
Adding Support for Hardware Devices to Component
Models for Embedded Systems

Luka Lednicki, Mario Žagar
Faculty of Electrical Engineering and Computing

University of Zagreb
Croatia

{luka.lednicki, mario.zagar}@fer.hr

Juraj Feljan, Jan Carlson
Mälardalen Real-Time Research Centre

Mälardalen University
Sweden

{juraj.feljan, jan.carlson}@mdh.se

Abstract—Component-based development promises many
improvements in developing software for embedded systems, e.g.,
greater reuse of once written software, less error-prone
development process, greater analyzability of systems and shorter
time needed for overall development. One of the aspects
commonly left out of component models is communication of
software components with hardware devices such as sensors and
actuators. As one of the main characteristics of embedded systems
is the interaction with their environment through hardware
devices, the effects of this interaction should be fully included in
component models for embedded systems. In this paper we
present a framework that enables inclusion of hardware devices
in different phases of the component-based development process,
including system design, deployment, analysis and code synthesis.
Our framework provides a way for software components to
explicitly state their dependencies on hardware devices, promotes
reuse of software components with such dependencies and
provides a basis for including hardware devices in analysis of
component based embedded systems. We evaluate the feasibility
of our approach by applying it to the ProCom component model.

Keywords – Component-based Development, Embedded Systems,
Hardware devices, platform modeling

I. INTRODUCTION

Embedded systems are getting increasingly important in
our daily lives, while at the same time getting more complex.
Additionally, larger portions of functionality of embedded
systems are being put into software, rather than hardware,
which results in increased software complexity. Parallel with
this trend there is a growing demand on software to be robust,
reliable, flexible, adaptable, etc., while shorter time-to-market
is desired. One of the approaches to tackle these issues is
component-based software engineering (CBSE). CBSE
promotes building systems from prefabricated software
components, instead of coding from scratch, promising to
lower time-to-market, manage complexity and produce
software of higher quality. CBSE has proven to be successful
in the domains of desktop- and Web applications and
enterprise systems. However, embedded systems introduce
some domain-specific issues (e.g., safety-criticality, real-time
requirements, interaction with the environment), and to fully
take advantage of the CBSE potential these must be addressed
[1].

In this paper, we focus on enriching existing component
models with support for proper handling of the interaction
between a software system and its environment, the physical
world that the system is embedded into. This interaction is
done using hardware devices, such as sensors and actuators.
The communication between software and hardware devices
can be as simple as writing a value to a hardware pin or port,
or as complex as invoking a service on a remote device. In all
cases, this interaction with the environment implies that
software components are dependent on the hardware or
middleware used to communicate with the environment. As
this affects reusability and analyzability of software
components, failure to adequately express these dependencies
can hinder the use of a component-based approach in the
embedded system domain.

To address the problem of interaction between software
components and hardware devices, we have investigated what
is needed to properly integrate such devices into software
component models for embedded systems, and devised a
framework that allows us to describe hardware devices and
hardware platforms that we can deploy software systems on,
software components dependent on hardware devices. The
framework also allows describing a mapping between
hardware devices, hardware platforms and software
components. Our approach has been developed in the context
of ProCom component model [2], but is also applicable to
other component models.

In Section II, we describe different ways in which
hardware devices can impact the use of a component-based
approach when developing software systems for the embedded
domain. Section III provides an overview of how interaction of
software components with hardware devices is managed in
some of the existing component models. Our approach to
inclusion of hardware devices in component models is
presented in Section IV. Section V gives an example of how
our approach can be used in developing software systems that
interact with hardware devices, and Section VI concludes the
paper.

II. EFFECTS OF HARDWARE DEVICES ON SOFTWARE COMPONENT
MODELS

Dependencies of software components on hardware
devices, as well as the communication between hardware and

149

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

software impact all phases of a component-based development
process. In this section we discuss these impacts, in order to be
able to address them accordingly. We consider a component-
based development process suitable for developing embedded
systems, and comprising the following phases: design,
deployment, analysis and synthesis. The phases are not strictly
sequential and can be iterative.

