
A Static Robustness Grid Using MISRA C2

Language Rules

Mohammad Abdallah

School of Engineering and

Computing Sciences

Durham University

Durham, UK

m.m.a.abdallah@dur.ac.uk

Malcolm Munro

School of Engineering and

Computing Sciences

Durham University

Durham, UK

malcolm.munro@dur.ac.uk

Keith Gallagher

Department of Computer Sciences

Florida Institute of Technology

Florida, USA

kgallagher@fit.edu

Abstract—Program robustness is the ability of software to

behave correctly under stress. Measuring program

robustness allows programmers to find the program’s

vulnerable points, repair them, and avoid similar mistakes

in the future. In this paper, a Robustness Grid will be

introduced as a program robustness measuring technique. A

Robustness Grid is a table that contains rules classified into

categories, with respect to a program’s function names and

calculates robustness degree. The Motor Industry Software

Reliability Association (MISRA) rules will be used as the

basis for the robustness measurement mechanism. In the

Robustness Grid, for every MISRA rule a score will be given

to a function every time it satisfies or breaches a rule. The

Robustness Grid shows how much each part of the program

is robust, and assists developers to measure and evaluate

robustness degree for each part of a program.

Keywords-Robustness; Robustness Grid; MISRA C2.

I. INTRODUCTION

Robustness is required in critical programs where
failures could cause problems [1]. Robustness is an
important factor in any program development process.
The IEEE defines robustness as “The degree to which a
system or component can function correctly in the
presence of invalid inputs or stressful environmental
conditions” [2].

In this definition, there are three main aspects; the
correct program response, the input data, and system
environment. Program response means that the system
should respond rationally [3], but not necessarily correctly.
It should not fail to reply or react illogically. The input
data is one of the factors that affect the robustness of the
program. A robust program can continue to operate
correctly despite the introduction of invalid input [4].

The environment where the program is run is contained
in hardware, other software systems, and the humans that
run the program. These factors also affect the program
robustness. It is this aspect of robustness that this study is
concerned with.

Static measures of software robustness complement
robustness testing. Robustness testing is a “testing

methodology to detect vulnerabilities of a component
under unexpected inputs or in a stressful environment.” [5]

The objective is to evaluate the robustness features of
imperative programs from the perspective of programmers
and maintainers. Thus it will give an assessment of the
program vulnerabilities, in order to help improve and
certify the robustness of existing programs.

The Robustness Grid is developed as a measurement
tool and is a numeric representation of the robustness
degree for each function, and for the program in total. The
Robustness Grid certifies C program robustness through
applications of MISRA C2 guidelines.

There are different standards that the programmers are
advised to follow during writing a C program to produce a
robust program. However, these standards are not widely
used to measure the program robustness after the program
has been written.

This study will contribute a Robustness Grid using a
number of robust features. The MISRA C2 language rules
will be used as a measurement of the robustness features.
The Robustness Grid will provide the robustness degree
for the program, and each function it includes, as a
numeric value. Thus the Robustness Degree will show the
degree of satisfaction that a program has according
standards of robustness.

In section 2, MISRA C language rules are presented.

Section 3 overviews the existing research in Robustness

Grid technique. In Section 4 the Robustness Grid

Calculations concepts are listed. Section 5 presents the

related work in Robustness measurement. Finally, in

Conclusions future research is highlighted.

II. MISRA C2

The Motor Industry Software Reliability Association
(MISRA) has published a standard set of rules for C and
C++ “to provide assistance to the automotive industry in
the application and creation within vehicle systems of safe
and reliable software” [6]. MISRA C 1998 rules (“MISRA
C1”) where published in 1998 and were followed by
technical clarification document in 2000. In 2004, MISRA
published a second version of MISRA C rules (MISRA
C2) to address some technical and logical problems, and
for further technical clarification. In MISRA C2 the rules

65

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

are rephrased to be more sensible, accurate and
comprehensive.

MISRA C2 rules are classified into two types:
Required (122 rules) and Advisory (20 rules). Required
rules are obligatory and must be followed by developers to
create safe programs. Advisory rules are necessary but not
as important as the Required rules; however a developer
should follow the advisories in order to build a safe
program. In addition, MISRA C2 has 21 categories that
consider different programming processes, coding styles,
and programming syntax.

