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Abstract—This paper presents a simple and efficient engine 

which produces mutations of source code written in C#. The 

novelty of this engine is that it produces mutations that do not 

contradict with the specifications of the program. The latter are 

described by a set of pre- and post-conditions and invariants. 

The engine comprises two parts, a static analysis and syntactic 

verification component and a mutation generation component. 

Preliminary experiments showed that the proposed engine is 

more efficient than a simple mutations generator in terms of 

producing only valid mutations according to the specifications 

posed, thus saving time and effort during testing activities. 
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I.  INTRODUCTION  

Technology advancements nowadays lead to the 
automation of a large number of activities within the software 
development process. The exploitation of computing power 
drives the need for producing better, faster and more reliable 
software systems. Nevertheless, the aforementioned targets 
increase software complexity and size, making this need hard 
to be satisfied. The competition in the software development 
market pushes companies to increase their productivity, 
developing software in tighter time limits usually sacrificing 
the quality of the resulting software. 

One of the most significant reasons for the inadequate 
quality control in software development is the lack of efficient 
software testing. The latter is a way for verifying the 
correctness and appropriateness of a software system, or, 
alternatively, for ensuring that a program meets its 
specifications ([1], [2]). Software testing is not a simple 
process; on the contrary, it consumes a large percentage of the 
time and budget of the whole development process. In some 
cases it even surpasses the time needed for the creation of the 
software product. Its main purpose is to reveal and locate 
faults so as to assist developers improving the functional 
behavior of the system under development. 

Software testing consists of two main processes, the 
identification of faults (testing) and their correction 
(debugging). Indentifying faults is the most time consuming 
process as it can take up to 95% of the time of software 
testing. Having this in mind, we can safely conclude that there 
will be a constant need to develop tools that will assist in 
accelerating and automating the testing process, guiding 
developers to locate and debug faults faster and more 
efficiently. 

The aim of the present paper is to introduce a mutation 
engine for source code written in C#, which is the basic 
element of a novel mutation testing technique that takes into 
consideration the specifications of the program for creating 
only valid mutants. The engine is implemented in Visual 
Studio 2010 and consists of two components: The first offers 
the ability to validate the grammatical correctness of the 
source code and provides a form of statistical analysis for 
exporting useful information that can be used to 
process/modify the source code. The second involves the 
production of mutations of the original source code and 
facilitates the identification of faults, as well as the assessment 
of the quality of test data. 

The rest of the paper is structured as follows: Section II 
describes briefly the basic concepts that form the necessary 
technical background of this work. Section III presents the 
mutation engine, its architecture and key elements ruling the 
generation of mutations, as along with a brief demonstration 
of the supporting software tool. Section IV describes a set of 
preliminary experiments and the corresponding results that 
indicate the correctness and efficiency of the proposed 
approach. Finally, Section V concludes the paper and suggests 
some steps for future work. 

II. TECHNICAL BACKGROUND 

According to McMinn [3], three different kinds of 
software testing techniques exist. These are White Box 
Testing (WBT), Black Box Testing (BBT) and the mixing of 
the two called Gray Box Testing (GBT). Each of these three 
techniques offers its own advantages and disadvantages, 
differing on the way test cases are created and executed. In 
BBT the test cases are created based on the functions and 
specifications of the system under testing without the need for 
actual knowledge of the source code.  WBT requires that the 
tester needs to have full access to the source code and know 
exactly the way it works. Advantages of this method are that it 
can locate coincidental correctness, this is the case where the 
final result is correct but the way it is calculated is not. 
Moreover, all possible paths of code execution may 
potentially be tested offering the ability to identify errors 
or/and locate parts of dead code, that is, parts that are never 
executed.  

Different techniques have been proposed for WBT making 
use of the structure of the source code or the sequence of 
execution, giving birth to static code analysis and testing for 
the former and dynamic testing for the latter. We concentrate 
on dynamic testing where the actual flow of execution drives 
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test data production. One such technique that has gain serious 
interest among the research community is Mutation Testing 
(MT).  