In the design phase, a developer specifies models of (i) the
software layer of the system being developed, as a composition
of components, and (ii) the hardware layer, as a composition
of the hardware devices the system will be deployed on. The
former requires a means to manage interaction with hardware
devices in the software layer. The latter requires a means to
describe the actual instances of hardware devices and how they
are connected to a particular instance of a hardware platform.

In the deployment phase, a mapping between the software-
and hardware layers is defined. In other words, the software
components are allocated to the underlying hardware that will
execute them. In this phase we must be able to explicitly
identify the dependencies of software components on the
hardware devices, in order to ensure that the hardware targeted
for deployment satisfies these dependencies.

Embedded systems have particularities such as limited
resources and real-time requirements, which increase the
relevance of extra-functional properties compared to, for
example, desktop- and Web applications. In order to guarantee
constraints on extra-functional properties, extensive analysis
has to be performed. During the analysis phase, effects of the
hardware devices on the behavior of the software components
must be taken into consideration.

During the synthesis phase executable code is generated
based on the models specified in the design- and deployment
phases. During the synthesis we must ensure that the code
generated for software components reflects the specifics of the
platform, with respect to communication with hardware
devices.

As reuse is one of key concepts of CBSE, additionally we
consider the effects hardware has on the ability to reuse
components developed in different contexts. For successful
reuse, we must ensure that components dependent on hardware
can be deployed on different platforms.

With regards to the aforementioned concerns, the
objectives of our work are to:

• provide means to describe hardware elements in a
way that they can be integrated into component
models for embedded systems;

• enable specification how software components
depend on hardware devices, and description of
communication between the two;

• allow inclusion of both functional and extra-
functional properties of hardware devices and
physical platform in analysis of component-based
software systems;

• enable analysis of systems in early stages of
development, before they are fully implemented; and

• promote reuse of both software components and
hardware device descriptions.

III. BACKGROUND AND RELATED WORK

We have identified four different levels of support for
hardware dependencies in a component-based context.

A. Outside of the Component Model
Many component models, especially those developed for

research purposes, do not provide any method for including
hardware devices in system design. All communication with
the environment is performed at input and output at the top
level of the system. In this approach, functionality must be
modeled separately from hardware interaction. Therefore,
functionality specifically developed to fit particular hardware
is difficult to represent. Furthermore, propagating all hardware
interaction to the top level can be particularly cumbersome in
complex systems, where many nesting levels exist.

SaveCCM [3] is an example of such a component model.
In SaveCCM software components are not allowed to directly
communicate with hardware devices. Instead, communication
with them takes place outside of the component model.

B. Code Level
Many component models do not provide ways to explicitly

state dependencies on hardware devices. However, they allow
to communicate with them in the code of software components
through direct method calls to the underlying platform. This
approach can severely limit reuse of software components, as
components with such hard-coded communication with
hardware cannot be used on multiple hardware platforms or
when the configuration of the hardware platform is changed.

An example of such a component model is Rubus [4].
Rubus was created by Articus Systems for developing
dependable real-time systems. Reuse is not the main focus of
Rubus, rather it is to provide a higher abstraction layer and
better basis for analysis. Thus platform and device dependent
information are part of basic software components.

C. Using Specialized Entities
Some component models introduce new entities, separate

from software components, which are used to interact with
hardware devices. With a way to explicitly describe
dependencies and communication with hardware devices, and
a clear separation of hardware and software components we
can easily reuse parts of systems or include hardware devices
in analysis of systems. A drawback of this approach is that it
hinders the possibility of hierarchical component composition.
As components cannot specify their interaction with hardware
devices through their interface, we cannot reuse composite
components that contain hardware entities.

A component model that uses this approach is COMDES-II
[5]. COMDES-II provides a two-layered component model.
The upper layer a system is defined by active software
components named actors. The lower layer is used to define
the behavior of actors using function block instances. Actors
interact with hardware devices using entities called input and
output signal drives. Drives can be used to communicate over
a network (communication drivers) or to sense or actuate
physical signals (physical drivers).

