

by using source names and the type of resource, e.g., (1) co-
worker, telephone, and (2) website, Google (Web browser).
(D) The variable ‘ActivityCarriedOutSuccessfully’ is
measured by measurement variant (1). The expert/user is
asked after the completion of the activity if he has done this
successfully. The variable can only be set to yes or no. (F)
The variable ‘MadeSubTasks’ is determined by the
measurement variants (1) and (2). Here, the observer notes
the progress of the entire task. This can be done based on
the recording of the activities in the virtual machine itself,
which is operated by the observer both on the external
(outside the virtual machine) and internal (within the virtual
machine) view. The observer here notes, which activities

were measurable, including their start and end time, e.g.,
starts 10:41 expert uses web browser.

In scenario (2), five measurements are made: (G) The
variable input ‘EnterUnitDuration’ determines the
measurement variants (1) and (3). The website (see Figure

336Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

4) logs every activity of the user. Accordingly, the entry of
the website is the start time and represents the initial value
used for the measurement. To avoid error, the observer
compares measured time with the automatically measured
time. The end time is determined by the expert’s signal
indicating that he/she has to finish the task. The observer
notes down this time. Time is measured in whole minutes.
(H) The variable ‘EnterActivityduration' is measured by the
measurement variant (3) on the Prometheus Server (see
Figure 4) and the website (see Figure 4). The server and the
website recognize the time of a user’s request. Each

measurement contains the time and the names of tasks, e.g.,
10:00:00 user creates a new software unit. (I) The variable
‘EnterActivityDuration’ is measured by the measurement
variant (1). The observer records the start time point at
which he/she hands over the task to the experts. The end
time is determined by the expert’s signal that he/she has
finished the task. The observers take note of this point in
time. Time is measured in whole minutes. (J) The variable
‘SuccessfulEntry’ is measured with the measured variants
(1) and (3). Firstly, the expert must inform the observer that
he/she was able to enter all information into the system.
Secondly, the Prometheus server writes all values into the
database. The variable can only be set to yes or no. (K) The
variable ‘MadeSubTasks’ is measured in the same way than
in Scenario (1,3,4,5)/(F).

In scenarios (4), (6), and (7) one measurement is made:
(L) The variable ‘ResultIsValid’ is captured by the
measurement variant (1). The expert examined the results of
the performed activity from the scenarios (3), (4), and (5)
with the same activity carried out in scenario (1). It tells the
observer whether the result has the same value and is usable.
The variable can only be set to ‘yes’ or ‘no’.
Definition of Software units and reuse activities: The
different scenarios 1-7 are performed in this experiment
with the software units shown in Table 3.

TABLE III. USED SOFTWARE UNITS

Name /
ID

Description Tec/ Unit
Type /
Repository

Integration effort /
Transformation
effort

DPWS /
SU1

Enable devices
for WS*
profiles

Java /
Component /
SOA4D

Advanced into
Eclipse/Advanced
using IKVM

DPWS /
SU2

Enable devices
for WS*
profiles

C++ /
Component /
SOA4D

Advanced into
Visual Studio /
None

CWS
/ SU3

Webservice for
data exchange
of business
units

Soap-C# /
Webservice /
Prometheus

Normal into Visual
Studio / Advanced
using SVCUtil

CWS
/ SU4

Webservice for
data exchange
of BUs

Java-Android
/ Class /
Prometheus

Advanced into
Eclipse / Advanced
using Java2SOAP

Code
Signing
/ SU5

Webservice for
Code signing

Soap-C# /
Webservice /
Brick Repos.

Normal into Visual
Studio / Normal
using SVCUtil

Table 3 shows that five integration and four
transformation activities are connected with the five
software units. The integration activities typically focus
integration of software units on the most common IDEs
(Visual Studio and Eclipse). The transformation activities
include the transformation of software units on three
different transformation tools (IKVM [16], SVCUtil [17]
and WSDL2Soap [18]

VI. EXPERIMENT RESULT DISCUSSION

A. Experiment Results

The experiment’s results were collected in the way
described in the previous section. The next step is to discuss
these results. First of all, the result of one software unit with
a transformation activity will be discussed in more detail.
After this analysis, the results of all software units will be
summarised and compared. For this purpose, two
perspectives were used for analysing the summarised
results: Comparing different groups from the perspectives of
(1) activity execution and (2) use of knowledge.

