
A Specifications-Based Mutation Engine for Testing Programs in C#

Andreas S. Andreou
Department of Electrical Engineering and Information

Technology,

Cyprus University of Technology

Limassol, Cyprus

email: andreas.andreou@cut.ac.cy

Pantelis Stylianos Yiasemis

Department of Electrical Engineering and Information

Technology,

Cyprus University of Technology

Limassol, Cyprus

e-mail: pm.yiasemis@edu.cut.ac.cy

Abstract—This paper presents a simple and efficient engine

which produces mutations of source code written in C#. The

novelty of this engine is that it produces mutations that do not

contradict with the specifications of the program. The latter are

described by a set of pre- and post-conditions and invariants.

The engine comprises two parts, a static analysis and syntactic

verification component and a mutation generation component.

Preliminary experiments showed that the proposed engine is

more efficient than a simple mutations generator in terms of

producing only valid mutations according to the specifications

posed, thus saving time and effort during testing activities.

Keywords-mutation testing; mutation engine; specifications;

I. INTRODUCTION

Technology advancements nowadays lead to the
automation of a large number of activities within the software
development process. The exploitation of computing power
drives the need for producing better, faster and more reliable
software systems. Nevertheless, the aforementioned targets
increase software complexity and size, making this need hard
to be satisfied. The competition in the software development
market pushes companies to increase their productivity,
developing software in tighter time limits usually sacrificing
the quality of the resulting software.

One of the most significant reasons for the inadequate
quality control in software development is the lack of efficient
software testing. The latter is a way for verifying the
correctness and appropriateness of a software system, or,
alternatively, for ensuring that a program meets its
specifications ([1], [2]). Software testing is not a simple
process; on the contrary, it consumes a large percentage of the
time and budget of the whole development process. In some
cases it even surpasses the time needed for the creation of the
software product. Its main purpose is to reveal and locate
faults so as to assist developers improving the functional
behavior of the system under development.

Software testing consists of two main processes, the
identification of faults (testing) and their correction
(debugging). Indentifying faults is the most time consuming
process as it can take up to 95% of the time of software
testing. Having this in mind, we can safely conclude that there
will be a constant need to develop tools that will assist in
accelerating and automating the testing process, guiding
developers to locate and debug faults faster and more
efficiently.

The aim of the present paper is to introduce a mutation
engine for source code written in C#, which is the basic
element of a novel mutation testing technique that takes into
consideration the specifications of the program for creating
only valid mutants. The engine is implemented in Visual
Studio 2010 and consists of two components: The first offers
the ability to validate the grammatical correctness of the
source code and provides a form of statistical analysis for
exporting useful information that can be used to
process/modify the source code. The second involves the
production of mutations of the original source code and
facilitates the identification of faults, as well as the assessment
of the quality of test data.

The rest of the paper is structured as follows: Section II
describes briefly the basic concepts that form the necessary
technical background of this work. Section III presents the
mutation engine, its architecture and key elements ruling the
generation of mutations, as along with a brief demonstration
of the supporting software tool. Section IV describes a set of
preliminary experiments and the corresponding results that
indicate the correctness and efficiency of the proposed
approach. Finally, Section V concludes the paper and suggests
some steps for future work.

II. TECHNICAL BACKGROUND

According to McMinn [3], three different kinds of
software testing techniques exist. These are White Box
Testing (WBT), Black Box Testing (BBT) and the mixing of
the two called Gray Box Testing (GBT). Each of these three
techniques offers its own advantages and disadvantages,
differing on the way test cases are created and executed. In
BBT the test cases are created based on the functions and
specifications of the system under testing without the need for
actual knowledge of the source code. WBT requires that the
tester needs to have full access to the source code and know
exactly the way it works. Advantages of this method are that it
can locate coincidental correctness, this is the case where the
final result is correct but the way it is calculated is not.
Moreover, all possible paths of code execution may
potentially be tested offering the ability to identify errors
or/and locate parts of dead code, that is, parts that are never
executed.

Different techniques have been proposed for WBT making
use of the structure of the source code or the sequence of
execution, giving birth to static code analysis and testing for
the former and dynamic testing for the latter. We concentrate
on dynamic testing where the actual flow of execution drives

70

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

test data production. One such technique that has gain serious
interest among the research community is Mutation Testing
(MT).