AUTOSAR [6], also provides similar level of support.
AUTOSAR is a component-based architecture created by a

150

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

partnership of a number of automotive manufacturers and
suppliers. Dependencies on hardware devices are encapsulated
in sensor and actuator software components. These
components provide a special interface for managing their
interaction with hardware devices. They are dependent on
specific sensor or actuator hardware devices. However,
AUTOSAR does not provide means for hierarchical
composition of components. As it does not provide support to
state hardware dependencies for all component types we still
argue that sensor and actuator components act as specialized
entities.

D. Explicitly Encapsulated in Software Components
Component models can also encapsulate communication

with hardware devices in software components, but expose it
through the component's interfaces. Compared to approaches
that use specialized entities for interaction with hardware
devices, this approach enables us to organize components
dependent on hardware devices in multiple levels of hierarchy

Our approach also falls into this category since it provides
an explicit way to define how software components are
connected to hardware devices. For this we do not use
specialized entities, but instead extend the definition of
standard software components. This lets us reuse all parts of
component model framework and tools while including
hardware devices in software component and system
definition.

IV. OVERVIEW OF OUR APPROACH

Led by the objectives described in Section II, we have
devised a framework that allows us to include hardware
devices in component models, and applied it to the ProCom
component model.

The ability to reuse components or complete systems is one
of the main goals of CBSE. Having components that are
dependent on a particular instance of hardware device, or how
this device is connected to the platform, can severely limit
possibility of their reuse. For this reason we have separated
our framework in three layers: software layer, hardware layer
and mapping layer. With this separation we are able to
independently describe software system and hardware
platform, making them suitable for reuse in different scenarios.
We can then connect these two layers through the mapping
layer when developing a complete system. An overview of
how these three layers are connected is given in Figure 1.

In our approach we have a clear distinction between types
and instances for both hardware and software entities. Types
are entity definitions that are context-independent. They can be
easily reused in different settings or stored to repositories for
future use. Once we want to use an entity in a concrete system,
we are in fact creating an instance of that entity type. Instances
are not copies of the entity, but a representative of the general
entity in a specific context. For example, when we are
describing a hardware device, we are actually describing a
device type. Once we want to use the device in a system we
need to create a new instance of that device type. Instances can
also refine properties of an entity depending on the usage
context.

As we handle hardware devices using extended software
components, and not specialized entities, we are able to reuse
many solutions that already exist in ProCom component
model. For the purpose of defining attributes for hardware
components we leverage Attribute Framework [7], which
allows us to define extra-functional properties for architectural
elements of the component model. Also, integration with
ProCom allows us to use ProCom Analysis Framework with
different types of analysis, such as parametric worst-case
execution time analysis [8], model checking of behavioral
models [9] and fault-propagation.

A detailed metamodel that describes our approach is given
in Figure 2. Next, each of the three layers will be described in
more detail.

A. Software Component Layer
To enable interaction of component-based applications

with hardware devices we have introduced a new type of
component named device component. This entity is derived
from ordinary software components. Its purpose is to
encapsulate dependencies of component-based software
system on hardware devices and enable communication with
these devices.

When looking at a device component as a black-box, it has
the same interface and semantics as all software components.
The difference between normal software components and
device components is in their internals: device components do
not provide the ability for the developer to explicitly specify
their realization. This is because they inherit their realization
from hardware devices (described in Section IV.B.2)) once the
two are mapped together.

Device components are only used to express the existence
of dependencies on hardware devices, but not the specifics of a
device, i.e., how it is connected to the platform or the code for
actual communication with hardware. A device component has
exactly one hardware dependency. In case of composite
components, its device dependencies must mach the combined
dependencied of its subcomponents. This way the software

Figure 1: Overview of three layers of our approach relate to
each other.

Software Layer

Mapping layer

Hardware Layer

SW Component
Instance

Mapping

Device Component
Instance

Platform

Hardware
Device

Instance

Hardware
Device

Instance

151

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

layer stays hardware- and platform-independent. Any system
or composite component that contains device components can
still easily be reused in a new system or on different platforms.