1) Detailed result example

One of the measured software unit is the ‘Device Profile
for WebServices’ Java stack, which enables Java based
embedded devices to handle mutable WS* Protocols like
WebService discovery. The transformation task for this
software unit was to use IKVM transformation tool to
transform the complete DPWS Java Stack into a C# Stack.
This task requires knowledge about the DPWS Java Stack
(especially the references of the 20 different JAR Files), the
.NET Platform and experience in using IKVM. This
scenario was taken from a real development scenario of
Schneider Electric in the European research project for
industrial automation SOCRADES [19].

Expert scenarios (1-3): Scenario 1: In the first scenario,
the Expert was measured by performing this task manually.
The main result is that the experts needs 14:23 min.. In
Scenario 2 it was measured how long the expert needs to
insert the software unit and the transformation activity. The
initial creation of the software unit into Prometheus needs
12:06 min. and the transformation needs 38:03 min.. In
Scenario 3, the expert was observed by using the
Prometheus Server to perform this task. He needs 2:04 min.
to perform the task and received a 2:56 min. training into
the system (this training will only be necessary once per
expert). The expert validated the result as a correct
transformation.

Non-expert scenarios (4-5): In Scenario 4, five non-
experienced software engineers of the industrial areas of
Building, Power and Industry (Automation) did the task
without support of the Prometheus Server.

337Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 7. Results of the different groups for DPWS transformation
ctivities

The different participants need 42 min., 90 min., 77 min., 69
min., and 104 min. (rounded off). Thus, the average time
was 76 min. (rounded off). The expert validates all final
results as valid. In Scenario 5 the participants of group (3)
use Prometheus to perform the task. The measured
introduction task performing times (in minutes) were
(3:03/2:23), (2:56/2:10), (2:33/1:59), (2:45/2:22), and
(2:43/2:23). The average time was (2:48/2:18). The expert
validates the results as correct results. Figure 7 summaries
the results. The validation in Scenario 6 and 7 are not shown
in Figure 7 because of all results were valid. Additionally to
the measured time the kind of used knowledge resources
were measured. Only online websites, downloaded
documentation, and the expert were used as knowledge
resource. The expert in scenario 1 uses only one knowledge
resource (an older development project) 4 times. By adding
the necessary information into the Prometheus system of
Scenario 2 the expert only uses one knowledge resource (the
introduction). In Scenario 3, the experts need only the
introduction to perform the activity. The non-expert group
(2) of scenario 4 needs multiple resources multiple times.
Figure 8 shows the used number of knowledge resources in
each scenario (average values).

Figure 8. Overview of number of used knowledge resources

The non-expert group (3) of scenario 5 needs only one
knowledge resource (the introduction).

2) Comparing of different groups from the perspective
of activity execution
Figure 9 and Figure 10 show the results of the three groups
in transformation and integration activities measured in the
Scenarios 1, 3, 4, and 5. The different results of the software
units are summarised by using this type of view. In the
context of transformation, Figure 9 demonstrates a clear
separation of the different groups. Starting with the Expert
Users without Prometheus support (Expert, Scenario 1) as
the 100% comparison line, the

Figure 9. Results of the different groups for transformation activities (5
software units)

measured values of the second group (User with Prometheus
support – User (P)) are significantly decreased. This fact is
mentioned especially in the variable ‘ActivityDuration’ (1).
On the other hand, the Variable ‘TaskAnalysis-
ActivityDuration’ (2) is much closer to the comparison line.
As a result, Prometheus Users are able to perform a specific
activity much faster than an expert user or a Non-Expert
user. In comparing the two variables of the comparison line
with user (without Prometheus support User) Figure 9
shows a further significant difference. Both variables of the
user are decreased. The normal user needed much more time
to fulfill the given tasks. But this difference changes by
analyzing the results of users (with Prometheus support).
Compared to the expert with Prometheus support this group
has no significant differences, but compared to the expert
group without Prometheus support the measured values
decrease significantly. In Figure 9, the two lines of
Prometheus supported users are more or less congruent.

As a result of this consideration, it is clear that the
Prometheus approach creates a positive effect for Non-
Expert User and even for expert users.

Figure 10 shows the measured values for the integration
activity. The first interesting point is the general comparison
to the results shown in Figure 9. Both pictures show nearly
the same result, but the positive characteristics are not so
distinct. Only the users (without Prometheus support)
performing the integration activity need less time (compared
to the 100% comparison line) then the same group was

338Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

performing the transformation activity. That both results a
nearly the same indicates that the used approach supports
software engineers by performing these kinds of activities.