MT is a relatively new technique introduced by DeMillo et
al. [4] and Hamlet [5], which is based on performing
replacements in code statements through certain operators that
correspond to specific types of errors, producing the so-called
mutant programs; the latter are then used to assist in
producing or/and assessing the quality of test data as regards
revealing the errors in the mutants [6].

The general idea behind MT is that the faults being
injected correspond to common errors made by programmers.
This means that the mutants are slightly altered versions of
programs which are very close to their correct form. Each
fault is actually a single change of the initial version of the
program, pretty much the same as a slight change (mutation)
in living species causing a different form of life. The quality
of a produced set of test cases is assessed by executing all the
mutants and checking whether the injected faults have been
detected by the set or not.

There are quite a few ways to represent code and provide
the means for better understanding and management of the
source code. Most of them use graphs or/and binary trees that
are able to depict graphically how the program actually works.
The Control Flow Graph (CFG) is one such way of
graphically representing the possible execution paths. Each of
its nodes usually corresponds to a single line of code, while
the arcs connecting nodes represent the flow of execution.
CFG may be used as the cornerstone of static analysis, where
its construction and traversing offers the ability to identify and
store information about the type of statements present in the
source code and the details concerning the alternative courses
of execution. A fine example is the BPAS framework
introduced by Sofokleous and Andreou [7] for automatically
testing Java programs. More to that, CFG may drive the
generation of test data by providing the means to construct an
objective function for optimization algorithms to satisfy (e.g.
by evolution, like Michael et al. [8]).

During the last years the Visual Studio (VS) platform [9]
has been constantly evolving becoming one of the most wide
spread platforms used today in the software industry. This is
partly due to the fact that it provides to developers the ability
to create a number of different types of applications, like
window-apps, web-apps, services, classes etc. The wide
acceptance of VS has driven the development of a number of
third party tools and plug-ins that enhance the platform with
even more functionality, making development of special-
purpose applications simpler and easier. The aforementioned
advantages of VS2010 led us to investigate its use for
software testing, and more specifically for developing a new
mutation testing tool.

Code Contracts (CC) are offered by VS2010 as the means
to encode specifications [10]. CC may consist of pre-
conditions, post-conditions and invariants. Their aim is to
improve the testing process during runtime checking and
static contract verification, as well as to assist in
documentation generation.

The mutation engine introduced in this paper is partly
based on the aforementioned concepts. More specifically, it

utilizes CFG and static analysis as in [7] to extract the
information needed for analyzing and describing adequately
the source code under investigation. Moreover, it employs CC
to embed the specifications required so that the program
functions properly and static analysis (contract verification) in
order to guide the production of meaningful mutant programs,
that is, programs that do not violate their original
specifications. The engine targets at offering the means for
automatic, time-preserving software testing.

III. MUTATION ENGINE

A. Architecture

As previously mentioned, the mutation engine was
implemented in the VS2010 platform. The selection of
VS2010 was made partly because it is a relatively newly
introduced platform, meaning that the components developed
may be used as a backbone for future tools and studies based
on this platform, without facing any incompatibility issues
compared to the use of older platforms. Also, to the best of
our knowledge, at present no other such system exists. The
engine was specifically designed to work with the C#
programming language, but with minor changes and additions
the support of the rest of the programming languages VS2010
platform offers may be enabled as well.

Figure 1. The mutation engine architecture

The architecture of the proposed mutation engine is
depicted graphically in Figure 1 where three major
components enable the execution of the engine‟s stages. The
first is a source code validation component, which compiles
the source code and presents the erroneous lines in code if
such exist. This component takes as input a source code file
(.cs), or an executable file (.exe), or a dynamic link library file
(.dll), as well as the project file (.csproj). The project file is
needed to provide the component with information for
references in libraries and files that the source code must use
and are part of the program. Validation includes compiling the
source code and making sure that no syntactic or other
compilation errors exist so as to proceed with the second stage
of the engine which is the production of mutations. Otherwise
the engine terminates.