B. Hardware Layer
The hardware layer allows us to describe physical nodes

(i.e., processing unit such as microcontrollers or ECUs that
runnable code can be deployed to), hardware devices such as
sensors and actuators and platforms which consist of instances
of physical nodes and hardware devices and to which we can
deploy software systems.

We have designed the hardware layer based on research of
what is needed to promote the ability of reuse of software
components. However, we also wanted to provide the ability to
reuse structures defined in hardware platform. For this purpose
we have divided hardware into three separate parts which can
be developed independently to each other: physical node
specification, hardware device specification and platform
instantiation.

1) Physical Node Specification
In our model, physical nodes describe different processing

units such as microcontrollers or ECUs. They are reusable as
they only describe a type of unit and do not contain any
information about how they are used or configured in a
particular system.

Physical nodes define a list of inputs and outputs they
provide. Inputs and outputs are defined by their type, e.g.,
one-bit digital I/O, serial communication port, analogue input,
etc. Also, for each input or output we define actual program
code that will be used for its initialization and data transfer.

Physical nodes can also be characterized by extra-
functional properties such as their processing power, available
memory, behavioral models, execution times for input or
output functions and other similar attributes.

2) Hardware Device Specification
Hardware devices are peripherals such as sensors and

actuators that are connected to physical nodes in order to
interact with the environment. Each hardware device
represents a specific, real-world sensor or actuator.

Each hardware device references a device component for
which the device can be used as realization. It should be noted
that one device component can be referenced by many
different hardware devices. For example, a temperature sensor
device component can be referenced by two different
implementations of (i.e., hardware devices) temperature
sensor. However, a device component (in the software layer) is
not dependent on any of these implementations.

Similarly to a list of inputs and outputs provided by
physical nodes, hardware devices define a list of inputs and
outputs that they require for communicating with them.

A part of hardware device specification is the code for
communication with the device. This code is merged with
software component code during the synthesis phase of the
development process, leaving software components free of
hardware-specific code. In that way software components can
be reused on different hardware configurations. However, this
code leaves out actual function calls needed for
communication, which is defined in the physical node
specification. This allows us to reuse the same code regardless
of which input or output of a physical node the device is
connected to, or use it on different physical nodes.

Similar to physical nodes, we can also define attributes that
describe extra-functional properties of hardware devices.

3) Platform Instantiation
We have defined platform as a collection of physical node

instances on which we can deploy software systems. Except
creation of physical node instances, platform instantiation also
encompasses creation of hardware device instances and
connections of these instances to instances of physical nodes.
It should be noted that we do not use type-instance paradigm

Figure 2: Metamodel that contains all entities we use to add support for hardware devices in software component models.

Software Layer

Mapping Layer

Hardware Device Specification

Platform Instantiation Physical Node
Specification

IO Type

IO

Physical NodePhysical Node Instance

Hardware Device

Hardware Device Instance

Component Instance

Device ComponentComponent

Platform

IO AllocationHardware Component Mapping

Deployment Configuration

152

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

for platform. We assume that platforms will be collections of
reusable physical nodes, and will be specific for every system,
there will be no need for their reuse.

Connections between hardware devices instances and
physical node instances are implicit: device instances are
contained by physical node instances. Allocation of hardware
device instances to inputs or outputs of physical node instances
is done through IO Allocation. Once the allocation of inputs
and outputs is defined, we can also validate a platform by
checking if requirements of all hardware device instances are
fulfilled by inputs and outputs of physical node instances they
are connected to.

C. Mapping Layer
As already stated, we have defined software and hardware

layers to be as distinct as possible in order to promote reuse of
structures defined in them. In order to create systems
consisting of both, we had to introduce the mapping layer. The
mapping layer allows us to define connections between device
component instances in software layer and hardware device
instances in hardware layer. By this we put our reusable units
in the context of a system and are able to provide platform-
specific code for platform independent, reusable software
components.

Mapping between the two can be created only if type of
hardware device instance references type of device component
instance. By having this constraint we can easily assure that a
system is deployed (i.e., component instances are allocated to
physical node instances) in a valid way.

