
Non-Functional Requirements for Business Processes

in the Context of Service-Oriented Architectures

Oliver Charles

agilTech Information Technologies GmbH

Am Krebsgraben 15

D-78048 Villingen-Schwenningen, Germany

oliver.charles@agiltech.de

Bernhard Hollunder

Furtwangen University of Applied Sciences

Robert-Gerwig-Platz 1

D-78120 Furtwangen, Germany

hollunder@hs-furtwangen.de

Abstract—We present novel concepts to formalize and apply
non-functional requirements (NFRs) for business processes in
the context of Service-Oriented Architectures (SOAs). Today,
popular languages for modeling business processes do not
support the specification of NFRs in a systematic manner.
However, there is a strong demand to explicitly address such
requirements when designing and deploying software systems.
In this paper, we elaborate an extension for BPMN (Business
Process Model and Notation) towards the modeling of NFRs. A
key feature is the tool independent representation of NFRs,
which will be achieved by applying the widely used WS-Policy
standard. Our approach also covers the mapping of the speci-
fied NFRs to the technical level represented by BPEL (Business
Process Execution Language). For the monitoring of NFRs we
exploit techniques from Complex Event Processing (CEP). A
key characteristic of our solution is its coherence: from NFRs
modeling at design level to their technical enforcement and
dynamic validation during execution. The feasibility of our
approach has been demonstrated by a proof of concept imple-
mentation based on NetBeans, Glassfish ESB, IEP as CEP
implementation, and the BPEL Service Engine.

Keywords-Non-functional requirements, Business process,

BPMN, BPEL, SOA, WS-Policy, Web services, Quality of service

I. INTRODUCTION

When introducing a Service-Oriented Architecture
(SOA) for some enterprise, the definition of appropriate
business processes as well as services plays a crucial role. A
business process can be viewed as a well-defined sequence
of activities to achieve a particular business goal. In order to
exchange data with back-end systems (e.g., ERP systems,
specific business applications and database systems), busi-
ness processes typically use course-granular services, which
hide the technical details of the services’ implementation.
Today, services are often realized with the Web services
technology. In other words, a business process within a SOA
composes a set of Web services in such a way that higher
business goals will be obtained.

When employing Web services in the area of so-called
mission critical business applications, “pure” Web services
are not sufficient. This is because in such an environment
non-functional requirements (NFRs) such as message relia-
bility, confidentiality, availability and performance must be
addressed. The importance of NFRs for Web services has
been stressed elsewhere (see e.g., [1] or [7]). There are
proven standards such as WS-SecurityPolicy [2] bringing
selected NFRs to Web services.

As Web services are composed by business processes,
the interaction of NFRs at service level on the one hand and
at process level on the other hand must be clearly defined.
Hence, it is crucial to assign – explicitly or implicitly – NFRs
to business processes such as time and resource consump-
tion, auditability and scalability (e.g., as described by Adam
and Doerr in [3]).

In the past, there has been much work on modeling func-
tional requirements of business processes. The most promi-
nent approaches used in SOA infrastructures are the Business
Process Model and Notation (BPMN) and the Business
Process Execution Language (BPEL). While BPMN prima-
rily focuses on the graphical representation of business
processes, BPEL tackles technical aspects such as the
mapping to Web services to be invoked during process exe-
cution. It should be noted that there is broad tool support, for
an overview see e.g., [4].

Currently, there is only very limited support for specify-
ing NFRs for business processes, though. In fact, the BPMN
and BPEL do not provide language features for including
NFRs features. As a consequence, when transforming a
process model into an executable format the application
developer must pollute the business logic with mechanisms
for realizing the desired NFRs. This approach, however,
would strongly limit the reusability and adaptability, if the
solution should be deployed in an environment where
different sets of NFRs must be supported.

In this paper, we present a novel approach for forma-
lizing NFRs for business processes that overcomes these
deficits. Special focus lies on its coherence, because we not
only cover the modeling of NFRs at design level, but also
their technical enforcement and their dynamic validation
during execution. Our approach comprises the following
aspects:

 Modeling of NFRs with BPMN and BPEL by ex-
ploiting standard extension mechanisms.

 Enforcement strategy for NFRs based on Web servi-
ce handlers.

 Usage of standards such as WS-Policy to formalize
NFRs at the technical level.