Project File

Source

Code

Validate

Source File

Pass

Parser

Visitor Information Lists

AST

Mutation Operands

Mutation

Programs

Analyzer

Exit

Fail

71

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The second component performs statistical analysis of the
source code without the need of an executable form of the
program under testing. By statistical analysis we mean
exporting the useful information from the source code as
regards the structure of the program. This component takes as
input the source code file and uses the class
AbstractSourceTree (AST) of SharpDevelop [11] to model the
abstract syntax tree of the code. While compiling a source
code file, a binary tree is created, each node of which
represents a line of code. Traversing this binary tree, once the
tree is completed, offers access to any part of the source code.

Analyzing the statistical component described above we
can see that it consists of two sub-components, the Parser and
the Visitor. The Parser analyses the source code and creates
the AST as mentioned earlier. After it finishes, the Visitor
passes through the tree collecting useful information, while
giving the opportunity to the user to make changes and
additions to the information stored. The implementation of the
Visitor utilized the AbstractAstVisitor class of SharpDevelop,
with some minor additions to help accessing all the nodes of
the AST, both at the high and the low level characteristics of
the programming language. The Visitor recursively visits each
node and stores in stack-form lists all the information
identified according to the node‟s type. In the experiments
described in the next section thirteen such lists were created;
nevertheless, the way the Visitor is structured enables the
addition of any new lists or the modification of existing ones
in a quite easy and straightforward manner.

The third and final component is actually the heart of the
mutations production. This component analyses the
information stored in the lists created by the Visitor so as to
identify the structure and content of the source code, and
creates mutated programs by applying a number of predefined
operators to the initial program. These mutators are
responsible for creating a number of different variations of the
initial source code based on the rules each of them represents
without breaching the grammatical correctness of the resulting
program.

Mutations are performed at the method level via operators
that are usually of arithmetic, relational, logical form, and at
the class level with operators applied to a class or a number of
classes and usually refer to changing calls to methods or
changing the access modifiers of the class characteristics
(public, private, friendly etc.). The operators supported by the
proposed mutation engine are the following:

Arithmetic

 AORBA – arithmetic operations replacement (binary,

assignment)

 AORS – arithmetic operations replacement (shortcut)

 AOIS – arithmetic operations insertion (shortcut)

 AOIU – arithmetic operations insertion (unary)

 AOIA – arithmetic operations insertion (assignment)

 AODS – arithmetic operations deletion (shortcut)

 AODU – arithmetic operations deletion (unary)

 AODA – arithmetic operations deletion (assignment)

Relational

 ROR – relational operations replacement

Conditional

 COR – conditional operations replacement

 COI – conditional operations insertion

 COD – conditional operations deletion

Logical

 LOR – logical operations replacement

 LOI – logical operations insertion

 LOIA – logical operations insertion (assignment)

 LOD – logical operations deletion

 LODA – logical operations deletion (assignment)

Shift

 SOR – shift operations replacement

 SOIA – shift operations insertion (assignment)

 SODA – shift operations deletion (assignment)

Replacement

 PR – parameter replacement

 LVR – local variable replacement

B. Specification-Based Mutations

The number of possible mutated programs for a certain
case-study may be quite large depending on the type and
number of statements in the source code. Therefore, when
testing is based on mutations processing time may
substantially increase as it is proportional to the number of
mutants processed. This is a significant problem that may
hinder the use of mutation testing in certain cases. Thus, there
is a need to minimize mutation testing execution time. This is
feasible taking into account the fact that a considerable
number of useless mutations may be observed as the changes
made to the code correspond to invalid forms of executions
for that particular program as these are determined by the
program‟s specifications. Therefore, we need to take these
specifications into consideration when producing the mutants.
This is exactly what we do via the Code Contracts supported
in VS2010. Additionally, this feature is enhanced by ruling
out mutation cases that have syntactical errors and are
practically of no use.