MT is a relatively new technique introduced by DeMillo et 
al. [4] and Hamlet [5], which is based on performing 
replacements in code statements through certain operators that 
correspond to specific types of errors, producing the so-called 
mutant programs; the latter are then used to assist in 
producing or/and assessing the quality of test data as regards 
revealing the errors in the mutants [6].  

The general idea behind MT is that the faults being 
injected correspond to common errors made by programmers. 
This means that the mutants are slightly altered versions of 
programs which are very close to their correct form. Each 
fault is actually a single change of the initial version of the 
program, pretty much the same as a slight change (mutation) 
in living species causing a different form of life. The quality 
of a produced set of test cases is assessed by executing all the 
mutants and checking whether the injected faults have been 
detected by the set or not.  

There are quite a few ways to represent code and provide 
the means for better understanding and management of the 
source code. Most of them use graphs or/and binary trees that 
are able to depict graphically how the program actually works. 
The Control Flow Graph (CFG) is one such way of 
graphically representing the possible execution paths. Each of 
its nodes usually corresponds to a single line of code, while 
the arcs connecting nodes represent the flow of execution. 
CFG may be used as the cornerstone of static analysis, where 
its construction and traversing offers the ability to identify and 
store information about the type of statements present in the 
source code and the details concerning the alternative courses 
of execution. A fine example is the BPAS framework 
introduced by Sofokleous and Andreou [7] for automatically 
testing Java programs. More to that, CFG may drive the 
generation of test data by providing the means to construct an 
objective function for optimization algorithms to satisfy (e.g. 
by evolution, like Michael et al. [8]).  

During the last years the Visual Studio (VS) platform [9] 
has been constantly evolving becoming one of the most wide 
spread platforms used today in the software industry. This is 
partly due to the fact that it provides to developers the ability 
to create a number of different types of applications, like 
window-apps, web-apps, services, classes etc. The wide 
acceptance of VS has driven the development of a number of 
third party tools and plug-ins that enhance the platform with 
even more functionality, making development of special-
purpose applications simpler and easier. The aforementioned 
advantages of VS2010 led us to investigate its use for 
software testing, and more specifically for developing a new 
mutation testing tool. 

Code Contracts (CC) are offered by VS2010 as the means 
to encode specifications [10]. CC may consist of pre-
conditions, post-conditions and invariants. Their aim is to 
improve the testing process during runtime checking and 
static contract verification, as well as to assist in 
documentation generation. 

The mutation engine introduced in this paper is partly 
based on the aforementioned concepts. More specifically, it 

utilizes CFG and static analysis as in [7] to extract the 
information needed for analyzing and describing adequately 
the source code under investigation. Moreover, it employs CC 
to embed the specifications required so that the program 
functions properly and static analysis (contract verification) in 
order to guide the production of meaningful mutant programs, 
that is, programs that do not violate their original 
specifications. The engine targets at offering the means for 
automatic, time-preserving software testing. 

III. MUTATION ENGINE 

A. Architecture 

As previously mentioned, the mutation engine was 
implemented in the VS2010 platform. The selection of 
VS2010 was made partly because it is a relatively newly 
introduced platform, meaning that the components developed 
may be used as a backbone for future tools and studies based 
on this platform, without facing any incompatibility issues 
compared to the use of older platforms. Also, to the best of 
our knowledge, at present no other such system exists. The 
engine was specifically designed to work with the C# 
programming language, but with minor changes and additions 
the support of the rest of the programming languages VS2010 
platform offers may be enabled as well.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.  The mutation engine architecture 