 Static and dynamic validation of NFRs.

 Tool support and proof of concept.

The paper is structured as follows. The next section will
give a short introduction to the underlying technologies
required to understand our approach. Related work will be

112

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

discussed in Section three, followed by a detailed description
of our solution. Section five will cover the proof of concept
implementation. Conclusions and open issues are part of the
final section.

II. FOUNDATIONS

This section briefly introduces the most important con-
cepts and techniques as required for the understanding of our
approach. We start with Business Process Management,
which is the general area our results apply to. Then we pro-
vide background information to Non-Functional Require-
ments, followed by a short review of WS-Policy, which is a
well-known and widely used standard for formalizing NFRs
for Web Services and SOAs.

Due to limited space, this paper does not give an intro-
duction to BPMN and BPEL. Hence, we assume an under-
standing of the basic concepts of these technologies.

A. Business Process Management

Business Process Management (BPM) includes concepts,
methods, and techniques to support the design, imple-
mentation, enactment, monitoring, and strategy alignment of
business processes. In the context of SOAs, BPM focuses on
how business processes can be automated using SOA infra-
structure elements. The target is not only a high automation
of processes, but also to enable development and manage-
ment to react in a flexible and agile manner on changing bu-
siness or technical requirements.

BPM covers the following topics:

 Strategy phase

 Design phase

 Execution phase

 Monitoring phase.

As the name of the first phase indicates, the main focus is
the elaboration of the mid- to long-term alignment of an
enterprise and how IT can be leveraged to automate and
optimize business processes. Having defined the strategic
goals, in the design phase the identified business processes
are brought to “IT-level”. This includes a proper description
from which an implementation will be derived. The usage of
graphical modeling languages – in particular BPMN and
BPEL – is not only advantageous for the domain experts, but
also helps bridging the gap to the implementation level.
While the execution phase is concerned with the usage of the
implemented business processes by clients, the goal of the
monitoring phase is to receive data regarding the runtime
behavior such as identification of bottlenecks, quantity of
invoked processes, and performance analysis.

As already mentioned in the introduction, our solution
considers NFRs at the design, implementation, and monito-
ring level. That is the reason why we term it coherent.

B. Non-Functional Requirements

In system and software engineering there are mainly two
categories of requirements: functional and non-functional
requirements. A functional requirement describes a specific
business or technical functionality of a system in terms of the
input/output behavior. In contrast, a non-functional require-

ment addresses a quality of service (QoS) attribute of the
implementation. In software engineering, there was (and still
is) much research on NFRs for software systems. Standardi-
zation organizations such as ISO have identified manifold
aspects (see e.g., ISO/IEC 9126 [6], which is superseded by
ISO/IEC 25000 [5]).

There are several publications that consider NFRs in the
specific context of SOA, e.g., by O’Brien, Merson, and Bass
[7]. OASIS [1] gives a classification of different types of
NFRs (which are called quality factors). Besides others, the
following topics are covered:

 duration and response time

 throughput

 availability and reliability

 standard conformance

 observability

 security aspects such as confidentiality, authenti-
cation, authorization, integrity, and non-repudiation

 pricing and accounting

 robustness.

Let us make some remarks. Even though we can find in
the literature characterizations of NFRs, there are often dif-
ferences regarding their exact meaning and definition. Some
of them can be described by a formula; e.g., response time,
duration, and availability. The behavior of other NFRs such
as integrity can be defined in terms of functions for digital
signature. Robustness is an example for an NFR that has
diverse facets such as error tolerance, often described as the
ability to deal with erroneous input. A business process, for
example, should not crash or run into an inconsistent state if
it is called with invalid parameter values.

C. WS-Policy

WS-Policy [8] is a specification of the W3C and provides
a policy language to formally describe “properties of a
behavior” of services. A WS-Policy description is a collec-
tion of so-called assertions. A single assertion may represent
a capability, a requirement or a constraint and has an XML
representation. An example for an assertion is

 <Performance max_runtime_minutes="15"/>,

which formalizes a condition for the runtime behavior of a
particular business process.

WS-Policy introduces operators to form policies, which
are basically sets of assertions. Policies can be attached via
the WS-PolicyAttachment [9] specification to other entities
such as a BPEL process description and a Web service’s
WSDL. We will come back to this issue when introducing
our solution.