Besides the platform-specific code, the mapping also
allows us to propagate platform- or device-specific values for
extra-functional properties.

Our approach supports mapping of component instances to
hardware device instances even in early stages of system
development. By having reusable descriptions, models and
extra-functional properties defined for hardware devices and
physical nodes we are able to test and analyze behavior of a
system before it is fully implemented. This allows us to detect
potential problems and avoid changes in late stages of system
development.

Another benefit of separate mapping model is that it allows
a more flexible process, where software and hardware can be
addressed separately in any order, and interleaved. Also, it
enables us to provide partial mappings in early stages of
development.

V. EXAMPLE

To illustrate use of our approach, we will demonstrate it on
an example. The example will model a simple temperature
control system using ProCom component model.

A. The ProCom component model
ProCom is a component model for distributed embedded

systems in the vehicular and automation domains. These
systems often have a safety-critical role and have to perform in
real-time. Therefore, ProCom explicitly addresses extra-
functional properties such as timing (e.g., worst case execution
time) and resource usage (e.g., static memory, CPU). ProCom
follows a model-based methodology centered around a rich

notion of reusable architectural design-time components. A
ProCom component can consist of source code, models of
timing and resource usage, analysis results and documentation.

The external view of a component consists of ports and
attributes. Through the ports the functionality provided by a
component can be accessed, while the attributes represent
additional information about a component, such as
extra-functional properties.

In order to be able to design both the complete system and
the low level control functionality, ProCom has been divided
into two layers. The upper layer, called ProSys, models a
system as a collection of complex, active, concurrent, and
typically distributed subsystems that communicate via
asynchronous message passing. The lower layer, ProSave, on
the other hand models smaller parts of control functionality.
ProSave components communicate through trigger (control
flow) and data ports (data flow).

B. Temperature Control System
Our example temperature control system consists of two

temperature sensors that monitor temperature in a water tank
and a heater that will engage if the temperature drops below a
defined temperature. A graphical representation of all software
and hardware layers of the system, and the mapping between
the two layers, is given in Figure 3.

Our software layer consists of a clock (an element that
creates periodical triggering signals), two instances of
TemperatureSensor device component (TS1 and TS2), one
instance of ControlUnit software component (CU1) and one
instance of HeaterActuator device component (HA1). The
component instances are connected in such a way that the
clock triggers both TS1 and TS2. When both of them have
finished their execution they forward temperature values to
CU1 and generate signals that trigger its execution. Depending
on given temperature values, CU1 performs calculations and
provides signals to HA1 to be turned on or off.

It should be noted that TS1, TS2 and HA1 just serve just
for describing interaction of software components with
hardware devices, but are not device-specific. In that way
whole software layer is reusable on different hardware
platform configurations.

In the hardware layer we need to include specifications of
physical nodes and hardware devices, and instantiate our
platform. For the purpose of this example we will not fully
specify the hardware but will only use parts that satisfy the
needs of our system. Physical node specification will consist
only of one physical node which we will call MicroCrtl.
MicroCtrl will provide three IOs: two analog and one digital.
For temperature sensors we use hardware devices that require
analog input. We also specify heater hardware device which
requires digital output. To instantiate our platform, we will
create an instance of MicroCtrl with name Micro1. Micro1
will have two instances of the analog temperature sensor
device (AT1 and AT2) and one instance of the heater device
(H1). We will allocate the instances of temperature sensor to
the analog inputs and the instance of heater device to the
digital output of Micro1.

To complete our system, we need to define mappings
between device components in software layer and hardware

153

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

devices in hardware layer. For this, we will define mappings
between AT1 and TS1, AT2 and TS2, and HA1 and H1.