The architecture of the proposed mutation engine is 
depicted graphically in Figure 1 where three major 
components enable the execution of the engine‟s stages. The 
first is a source code validation component, which compiles 
the source code and presents the erroneous lines in code if 
such exist. This component takes as input a source code file 
(.cs), or an executable file (.exe), or a dynamic link library file 
(.dll), as well as the project file (.csproj). The project file is 
needed to provide the component with information for 
references in libraries and files that the source code must use 
and are part of the program. Validation includes compiling the 
source code and making sure that no syntactic or other 
compilation errors exist so as to proceed with the second stage 
of the engine which is the production of mutations. Otherwise 
the engine terminates. 
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The second component performs statistical analysis of the 
source code without the need of an executable form of the 
program under testing. By statistical analysis we mean 
exporting the useful information from the source code as 
regards the structure of the program. This component takes as 
input the source code file and uses the class 
AbstractSourceTree (AST) of SharpDevelop [11] to model the 
abstract syntax tree of the code. While compiling a source 
code file, a binary tree is created, each node of which 
represents a line of code. Traversing this binary tree, once the 
tree is completed, offers access to any part of the source code. 

Analyzing the statistical component described above we 
can see that it consists of two sub-components, the Parser and 
the Visitor. The Parser analyses the source code and creates 
the AST as mentioned earlier. After it finishes, the Visitor 
passes through the tree collecting useful information, while 
giving the opportunity to the user to make changes and 
additions to the information stored. The implementation of the 
Visitor utilized the AbstractAstVisitor class of SharpDevelop, 
with some minor additions to help accessing all the nodes of 
the AST, both at the high and the low level characteristics of 
the programming language. The Visitor recursively visits each 
node and stores in stack-form lists all the information 
identified according to the node‟s type. In the experiments 
described in the next section thirteen such lists were created; 
nevertheless, the way the Visitor is structured enables the 
addition of any new lists or the modification of existing ones 
in a quite easy and straightforward manner. 

The third and final component is actually the heart of the 
mutations production. This component analyses the 
information stored in the lists created by the Visitor so as to 
identify the structure and content of the source code, and 
creates mutated programs by applying a number of predefined 
operators to the initial program. These mutators are 
responsible for creating a number of different variations of the 
initial source code based on the rules each of them represents 
without breaching the grammatical correctness of the resulting 
program.  

Mutations are performed at the method level via operators 
that are usually of arithmetic, relational, logical form, and at 
the class level with operators applied to a class or a number of 
classes and usually refer to changing calls to methods or 
changing the access modifiers of the class characteristics 
(public, private, friendly etc.). The operators supported by the 
proposed mutation engine are the following: 

Arithmetic 

 AORBA – arithmetic operations replacement (binary, 

assignment) 

 AORS – arithmetic operations replacement (shortcut) 

 AOIS – arithmetic operations insertion (shortcut) 

 AOIU – arithmetic operations insertion (unary) 

 AOIA – arithmetic operations insertion (assignment) 

 AODS – arithmetic operations deletion (shortcut) 

 AODU – arithmetic operations deletion (unary) 

 AODA – arithmetic operations deletion (assignment) 

Relational 

 ROR – relational operations replacement 

Conditional 

 COR – conditional operations replacement 

 COI – conditional operations insertion 

 COD – conditional operations deletion 

Logical 

 LOR – logical operations replacement 

 LOI – logical operations insertion 

 LOIA – logical operations insertion (assignment) 

 LOD – logical operations deletion 

 LODA – logical operations deletion (assignment) 

Shift 

 SOR – shift operations replacement 

 SOIA – shift operations insertion (assignment) 

 SODA – shift operations deletion (assignment) 

Replacement 

 PR – parameter replacement 

 LVR – local variable replacement 

B. Specification-Based Mutations 

The number of possible mutated programs for a certain 
case-study may be quite large depending on the type and 
number of statements in the source code. Therefore, when 
testing is based on mutations processing time may 
substantially increase as it is proportional to the number of 
mutants processed. This is a significant problem that may 
hinder the use of mutation testing in certain cases. Thus, there 
is a need to minimize mutation testing execution time. This is 
feasible taking into account the fact that a considerable 
number of useless mutations may be observed as the changes 
made to the code correspond to invalid forms of executions 
for that particular program as these are determined by the 
program‟s specifications. Therefore, we need to take these 
specifications into consideration when producing the mutants. 
This is exactly what we do via the Code Contracts supported 
in VS2010.  Additionally, this feature is enhanced by ruling 
out mutation cases that have syntactical errors and are 
practically of no use. 