III. RELATED WORK

In [10], Pavlovski and Zou present an approach to model
NFRs for business processes in a graphical manner. They
introduce extensions for BPMN, the enforcement on the
technical level (e.g., in BPEL) has not been elaborated,
though. For the modeling of NFRs, Zou and Pavlovski
propose two extensions of BPMN: i) an “operating
condition” artifact and ii) a “control case” artifact. With an

113

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

operating condition artifact, a business process modeler
should be able to connect NFRs such as security, performan-
ce or availability to activities of the BPMN process model.
The use of the control case artifact is optional and is
introduced to refine an operating condition artifact. From a
more technical point of view, a control case artifact is a
reference to a table containing detailed information about the
modeled NFRs.

The approach of Rodriguez et al. [11] also tackles the
modeling of NFRs within BPMN. However, their solution is
restricted to the modeling of security requirements. They do
not extend the standardized artifacts of BPMN, but rather
implement new Business Process Diagram (BPD) core ele-
ments. In this context it is described how to extend the BPD
meta-model towards the coverage of security issues. The
mapping of “security-enhanced” process models to the
technical level (as in the approach in [10]) is not addressed.

Tai et al. [12] explain a new idea about how transactional
behavior can be modeled as NFRs within BPEL. To express
this with XML, the authors use WS-Policy [8] in
combination with WS-PolicyAttachment [9]. They directly
attach WS-Policy descriptions to selected BPEL elements
within the process document. Proposed elements are for
example <partnerLink> or <scope>. To enforce the
attached WS-Policy descriptions, Tai et al. assume a
coordination middleware, which executes the BPEL-process
taking into account the NFRs.

Charfi et al. present in [13] another approach to model
non-functional requirements with BPEL. Their approach is
based on well-known standards and specifications such as
WS-Policy, WS-PolicyAttachment and XPath. It has to be
mentioned that their approach is not a completely new one
but a combination of the mentioned standards.

To sum up, there are several approaches that extend
process models towards NFRs. However, they either focus
on BMPN or BPEL. As we will see in the next section, our
solution – beside other features – includes the mapping from
BPMN to BPEL.

IV. THE OVERALL ARCHITECTURE

A. Modeling NFRs in BPMN

BPMN does not provide explicit language constructs for
modeling NFRs. Basically, there are two options to over-
come this limitation: i) introducing new language features
optimized for modeling NFRs, and ii) applying existing
artifacts in a specific way. A disadvantage of the first alter-
native would be missing support by existing BPMN tools.
Therefore, we pursue the second approach.

A so-called text annotation is a standard artifact of
BPMN, which allows one to attach auxiliary information to
model elements. The following figure gives an example:

Figure 1. QoS artifact for BPMN.

At the left hand side there is some business process
activity. In order to impose NFRs for this activity, we assign
a text artifact. In this approach, we distinguish between
arbitrary text annotations and those, which formalize NFRs.
The latter are called “QoS artifacts” and are text artifacts
with a particular content and specific syntax.

In our approach, we support the following syntax: The
prefix “QoS” indicating a QoS artifact is followed by a
category name, which specifies a particular NFR. In the
previous example, we impose a performance restriction to
the modeled activity. Finally, a set of attribute/value-pairs
define the specific properties for the NFR.

The content of a QoS artifact is a text with some well-
defined structure, which will be mapped to XML. In order to
support syntax checking, we have defined XML schemas for
the supported NFRs. Due to lack of space, we omit the
description of the schemas.

We have defined a library comprising well-known QoS
artifacts. Each QoS artifact comes with a modeling manual
describing its meaning, formalizing the required syntax by
means of an XML schema, and optional modeling examples.
It should be noted that the set of predefined QoS artifacts
could be extended by additional NFRs basically by defining
its XML schema.

 To sum up, our NFRs modeling approach is a light-
weight solution, which reuses standard artifacts supported by
BPMN tools. As a consequence, process models can be
exchanged between different tools without losing NFRs
model information. The usage of XML schemas not only
specifies the specific syntax but also allows the automated
validation. Last but not least, the QoS artifacts library can be
reused in different settings.