Figure 10. Results of the different groups for integration activities

All users (experts and non-expert user) were able to perform
the given activities correctly and needed less time than the
expert user (without Prometheus support).

3) Comparing of different groups from the perspective
of the use of knowledge

In Figure 9 and Figure 10, it is also mention that most of
the expert users (80%) (without Prometheus support) did not
use a measurable knowledge base. The other 20% used
exactly one knowledge base. All experts or users (with
Prometheus support) only used the knowledge base that was
the documentation of the Prometheus system. The users
(without Prometheus support) performing both the
transformation and the integration activity used much more
knowledge bases. The most used knowledge base was the
internet.

B. Impacts on industrial reuse

In applying the aforementioned approach to industrial
environments faced with both creator and reuse phase
dilemmas, and therefore no knowledge transfer, leads to the
following effect, shown in Figure 11: The effort for the
creation team increases by adding the software unit
information into the Prometheus system. The theoretical
very useful but missing support effort is mostly replaced by
the effort for this ‘knowledge injection’.

Figure 11. Effects on MTwKIE

The major effect is visible at the reuse site. Even without or
just less support, the effort for reuse for single users or team
is significantly reduced. In the case of this experiment the
reduction of the measured variable are ~38,5% in the
transformation activity case compared to the expert user
(perform manually) (see Figure 9), ~ 73,21% in the
transformation activity case compared to the non-expert user
(perform manually) (see Figure 9), ~38,5% in the
integration activity case compared to the expert user
(perform manually) (see Figure 10), and ~ 73,21% in the
integration activity case compared to the non-expert user
(perform manually) (see Figure 10). This is mainly based on
the fact, that expert and non-expert Prometheus users do not
spend much time in searching a software unit and
preparation/execute a specific reuse task. The same positive
effect is expected in the reuse of a software unit multiple
teams of different business units. The approach detailed in
this paper has two positive effects. First of all, the solution
is sustainable for all teams as it is available to all once it has
been stored in the system. This is shown by using different
participants from different business units. As consequents,
all teams will obtain the same result and the same effects
described in Figure 9 and 10. Therefore, the way of reuse
planned in the creation phase is more sufficient. The second
positive effect is the adaptation towards knowledge created
in the “reuse” steps. If a team recognizes an alternative way
to perform the reuse activities it is able to store this
knowledge in the system. This requires training for the use
of the Prometheus system, but other teams are now able to
decide, which kind of transformation rule they want to use.
(Reuser is Creator) Figure 11 shows both positive effects.

VII. CONCLUSION AND FUTURE WORK

The reuse of a software unit consists of different reuse
activities. To perform such activities knowledge is required.
Especially in an industrial environment this constitutes
problem for a single team and in different teams of different
business units. This paper shows the structure and result of
an experiment aiming to demonstrate that it is possible to
automate chosen reuse activities so that less experienced
users are able to perform the activities. By comparing a
group of software unit experts, a group of less experienced
users within a normal development environment, and a
group of less experienced users with the support of the
focused automation approach following results are obtained:
(1) It is possible to automate reuse activities. Expert users
store their knowledge into a system, which is then able to
perform the activity (knowledge extraction). (2) Less
experienced users who are normally unable to perform such
activities are now able to do this. (knowledge injection) (3)
Analysing of the results demonstrated that this approach has
positive effects for reuse of software units in industrial

339Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

environments. (4) With automated support, a single team
can decrease their reuse costs from the first time of reuse
and thereby make it sustainable. Users utilizing the new
approach are able to perform an activity faster than the
software unit expert because the system provides the
complete environment for the activity based on the expert
users’ knowledge. (5) By reusing the expert’s knowledge,
the variations are minimized. All teams use the same
activity based on the same knowledge. (6) New automated
activities are sustainable because the activity will be
changed or a new one is stored in the system, therefore it
can be used in each new reuse step of each team. Next to the
positive effects, this paper’s experiment is limited to two
software reuse activities: Transformation and Integration.
These activities were chosen because they require different
amount of knowledge about tools, environment, and
software units. But there also other reuse activities like test,
validation, and deployment. Especially for deployment, for
example on embedded devices, knowledge is required, but
not all activities may be automated completely. The next
step is the phase two of the experiment. The number of
software units is raised to 10 and the number of
inexperienced software engineers in the groups 2 and 3 is
increased up.