The following example demonstrates how mutations are 
driven by the specifications inserted via CC, where class Test 
includes methods Foo and Goo and uses CC to express two 
pre-conditions (denoted by Contact.Requires) and one post-
condition (denoted by Contact.Ensures):  

 
public class Test  {  

  private int Foo(int a, int b)  { 

   Contract.Requires(a > b); 

   Contract.Requires(b > 0); 

   Contract.Ensures(Contract.Result<int>()>0); 

 … 

   return (a / b);  

  }  … 

  private void Goo( )  { 

   int x, y; 

…. 

   x = y + 10; 

   int result = Foo (x , y)  } 

 

In Goo the assignment of x affects the values with which 

Foo is called. The first pre-condition requires that x>y. The 
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engine normally would perform operation replacement 

substituting „+‟ with „-‟, „/‟, „%‟ and „*‟. Due to the pre-

condition the engine will drop the first three replacements and 

use only the last one as it is the only replacement that will still 

satisfy the pre-condition. The same applies for b>0, where 

any arithmetic replacement should not set b equal or less than 

zero. Therefore, a sort of “thinking” before producing a 

certain mutation is implemented in the engine which enables 

the production only of valid mutants thus ensuring that the 

minimum possible time and effort will be spent in the 

subsequent analysis and testing activities. 

C. The software tool 

A dedicated software tool was developed to support the 
whole process. An example scenario is given below to 
demonstrate its operation: A source code file and the project 
file of the program tested are given as input to the system. The 
project file and all the references to other files or libraries are 
automatically located and linked, and the source code file is 
compiled through the validation component. In the case of 
compilation errors a pop up window is presented to the user 
with the corresponding information (Figure 2) and the process 
is terminated. If there are just warnings, the user is again 
informed, but the system now continues to the next step. 
Statistical Analysis of the source code is executed next 
resulting the creation of the AST. The visitor component then 
passes through the binary tree and creates the lists that store 
the information found in the source code. Lastly, the third 
component takes as input the lists created earlier by the visitor 
and a set of selected mutators, applies these operators and 
returns the resulting mutated programs (Figure 3).  

 
 

 
Figure 2.  Execution : Errors in compilation 

 

 
Figure 3.  Execution : Mutations successfully produced 

IV. EXPERIMENTAL RESULTS 

A series of preliminary experiments was conducted to 
assess the correctness and efficiency of the proposed testing 
approach. The aim here was twofold: First, to demonstrate 
that the proposed engine works as it is supposed to, that is, it 
is able to produce correctly a number of mutations to be used 
for testing by performing atomic changes to the source code in 
hand according to a selected operator. Second, to assess 
whether the incorporation of specifications in the way 
mutations are produced indeed improves its performance by 
allowing only certain types of mutations to be executed and 
thus bounding the computational burden for revealing faults. 

The first experiment is involved with assessing the quality 
(adequacy) of test cases to identify faults in a benchmark 
program via the use of the proposed approach. The second 
deals with fault detection using two sample programs with 
injected faults and producing mutants for detecting those 
faults. The final experiment compares the number of 
mutations produced with a standard mutation process to that 
of a specifications-driven production so as to assess the 
improvement in time performance. The experiments are 
analyzed below: 

A. Test-Data Quality Assessment 

This experiment used as benchmark the well-known triangle 

classification program listed below, which was tested against 

certain test data presented in Table I.  