B. Modeling NFRs in BPEL

As mentioned above, BPEL does not support the mode-
ling of NFRs in a direct manner. In [13] it has been shown
how to overcome this limitation by applying the standards
WS-Policy, WS-PolicyAttachment and XPath. The main
idea is to link BPEL process elements to a WS-Policy de-
scription. Such a description contains WS-Policy assertions
formalizing NFRs (see Section II-C). A well-known set of
assertions for the security domain has been introduced in [2].

Figure 2. Assigning WS-Policy to BPEL.

114

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 2 depicts the linkage between the BPEL process
and the policy description. A WS-PolicyAttachment file
contains an <AppliesTo> entry referring to the BPEL
element to which the WS-Policy description should be
applied. The latter is linked via the <PolicyReference>
element, which is also introduced by the WS-PolicyAttach-
ment specification. As we apply XPath for selecting the
targets, this approach exclusively uses well-known and
widely supported specifications.

This concept clearly separates i) the logic of the business
process and ii) the required NFRs. As a consequence, both
parts of the overall application can evolve independently
from each other, which has a positive effect on main-
tainability, reusability and adaptability of the solution. As an
example, consider a WS-Policy file that formalizes a parti-
cular set of NFRs. The policy can be applied to several
business applications. As a consequence, this not only in-
creases reusability of the required “NFRs patterns” but also
guarantees conformance to corporate compliance rules.

C. Transformation of NFRs – From BPMN to BPEL

Having described how to represent NFRs within BPEL,
we are now able to consider the mapping from QoS artifacts
in a BPMN model to WS-Policy descriptions for BPEL. It
should be noted that we do not consider the general trans-
formation rules mapping BPMN elements to BPEL elements,
because they are part of most BPMN/BPEL modeling tools.

 To map NFRs we proceed as follows: For each QoS
artifact, we create both a WS-PolicyAttachment file as well
as a WS-Policy file. The assertions contained in the policy
description correspond to the NFRs of the QoS artifacts.
These assertions in turn have references to the XML schema
definition and the modeling manual, respectively. After all
WS-Policy documents have been created, they are used by
the corresponding WS-PolicyAttachment files to link the re-
quired policies to BPEL process elements as already
described.

D. Enforcement of NFRs

This section is concerned with the question how the
modeled NFRs can be enforced. Basically, we observe that
there are two targets to which the modeled NFRs will be
applied: i) the business process itself, and ii) the com-
munication between a BPEL service and an underlying Web
service. From a modeling perspective, we use the following
convention: if the category name of a QoS artifact starts with
“WSComm_”, the latter target is meant, otherwise the NFR
applies to the business process.

If a policy relates to the business process itself, which
means that the described prefix is not set by the BPMN
modeler, the Web service developer has to extend the Web
service’s application logic, i. e., the source code.

If a policy relates to the service communication, the Web
service developer has the responsibility to enforce the NFRs
with the help of interceptors (also called handlers), which
can be installed in SOA infrastructures and manipulate the
outgoing and incoming messages. Details can be found e.g.,
in [14].

In order to enforce a specified behavior, typically an
appropriate WS-Policy description will be attached to the
Web service’s WSDL as well as to BPEL process elements
(see Figure 3). This policy may for example specify that the
invoker (e.g., the BPEL service) must encrypt the parameter
values passed to the Web service, which in turn is able to
decrypt these values. For standard NFRs (such as security
and reliable messaging) Web services frameworks typically
provide respective handlers. For other NFRs such as
accounting and resource consumption specific handlers must
be configured.

Figure 3. QoS enforcement through handlers.

To support several NFRs, all the required handlers must

be installed. This can be achieved by using so-called handler
chains supported by Web services frameworks. Before a
request is delivered to the service implementation, each
handler will be invoked.

E. Validation of NFRs

Our architecture also includes components for validating
NFRs. We distinguish between static and dynamic va-
lidation. During the static validation process, the NFRs
contained in a BPMN process diagram will be checked
against the WS-Policy descriptions of the underlying Web
services implementations. Static validation can be automated
by applying WS-Policy compatibility algorithms such as
WS-Policy intersection [8] and semantic policy differencing
[15].

Performance is an example of an NFR where dynamic
validation must be applied. As the actual execution time of a
process depends on factors, which are not determinable a
priori (e.g., server consumption, network latency and user
interaction), a monitoring system is required in order to
continuously observe the infrastructure. To provide a
monitoring system with the required data, so-called sensor
components (such as JMX and NFRs handlers, see [16]) can
be installed in SOA infrastructures.