The MISRA categories cover all C language common
programming issues. The MISRA categories start with
Environment category, which describes the optimum
environment for C programs. Then Language extensions
category, where it has headlines for writing comments
through programming. Documentation category contains
general rules for documentation process.

The syntax format concerns, problems and advice is
covered and discussed in the rest of the categories. An
example of a MISRA C2 rule is rule 8.1:

Rule 8.1 (required) Functions shall have prototype
declarations and the prototype shall be visible at both
the function definition and call. [4]

“X.y” is the MISRA rule numbering method and
means this is rule 1 (“y”) in category 8 (“X”) (Declarations
and definitions). “required” means it the rule is an
obligatory rule.

III. ROBUSTNESS GRID

Measuring software robustness needs to examine
features in order to produce a relative scale that calculates
the robustness degree for functions, and the entire
program.

A. Robustness Features and Robustness Degree

Before discussing the Robustness Grid, some terms
should be clarified: Robustness Features and Robustness
Degree.

Robustness Features are characteristics that affect
software robustness, such as code syntax [7]. Robustness
Features in this study are divided into two groups
depending on their source. Robustness Language Features
certify the robustness degree of code syntax and coding
style. Second, User Functional Requirements features
certify the robustness degree of the service that program
provides, how it reacts to input, and how the system
responds [8].

Robustness Degree is a scale of a program robustness
features satisfaction, expressed as a percentage.

MISRA C rules are divided to several Categories as
described in following section. These categories will be
used to create the Robustness Grid.

B. Robustness Grid

The Robustness Grid is a table showing the robustness

degree of every function in a program and for the entire

program. Then the robustness features satisfaction

percentage will be calculated cumulatively in each

category, function, and whole program. The values

highlight the vulnerable points (low percentage score) of

the functions and program. TABLE II shows an example

of the Robustness Grid. Each category in the Robustness

Grid is independent, so a function could score a high

marks in one category and score low marks in another.
The Robustness Grid has two parts: the static part

which contains the MISRA C2 rules; here, there is no need
to understand the code functionality because only the
program code will be certified. The second part is the
dynamic part, which contains User Functional
Requirements. In this paper, only the static part will be
discussed.

1) Rules selection method and conditions:
In this study, some assumptions and conditions are

applied to programs to be certified by the Robustness Grid:
1. The program must be compileable by a compiler

that satisfies the MISRA C2 environment rules.
2. Programs should satisfy MISRA C2 rules number

1.1 and 14.2 which means the program must satisfy
the ISO Standards [9].

The total number of MISRA C2 rules, after applying
Robustness Grid assumptions and conditions is 100 in 6
Categories.

2) Rule categorization method:
The Robustness Grid (TABLE II) is a table that

classifies MISRA C2 rules into 6 different Categories;
each Category has a set of related rules:

TABLE I. ROBUSTNESS CATEGORY CONSTRUCTIONS

Category Constructs

0
The rules that considers type definition,
arithmetic statements.

1
Rules that consider control statements (if, for,
while …etc).

2 The rules that consider function structure.

3
The rules that consider arrays, pointers, and
data structure (union, struct, enum …).

4
The rule that consider header files and the
pre-processor

5 All MISRA C2 advisory rules.

If a rule is in more than one Category, it will be

classified under the highest Category. If a single line of
code is considered by more than one Category, it will be
certified against each Category, individually.

IV. ROBUSTNESS GRID CALCULATIONS

Certifying program robustness using the Robustness
Grid uses the following procedure:

1. The program must be able to be compiled by the
gcc compiler.

2. Pre-processor code lines are considered as part of
the function main, unless it related to a particular
function.

66

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

3. Rules which are not applicable for all functions in a
program are removed from Robustness Grid in
order to save space.

After the rules have been selected, and program
eligibility is satisfied, the Robustness Grid is built for the
program. In the Robustness Grid, the calculations that
measure the Robustness Degree for the functions and for
the program is novel and introduced here for the first time.

 The Robustness Grid building process is as follows:
1. Each statement in the program is assessed against

all the selected MISRA C2 rules.
2. All selected rules will be put in their categories

depending on the categorisation method defined
above.