The following example demonstrates how mutations are
driven by the specifications inserted via CC, where class Test
includes methods Foo and Goo and uses CC to express two
pre-conditions (denoted by Contact.Requires) and one post-
condition (denoted by Contact.Ensures):

public class Test {

 private int Foo(int a, int b) {

 Contract.Requires(a > b);

 Contract.Requires(b > 0);

 Contract.Ensures(Contract.Result<int>()>0);

 …

 return (a / b);

 } …

 private void Goo() {

 int x, y;

….

 x = y + 10;

 int result = Foo (x , y) }

In Goo the assignment of x affects the values with which

Foo is called. The first pre-condition requires that x>y. The

72

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

engine normally would perform operation replacement

substituting „+‟ with „-‟, „/‟, „%‟ and „*‟. Due to the pre-

condition the engine will drop the first three replacements and

use only the last one as it is the only replacement that will still

satisfy the pre-condition. The same applies for b>0, where

any arithmetic replacement should not set b equal or less than

zero. Therefore, a sort of “thinking” before producing a

certain mutation is implemented in the engine which enables

the production only of valid mutants thus ensuring that the

minimum possible time and effort will be spent in the

subsequent analysis and testing activities.

C. The software tool

A dedicated software tool was developed to support the
whole process. An example scenario is given below to
demonstrate its operation: A source code file and the project
file of the program tested are given as input to the system. The
project file and all the references to other files or libraries are
automatically located and linked, and the source code file is
compiled through the validation component. In the case of
compilation errors a pop up window is presented to the user
with the corresponding information (Figure 2) and the process
is terminated. If there are just warnings, the user is again
informed, but the system now continues to the next step.
Statistical Analysis of the source code is executed next
resulting the creation of the AST. The visitor component then
passes through the binary tree and creates the lists that store
the information found in the source code. Lastly, the third
component takes as input the lists created earlier by the visitor
and a set of selected mutators, applies these operators and
returns the resulting mutated programs (Figure 3).

Figure 2. Execution : Errors in compilation

Figure 3. Execution : Mutations successfully produced

IV. EXPERIMENTAL RESULTS

A series of preliminary experiments was conducted to
assess the correctness and efficiency of the proposed testing
approach. The aim here was twofold: First, to demonstrate
that the proposed engine works as it is supposed to, that is, it
is able to produce correctly a number of mutations to be used
for testing by performing atomic changes to the source code in
hand according to a selected operator. Second, to assess
whether the incorporation of specifications in the way
mutations are produced indeed improves its performance by
allowing only certain types of mutations to be executed and
thus bounding the computational burden for revealing faults.

The first experiment is involved with assessing the quality
(adequacy) of test cases to identify faults in a benchmark
program via the use of the proposed approach. The second
deals with fault detection using two sample programs with
injected faults and producing mutants for detecting those
faults. The final experiment compares the number of
mutations produced with a standard mutation process to that
of a specifications-driven production so as to assess the
improvement in time performance. The experiments are
analyzed below:

A. Test-Data Quality Assessment

This experiment used as benchmark the well-known triangle

classification program listed below, which was tested against

certain test data presented in Table I.

int triang(int i, int j, int k) {

 if ((i <= 0) || (j <= 0) || (k <= 0))

 return 4;

 int tri = 0;

 if (i==j) tri+=1;

 if (i==k) tri+=2;

 if (j==k) tri+=3;

 if (tri==0) {

 if ((i+j==k) || (j+k<=i) || (i+k<=j))

tri=4;

 else tri=1;}

 else {

 if (tri>3) tri=3;

 else {

73

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 if ((tri==1) && (i+j>k)) tri=2;

 else {

 if ((tri==2) && (i+k>j)) tri=2;

 else {

 if ((tri==3) && (j+k>i)) tri = 2;

 else tri = 4; } } } }

 return tri; } }

TABLE I. TEST DATA THAT COVER ALL POSSIBLE OUTPUTS OF THE

TRIANGLE CLASSIFICATION PROGRAM (TCP)

i j k Result

2 2 2 equilateral

0 1 2 not a triangle

3 3 1 isosceles

3 4 2 scalene

Using the values of Table I for the three variables it seems

at first that we have tested adequately the TCP. Nevertheless,
if we employ the mutation engine proposed we may conclude
that the aforementioned set of test data is of low quality as at
least one atomic change produces an error that is not
recognized by the set. Indeed, the engine produced several
mutations of which the one below passed the set as it
successfully yields an identical result as the original program:

if ((i <= 0) || (j < 0) || (k <= 0))

This simple code mutation suggests that indeed the
proposed engine is able to assess the quality of a set of data to
adequately test a given program.