 
int triang(int i, int j, int k)  { 

  if ((i <= 0) || (j <= 0) || (k <= 0)) 

    return 4; 

  int tri = 0; 

  if (i==j) tri+=1; 

  if (i==k) tri+=2; 

  if (j==k) tri+=3;          

  if (tri==0)  { 

    if ((i+j==k) || (j+k<=i) || (i+k<=j))   

tri=4;  

    else   tri=1;} 

  else  { 

    if (tri>3)   tri=3; 

    else  { 

73

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



      if ((tri==1) && (i+j>k)) tri=2; 

      else  { 

        if ((tri==2) && (i+k>j)) tri=2; 

        else  { 

          if ((tri==3) && (j+k>i))  tri = 2; 

          else  tri = 4; } } } } 

  return tri; } } 

 

TABLE I.  TEST DATA THAT COVER ALL POSSIBLE OUTPUTS OF THE 

TRIANGLE CLASSIFICATION PROGRAM (TCP) 

i j k Result 

2 2 2 equilateral 

0 1 2 not a triangle 

3 3 1 isosceles 

3 4 2 scalene 

 
Using the values of Table I for the three variables it seems 

at first that we have tested adequately the TCP. Nevertheless, 
if we employ the mutation engine proposed we may conclude 
that the aforementioned set of test data is of low quality as at 
least one atomic change produces an error that is not 
recognized by the set. Indeed, the engine produced several 
mutations of which the one below passed the set as it 
successfully yields an identical result as the original program: 

 

if ((i <= 0) || (j < 0) || (k <= 0)) 
 

This simple code mutation suggests that indeed the 
proposed engine is able to assess the quality of a set of data to 
adequately test a given program.  

B. Fault Detection 

This set of experiments investigated the ability of the 
mutation engine to reveal errors that were injected in the 
initial source code of two programs, the first finds the 
maximum number between four integers, while the second 
implements division of two integer numbers and it is 
controlled by specifications expressed with code contracts.  

In the first example, three faults were inserted in the code 
below, one relational, one parameter replacement and one 
unary. 
 

public class FindMax { 

  public int getMax(int num1, int num2, int  

       num3, int num4)  { 

    int max = 0; 

    if (num1 > num2)   max = num1;  

    else max = num3;  

//** should have been max = num2 **// 

    if (max < num3)  { 

      max = num3; 

      if (max > num4)   max = num3;  } 

//** condition should have been (max < num4) 

**// 

    else { 

      if (max < num4)   max = num4;  } 

      return -max;  }  } 

//** should have been return max **// 

 
The engine applied a series of mutators, of which 

operators ROR, PR and AODU were actually the ones that 

revealed the injected errors. More specifically, ROR replaced 
relational operation „>‟ with „<‟, „>=‟, „<=‟, „-‟  and „!=‟ 
capturing the proper behavior. PR performed every possible 
combination of parameter replacement among (num1, num2, 
num3 and num4) resulting in the correct identification of 
presenting the error because of the use of num2 instead of 
num3. Finally, AODU successfully located the error in the last 
line after removing the minus sign.  

The second example below employs CC with three pre-
conditions, one post-condition and one invariant, and involves 
two errors inserted in class CompareParadigm that cannot be 
traced by the static analyzer in VS2010.  

 
class CompareParadigm  { 

  int num,den; 

 

  public CompareParadigm(int numerator, int 

denominator)   { 

  Contract.Requires(0 < denominator); 

  Contract.Requires(0 <= numerator); 

  Contract.Requires(numerator>denominator); 

  this.num += numerator; 

 //** should have been this.num = numerator **// 

 this.den = denominator;  } 

 

  [ContractInvariantMethod] 

    private void ObjectInvariant() { 

    Contract.Invariant(this.den > 0); 

    Contract.Invariant(this.num >= 0); } 

 

  public int ToInt() { 

   

Contract.Ensures(Contract.Result<int>()>=0); 

   return this.num * this.den;  } } 

//** should have been this.num / this.den **// 

 
The engine was once again capable of bringing these 

errors to light using the arithmetic operation replacement 
(AORBA) and arithmetic operations deletion (AODA) 
mutators. 