VI. CONCLUSION

In this paper, we have presented our approach for
managing hardware devices such as sensors and actuators in
component models for embedded systems. Our framework
consists of three layers: software layer, hardware layer and
mapping layer. These three layers enable separation of device
dependencies in software and models of the actual hardware
and allows us to reuse software components and hardware
models. The hardware layer enables us to specify all aspects of
hardware devices and platforms needed for their integration
into component models. In the software layer we enable
explicit definition of dependencies of software components on
hardware devices. The mapping layer enables us to connect
instances of software components to hardware device instances
and in that way to design complete systems including software
and hardware. The mapping also allows propagation of extra-
functional properties of hardware devices to component
model. In early stages of system development we can also
define just partial mappings. Our approach promotes reuse of
software components, hardware device specifications and
platform node specification by creating clear distinction
between types and instances of these entities, and by removing
platform- and device-specific code out of software
components.

ACKNOWLEDGMENT

This work was supported by the Unity Through Knowledge
Fund via the DICES project, the Swedish Foundation for
Strategic Research via the strategic research centre
PROGRESS, and the Swedish Research Council project
CONTESSE (2010-4276).

REFERENCES

[1] I. Crnković and M. Larsson, Building Reliable Component-Based
Software Systems, Artech House Publishers, 2002.

[2] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic. A
component model for control-intensive distributed embedded systems.
In 11th International Symposium on Component Based Software
Engineering. Springer Berlin, October 2008., pp. 310-317

[3] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson, J. Håkansson, A.
Möller, P. Pettersson, and M. Tivoli. The SAVE approach to
component-based development of vehicular systems. Journal of Systems
and Software, May 2007. pp. 655-667

[4] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg, J. Lundbäck, and
K- Lennart Lundbäck, The Rubus Component Model for Resource
Constrained Real-Time Systems, 3rd IEEE International Symposium on
Industrial Embedded Systems, 2008, pp. 177-183

[5] K. Xu, S. Krzysztof, and A. Christo, COMDES-II: A Component-Based
Framework for Generative Development of Distributed Real-Time
Control Systems, RTCSA '07: Proceedings of the 13th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications, 2007, pp. 199-208

[6] H. Heinecke, W. Damm, B. Josko., A. Metzner, H. Kopetz, A.
Sangiovanni-Vincentelli., and M. Di Natale, Software Components for
Reliable Automotive Systems, Design, Automation and Test in Europe,
2008, pp. 549-554

[7] S. Sentilles, P. Stepan, J. Carlson, and I. Crnković, Integration of Extra-
Functional Properties in Component Models, 12th International
Symposium on Component Based Software Engineering (CBSE 2009),
LNCS 5582, Springer Berlin, East Stroudsburg University,
Pennsylvania, USE, June, 2009, pp. 173-190

[8] T. Leveque, E. Borde, A. Marref, and J. Carlson, Hierarchical
Composition of Parametric WCET in a Component Based Approach, In
14th IEEE Int. Symposium on Object/Component/Service-oriented
Real-time Distributed Computing, 2011, pp.261-268

[9] D. Ivanov, M. Orlic, C. Seceleanu, and A. Vulgarakis, REMES tool-
chain – A set of integrated tools for behavioral modeling and analysis of
embedded systems. In 25th IEEE/ACM International Conference on
Automated Software Engineering, 2010, pp. 361-362

Figure 3: Example of a temperature control system created using ProCom extended with our approach.

Hardware Layer

Mapping layer

Software Layer
TemperatureSensor

TS1 ControlUnit
CU1

TempSensor : TS1TemperatureSensor
TS2

Clock

HeaterActuator
HA1

MicroCtrl
Micro1

AnalogTemp
AT1

AnalogInput
ADC0

AnalogTemp
AT2

AnalogInput
ADC1

Heater
H1

DigitalIO
PA0

MappingMapping Mapping

154

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

	I. Introduction
	II. Effects of Hardware Devices on Software Component Models
	III. Background and Related Work
	A. Outside of the Component Model
	B. Code Level
	C. Using Specialized Entities
	D. Explicitly Encapsulated in Software Components

	IV. Overview of our Approach
	A. Software Component Layer
	B. Hardware Layer
	1) Physical Node Specification
	2) Hardware Device Specification
	3) Platform Instantiation

	C. Mapping Layer

	V. Example
	A. The ProCom component model
	B. Temperature Control System

	VI. Conclusion