B. Fault Detection

This set of experiments investigated the ability of the
mutation engine to reveal errors that were injected in the
initial source code of two programs, the first finds the
maximum number between four integers, while the second
implements division of two integer numbers and it is
controlled by specifications expressed with code contracts.

In the first example, three faults were inserted in the code
below, one relational, one parameter replacement and one
unary.

public class FindMax {

 public int getMax(int num1, int num2, int

 num3, int num4) {

 int max = 0;

 if (num1 > num2) max = num1;

 else max = num3;

//** should have been max = num2 **//

 if (max < num3) {

 max = num3;

 if (max > num4) max = num3; }

//** condition should have been (max < num4)

**//

 else {

 if (max < num4) max = num4; }

 return -max; } }

//** should have been return max **//

The engine applied a series of mutators, of which

operators ROR, PR and AODU were actually the ones that

revealed the injected errors. More specifically, ROR replaced
relational operation „>‟ with „<‟, „>=‟, „<=‟, „-‟ and „!=‟
capturing the proper behavior. PR performed every possible
combination of parameter replacement among (num1, num2,
num3 and num4) resulting in the correct identification of
presenting the error because of the use of num2 instead of
num3. Finally, AODU successfully located the error in the last
line after removing the minus sign.

The second example below employs CC with three pre-
conditions, one post-condition and one invariant, and involves
two errors inserted in class CompareParadigm that cannot be
traced by the static analyzer in VS2010.

class CompareParadigm {

 int num,den;

 public CompareParadigm(int numerator, int

denominator) {

 Contract.Requires(0 < denominator);

 Contract.Requires(0 <= numerator);

 Contract.Requires(numerator>denominator);

 this.num += numerator;

 //** should have been this.num = numerator **//

 this.den = denominator; }

 [ContractInvariantMethod]

 private void ObjectInvariant() {

 Contract.Invariant(this.den > 0);

 Contract.Invariant(this.num >= 0); }

 public int ToInt() {

Contract.Ensures(Contract.Result<int>()>=0);

 return this.num * this.den; } }

//** should have been this.num / this.den **//

The engine was once again capable of bringing these

errors to light using the arithmetic operation replacement
(AORBA) and arithmetic operations deletion (AODA)
mutators.

C. Normal vs Specifications-Based Mutations Production

As mentioned earlier, a sort of “intelligence” was
embedded in the engine that eliminates all mutants that violate
the pre-conditions, post-conditions or invariants set for a
program. Using class CompareParadigm listed earlier, we
will compare the number of mutations produced by the
mutation engine with the use of specifications to that of a
normal (typical) mutations generator (in this case the engine
with the CC disabled). Table II lists the mutations produced
according the operator used. One may easily notice that a 58%
reduction to the mutants was achieved by the “intelligent”
engine, which resulted in 16 mutated programs compared to
38 produced without taking into consideration the specs. This
is indeed a remarkable saving of effort and time with just a
small part of code consisting of less than 20 statements.
Therefore, we can safely argue that in cases of large programs
the computational burden will be considerably eased,
preserving at the same time the effectiveness and efficiency of
the testing process.

74

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

TABLE II. MUTATED PROGRAMS CREATED BY THE ENGINE WITH

(SPECS-BASED) AND WITHOUT THE USE OF SPECIFICATIONS (NORMAL)

Operator
Number of Mutations

Specs-based Normal

AORBA 5 8

AOIS 7 10

AOIU 0 6

LOI 2 6

PR 2 3

LVR 0 5

Total 16 38

V. CONCLUSION AND FUTURE WORK

Software testing is an important, though complex, area of
software development that aims at increasing the quality and
reliability of software systems. Automatic software testing
approaches are increasingly popular among researchers that
attempt to handle the aforementioned complexity and lead to
faster and cheaper software development with high quality
standards.

Mutation testing is a technique that produces different
versions of a program under study which differ slightly form
the original one and uses these versions either to identify
faults or assess the adequacy of a given set of test cases. In
this context, the present paper proposed a simple, yet efficient
mutation engine, which uses a number of mutation operators
that can be applied at the method level and incorporating a
sort of intelligence to generate only valid mutants based on
the program‟s specifications. The engine is developed in the
Visual Studio 2010 platform and utilized Code Contracts to
represent the specifications that must be satisfied with pre-
conditions, post-conditions and invariants.