Next to the fact that the results have to be confirmed by
repeating the experiment with new software units and other
software engineer the process has to be proofed by other
companies. For that purpose the process of the experiment
has to be formulated in a formal way. Additionally the
following aspects are interesting for the future.

Horizontal extension of the research field: The concept
presented in this work was demonstrated by using the
example of integration and transformation. But, much more
than the activities made use of in this experiment still exist
in the area of software unit reuse. First, standard activities
exist such as testing and validation of interfaces. These
activities usually have a high degree of automation.
However, these approaches are lacking in one approach,
which is used to represent knowledge uniformly and then re-
applied to the different existing automation systems. The
scientific task is thus to consider whether the approach
presented in this work can also be used for other horizontal
activities. On the other hand, technological progress can
ensure new activities in the area of reuse. The scientific
problem in this case is to check whether the approach
presented in this work is can also be used for new activities.

VIII. REFERENCES

[1] I. Sommerville, Software engineering, Pearson, 2011.
[2] F. Bobillo, M. Delgado, and J. Gómez-Romero,

“Representation of context-dependant knowledge in
ontologies: A model and an application,” Expert Systems with
Applications, vol. 35, no. 4, pp. 1899–1908, 2008.

[3] N. Juristo and A. M. Moreno, “Reliable knowledge for
software development,” IEEE Software, vol. 19, no. 5, pp.
98–99, 2002.

[4] R. Oliveto, G. Antoniol, A. Marcus, and J. Hayes, “Software
Artefact Traceability: the Never-Ending Challenge,”, pp.
485–488, 2007.

[5] M. Zinn, “Service based software construction process,” in
Proceedings of the Third Collaborative, Plymouth, UK, pp.
169–184, 2007.

[6] M. Zinn, G. Turetschek, and A. D. Phippen, “Definition of
software construction artefacts for software construction,” in
In proceedings of the, pp. 79–91, 2008.

[7] J. Bosch and P. Bosch-Sijtsema, “From integration to
composition: On the impact of software product lines, global
development and ecosystems,” Journal of Systems and
Software, vol. 83, no. 1, pp. 67–76, 2010.

[8] V. C. Garcia, E. S. de Almeida, L. B. Lisboa, A. C. Martins,
S. R. L. Meira, D. Lucredio, and R. P. de M. Fortes, “Toward
a Code Search Engine Based on the State-of-Art and
Practice,”, 13th Asia Pacific Software Engineering
Conference (APSEC’06), Bangalore, India, pp. 61–70, 2006

[9] T. Mens and P. Vangorp, “A Taxonomy of Model
Transformation,” Electronic Notes in Theoretical Computer
Science, vol. 152, pp. 125–142, 2006.

[10] R. Stair and G. Raynolds, Principles of information systems,
10th ed. Boston Mass.: Course Technology Cengage
Learning, 2011.

[11] T. Davenport, Working knowledge : how organizations
manage what they know, Harvard Business School Press,
2000.

[12] A. Kleppe, MDA explained : the model driven architecture :
practice and promise., Addison-Wesley, 2003.

[13] K. Czarnecki, Generative programming : methods, tools, and
applications., Addison Wesley, 2000.

[14] M. Zinn, K. P. Fischer-Hellmann, and R. Schoop, “Reuseable
Software Unit Knowledge for Device Deployment,” presented
at the Entwurf komplexer Automatisierungssysteme (EKA
2012), 2012.

[15] M. Zinn, K. P. Fischer-Hellmann. “Reusable Software Units
Integration Knowledge in a Distributed Development
Environment,” International Workshop on Software
Knowledge (SKY'11), pp. 24–35, 2011.

[16] J. Frijters, “IKVM,” IKVM.NET Home Page, [Online],
http://www.ikvm.net/. [retrieved: 09,2012].

[17] Microsoft, “ServiceModel Metadata Utility-Tool,”[Online],
http://msdn.microsoft.com, [retrieved: 09,2012].

[18] Apache, “WebServices - Axis.” [Online]. http://ws.apache.org
/axis/java/user-guide.html, [retrieved: 09,2012].

[19] Socrades, “Socrades Website”, [Online], http://www.socr
ades.org [retrieved: 09,2012].

340Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