This system will inform, for instance, the system
administrator if some NFRs are violated. Depending on the
severity of the violation (e.g., leakage of sensible data)
actions may be immediately performed such as shutting
down a service or a server.

115

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 4. Dynamic validation with CEP [17].

Complex Event Processing (CEP) [18] has been introduced

as a technology to find correlated data items in a continuous

flow of data. The data items to be selected are specified by

patterns defined, for instance, with the Continuous Query

Language (CQL). It turned out that the conditions, which

indicate a violation of an NFR during execution, can be

appropriately defined as CEP patterns. Figure 4 illustrates

the integration of an abstract CEP engine in a BPEL/Web

services environment. We have identified the following

components:

 input component

 output component

 CEP engine

 reaction component

 event senders.

The input component receives events from the BPEL engine

and the Web services, respectively. The so-called event

senders, which are specific implementation of the above

mentioned sensor components, inform the CEP engine about

significant actions in the business application (e.g.,

transition within the business process, Web service

invocation, passing of non-encrypted sensible data, etc.).

Subsequently, the input component passes the received

events to the CEP engine. As soon as the CEP engine

detects data items that match a CEP pattern, a new

(complex) event will be created. The output component has

the responsibility to pass it to a user (e.g., via SMTP) or to

the reaction component, which in turn will inform the

orchestration service, or to a management system (via Web

service invocation) about the violation of an NFR.

V. PROOF OF CONCEPT

The overall architecture presented in the previous section
is quite generic and can be instantiated in different ways. In
order to show the feasibility of our approach we have
developed a proof of concept implementation based on

NetBeans IDE and Glassfish ESB. This combination compri-
ses the following tool set:

 BPMN/BPEL designer to model business processes.

 BPEL runtime environment for executing BPEL

processes.

 Web services development, deployment and runtime

environment.

 Intelligent Event Processing (IEP) service engine as

implementation of a CEP engine.

The BPMN/BPEL designer allows the graphical mode-

ling of business processes according to the BPMN and BPEL
languages. It should be noted that only those BPMN ele-
ments are supported by the tool, which can be mapped to the
XML BPEL process file.

One of these elements is the documentation artifact,
analogous to the common BPMN text artifact that allows the
attachment of comments to elements in a BPEL process.
These comments are transformed to the common BPEL tag
<documentation> within the underlying XML BPEL
process file. To avoid this intrusion, we extended the
BPMN/BPEL designer by a new QoS artifact (see Figure 5)
with which it is possible to implement our introduced
transformation process as described above.

Figure 5. QoS artifact in the BPMN/BPEL designer.

With the NetBeans composite application display it is

possible for a Web service developer to attach handlers via
the context menu not only to the BPEL service but also to
the Web services, which are invoked. This enables an easy
configuration of handlers required for enforcing the defined
NFRs.

The IEP service engine comes with a graphical modeling
language for selecting, transforming and aggregating events.
This modeling language also provides predefined types for
output components, e.g., datasets, database tables and dash-
board formats. It is also possible to generate WSDL inter-
faces for the input components and their implementations as
Web services, which can be used by the event senders.

116

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Hence, IEP enables the validation of a business process
during its execution.

Independent of IEP, it is also possible to make theoretical
commitments before process execution. For example, a Web
service developer wants to check if the modeled runtime of a
business activity complies with the modeled runtime of the
Web services. Therefore, the WS-Policy assertion of the
business activity has to be checked against the sum of
runtime assertions of the Web services to be invoked.
Unfortunately, this functionality is not provided yet by
NetBeans and Glassfish ESB, respectively, so that this check
has to be accomplished manually.

VI. CONCLUSIONS AND FUTURE WORK

In software engineering, there has already been much
work on non-functional requirements. This is motivated by
the fact that nearly all deployed application systems must not
only fulfill the desired business logic, but should also
guarantee aspects such as robustness, scalability, security,
performance and reliability. Although NFRs should be
especially considered when designing applications according
to the SOA principle, there is currently only partial support –
both from a conceptual as well as technical point of view.

In our work, we have presented a coherent concept for
formalizing, applying, enforcing, and monitoring NFRs for
business processes. A driving force of our solution is the
commitment to well-known standards and widely used tech-
nologies such as BPMN, BPEL, WS-Policy, CEP, and
others. As a consequence, the conceptual framework of our
solution can be instantiated in several ways based on existing
tools such as NetBeans and Glassfish ESB.