The engine is supported by a dedicated software tool
consisting of two main parts. The first part verifies the
syntactical correctness of the source code and proper linking
with the appropriate libraries, and provides statistical analysis
of the source code, using grammatical analysis and producing
the Abstract Source Tree representation of the source code.
The second part uses the information gathered from the
previous part and generates mutations using specific operators
and obeying to the rules imposed by the encoded
specifications.

A series of experiments was conducted that showed that
the mutation engine constitutes a tool that may efficiently be
used for identifying faults in the code and for assisting to the
creation of the proper set of test data. The incorporation of the
specification-based concepts can significantly improve
performance by reducing the number of mutants processed,
thus saving time and effort.

Future work will involve extending the proposed engine
to include more class-level mutators, as well as investigating

the potential of supporting other programming languages
under the .Net framework. Moreover, we plan to integrate our
tools with tools offered by the VS2010, like the PEX, which is
responsible for unit testing and UModel, which assists in
creating UML diagrams. This integration will enable the
formation of a complete testing environment with dynamic
user interaction, both at the flow of control level and at the
diagrammatical. Finally, our efforts will concentrate on
evaluating the engine on a more systematic basis using sample
programs of different size and complexity and assessing
various parameters like the time for creating and processing
mutations, the type of mutators used, the nature of the errors
induced, etc. This systematic investigation will also address
scalability issues and more specifically our future
experimental evaluation will include code from large-sized,
real-life software projects.

REFERENCES

[1] C. Kaner, J.H. Falk, , H.Q. Nguyen, Testing Computer
Software, John Wiley & Sons Inc., New York, NY, USA,
1999.

[2] Bertolino, “Software testing research: achievements,
challenges, dreams”, Proc. 29th International Conference
on Software Engineering (ICSE 2007): Future of Software
Engineering (FOSE‟07), Minneapolis, MN, USA, 2007,
pp. 85–103.

[3] P. McMinn, “Search-based Software Test Data
Generation: A Survey”, Software Testing, Verification
and Reliability Vol. 14(2), 2004, pp.105–156.

[4] R.A. DeMillo, R.J. Lipton and F.G. Sayward, “Hints on
Test Data Selection: Help for the Practicing Programmer”,
IEEE Computer Vol. 11(4), 1978, pp. 34–41.

[5] R.G. Hamlet, “Testing Programs with the Aid of a
Compiler”, IEEE Transactions on Software Engineering,
Vol. 3(4), 1997, pp. 279-290.

[6] “Mutation Testing Repository”,
http://www.dcs.kcl.ac.uk/pg/jiayue/ repository/ ,
[accessed 10 May 2011]

[7] A.A. Sofokleous and A.S. Andreou, “Automatic,
Evolutionary Test Data Generation for Dynamic Software
Testing”, Journal of Systems and Software, Vol. 81(11),
2008, pp. 1883–1898.

[8] C.C. Michael, G. McGraw and M.A. Schatz, “Generating
software test data by evolution”, IEEE Transactions on
Software Engineering (12), 2001, pp. 1085–1110.

[9] “Visual Studio 2010”, (2009)
http://www.microsoft.com/visualstudio/en-
us/products/2010-editions, [accessed 18 May 2011]

[10] “Code Contracts User Manual”, (2010), Microsoft
Corporation, http://research.microsoft.com/en-
us/projects/contracts/userdoc.pdf [accessed 20 May 2011]

[11] “SharpCode”,(2009),
http://www.icsharpcode.net/opensource/sd/, [accessed 17
May 2011]

75

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://www.dcs.kcl.ac.uk/pg/jiayue/%20repository/
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235651%232008%23999189988%23698135%23FLA%23&_cdi=5651&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=fabd4ee7367395cc4c815772b9c00203
http://www.microsoft.com/visualstudio/en-us/products/2010-editions
http://www.microsoft.com/visualstudio/en-us/products/2010-editions
http://www.icsharpcode.net/opensource/sd/