C. Normal vs Specifications-Based Mutations Production 

As mentioned earlier, a sort of “intelligence” was 
embedded in the engine that eliminates all mutants that violate 
the pre-conditions, post-conditions or invariants set for a 
program.  Using class CompareParadigm listed earlier, we 
will compare the number of mutations produced by the 
mutation engine with the use of specifications to that of a 
normal (typical) mutations generator (in this case the engine 
with the CC disabled). Table II lists the mutations produced 
according the operator used. One may easily notice that a 58% 
reduction to the mutants was achieved by the “intelligent” 
engine, which resulted in 16 mutated programs compared to 
38 produced without taking into consideration the specs. This 
is indeed a remarkable saving of effort and time with just a 
small part of code consisting of less than 20 statements. 
Therefore, we can safely argue that in cases of large programs 
the computational burden will be considerably eased, 
preserving at the same time the effectiveness and efficiency of 
the testing process. 
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TABLE II.  MUTATED PROGRAMS CREATED BY THE ENGINE WITH 

(SPECS-BASED) AND WITHOUT THE USE OF SPECIFICATIONS (NORMAL) 

Operator 
Number of Mutations 

Specs-based Normal 

AORBA 5 8 

AOIS 7 10 

AOIU 0 6 

LOI 2 6 

PR 2 3 

LVR 0 5 

Total 16 38 

V. CONCLUSION AND FUTURE WORK 

Software testing is an important, though complex, area of 
software development that aims at increasing the quality and 
reliability of software systems. Automatic software testing 
approaches are increasingly popular among researchers that 
attempt to handle the aforementioned complexity and lead to 
faster and cheaper software development with high quality 
standards.  

Mutation testing is a technique that produces different 
versions of a program under study which differ slightly form 
the original one and uses these versions either to identify 
faults or assess the adequacy of a given set of test cases. In 
this context, the present paper proposed a simple, yet efficient 
mutation engine, which uses a number of mutation operators 
that can be applied at the method level and incorporating a 
sort of intelligence to generate only valid mutants based on 
the program‟s specifications. The engine is developed in the 
Visual Studio 2010 platform and utilized Code Contracts to 
represent the specifications that must be satisfied with pre-
conditions, post-conditions and invariants.  

The engine is supported by a dedicated software tool 
consisting of two main parts. The first part verifies the 
syntactical correctness of the source code and proper linking 
with the appropriate libraries, and provides statistical analysis 
of the source code, using grammatical analysis and producing 
the Abstract Source Tree representation of the source code. 
The second part uses the information gathered from the 
previous part and generates mutations using specific operators 
and obeying to the rules imposed by the encoded 
specifications. 

A series of experiments was conducted that showed that 
the mutation engine constitutes a tool that may efficiently be 
used for identifying faults in the code and for assisting to the 
creation of the proper set of test data. The incorporation of the 
specification-based concepts can significantly improve 
performance by reducing the number of mutants processed, 
thus saving time and effort. 

Future work will involve extending the proposed engine 
to include more class-level mutators, as well as investigating 

the potential of supporting other programming languages 
under the .Net framework. Moreover, we plan to integrate our 
tools with tools offered by the VS2010, like the PEX, which is 
responsible for unit testing and UModel, which assists in 
creating UML diagrams. This integration will enable the 
formation of a complete testing environment with dynamic 
user interaction, both at the flow of control level and at the 
diagrammatical. Finally, our efforts will concentrate on 
evaluating the engine on a more systematic basis using sample 
programs of different size and complexity and assessing 
various parameters like the time for creating and processing 
mutations, the type of mutators used, the nature of the errors 
induced, etc. This systematic investigation will also address 
scalability issues and more specifically our future 
experimental evaluation will include code from large-sized, 
real-life software projects. 
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