This demonstrates the high impact of our results on soft-
ware engineering practice. Specifically, our approach is a
further step towards improving the development of business
application with well-defined NFRs. We support the well-
known separation of concerns principle by flexibly attaching
NFRs to business processes.

Our work can be extended in several ways. In order to
leverage our solution, further NFRs should be formalized.
This includes the definition of the required QoS artifacts for
BPMN and their mapping to corresponding WS-Policy asser-
tions. To disseminate our approach in software engineering
practice, additional proof of concept implementations would
be quite helpful; especially an instantiation with the Visual-
Studio IDE and the .NET technology.

ACKNOWLEDGMENT

We would like to thank Markus Schalk for the extensive
support during the elaboration of the architecture and the
proof of concept. This work has been partly supported by the
German Ministry of Education and Research (BMBF) under
research contract 17N0709.

REFERENCES

[1] OASIS, Web Services Quality Factors 1.0 (07/2010),
Retrieved April 16, 2011, from http://docs.oasis-
open.org/wsqm/wsqf

[2] OASIS, WS-SecurityPolicy 1.3 (03/2009), Retrieved October
11, 2010, from http://docs.oasis-open.org/ws-sx/ws-
securitypolicy

[3] S. Adam and J. Doerr, “Towards Early Consideration of Non-
Functional Requirements at the Business Process Level”, Pro-
ceedings of International Conference on Information Resour-
ces Management, pp. 227-230, 2007.

[4] OMG, Object Management Group / Business Process Mana-
gement Initiative, Retrieved March 03, 2011, from
http://www.bpmn.org

[5] ISO/IEC, “Software engineering – Software product Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE”,
ISO/IEC 25000, 2005.

[6] ISO/IEC, “Software engineering – Product quality”, ISO/IEC
9126-1 to 9126-4, 2001-2004.

[7] L. O’Brien, P. Merson and L. Bass, “Quality Attributes for
Service-Oriented Architectures”, in Proceedings of Inter-
national Workshop on Systems Development in SOA
Environments (SDSOA '07), pp. 1-5, 2007.

[8] W3C, Web Services Policy 1.5 (09/2007) – Framework,
Retrieved April 03, 2011, from http://www.w3.org/
TR/ws-policy

[9] W3C, Web Services Policy 1.5 (09/2007) – Attachment,
Retrieved April 03, 2011, from http://www.w3.org/
TR/ws-policy-attach

[10] C. Pavlovski and J. Zou, “Non-Functional Requirements in
Business Process Modeling”, in Proceedings of the Asia-
Pacific Conference on Conceptual Modelling, pp. 103-112,
2008.

[11] A. Rodriguez, E. Fernández-Medina and M. Piattini, “A
BPMN Extension for the Modeling of Security Requirements
in Business Processes, IECE Trans. Inf. & Syst, pp. 745-752,
2007.

[12] S. Tai, R. Khalaf, and T. Mikalsen, “Composition of Coor-
dinated Web Services”, Middleware, pp. 294-310, 2004.

[13] A. Charfi, R. Khalaf and N. Mukhi, “QoS-Aware Web Ser-
vice Compositions Using Non-intrusive Policy Attachment to
BPEL”, in Proceedings of the 5th International Conference on
Service-Oriented Computing, pp. 582-593, 2007.

[14] E. Hewitt, Java SOA Cookbook: SOA Implementation
Recipes, Tips, and Techniques, O´Reilly, 2009.

[15] B. Hollunder, “Domain-Specific Processing of Policies or:
WS-Policy Intersection Revisited,” Proceedings of the 7th
IEEE International Conference on Web Services (ICWS), pp.
246-253, 2009.

[16] A. Wahl, A. Al-Moayed, and B. Hollunder, “An Architecture
to Measure QoS Compliance in SOA Infrastructures”,
Proceedings of the Second International Conferences on
Advanced Service Computing (Service Computation 2010),
pp. 27-33, 2010.

[17] O. Charles, M. Schalk, and B. Hollunder, “CEP meets SOA”,
OBJEKTSpektrum: Vol 5, pp. 28-32, 2010.

[18] D. Luckham, “The Power of Events”, Addison Wesley, 2007.

117

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