3. Each rule has the applied status next to it,
showing whether it is satisfied (+), violated (-), or
not applicable (0).

4. Program Statements will be grouped by their
function.

5. For each function the status of all rules is listed.
6. The Robustness Grid calculations are made for

each function (FACS), category (ACD), and for
the entire program (WPCS).

The SwapAdd.c program is a simple example program
that will be used to illustrate how the Robustness Grid is
applied. The SwapAdd.c program, shown in Fig 1, is a C
program with three functions, main, swap, and incr. The
swap function exchanges two pointers and incr function
increments its first parameter by the value in its second
parameter, and main calls both functions.

In program SwapAdd.c, incr, swap, and main are the
program functions. In the Robustness Grid the numbers
under each function are the rule states; a positive number
(+n) means the rule has been satisfied n times in the
function. Negative numbers (-n) means the rule has been
broken n times in the function. Zero means the rule is not
applicable to the code.

The robustness degree can be calculated as follows:
1. Function Category Satisfaction (FCS): For Category

n the number of times a rule has been satisfies divided
by the number of times the rule has been applied,
expressed as percentage.

2. Program All Categories Satisfaction (PACS): For
Category n, a count of all the times a rule has been
satisfied for all the program’s functions divided by the
number of times the rule has been applied in all
program functions, expressed as percentage.

3. All Categories (between 0 and n) Accumulative
Robustness Degree (ACD): Number of times rules are
satisfied in categories (0 - n) divided by number of
times rules are applied in categories (0 - n), expressed
as percentage.

4. Function All Categories Satisfaction (FACS):
Number of times rules are satisfied in all categories
divided by number of times rules are applied in all
categories, expressed as percentage.

5. Whole Program Categories Satisfaction (WPCS):
For all program functions: Count of all times rules

been satisfied divided by all times that rules been
applicable as a percentage.

Figure 1. SwapAdd.c Program

The result of analysis as shown is TABLE II shows

that the SwapAdd.c program satisfied the robustness
features by 75.5%. To improve the robustness of the
program the category 5 rules should be examined because
they have the smallest PACS ratings. It also shows that
swap should be examined because has the smallest FCS
value.

This static Robustness Grid is still produced manually,
which is a limitation of this study. The automation for the
Grid will be done by using the semantic part of C
language.

V. RELATED WORK

Critical programs must be robust to avoid the problems

that could be caused by failures [10]. The C Language

standards were introduced to avoid the code

misinterpretation, misuse, or misunderstanding. The IEEE

has the ISO/IEC 9899:1999 standard [9], which is used

later by MISRA to produce MISRA C1 and C2. This in

turn led to Jones producing “The New C Standard: An

Economic and Cultural Commentary” [10]. The LDRA

Company uses MISRA C rules in addition to 800 rules

that it created to assess programs [11]. Other C standards

such as “C programming language Coding guideline” [12]

are less frequently used.

#include <stdio.h>

#define LAST 10

void incr(int *num, int i);

void swap(int *a, int *b);

int main(){

 int i, sum = 0, *a = 12,*b = 13;

 for (i = 1; i <= LAST; i++) {

 incr(&sum, i);}

 printf("sum = %d\n", sum);

 swap (&a,&b);

 return 0;

}

void incr(int *num, int i) {

 *num = *num + i;

}

void swap(int *a, int *b) {

 int temp= *a;

 *a= *b;

 *b= temp;

 printf ("pointer a is:%d\n",*a);

 printf ("pointer b is:%d\n",*b);}

67

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Measuring the application of language standard to a
program is one program robustness measurement
technique. Several techniques have been tried to measure
program robustness. Software measurement means
estimates the cost, determine the quality, or predict the
maintainability [13]. Arup and Daniel [14] presented
features such as portability to evaluate some existing
benchmarks of Unix systems. As a result they built a
hierarchy structured benchmark to identify robustness
issues that have not been detected before. Behdis and
Shokat [15] introduced a theoretical foundation for a
robust matrices that reduce the uncertainty in distributed
system. Arne et al. [16] used some robustness criteria such
as input date rate, and CPU clock rate to create a multi-
dimensional robustness matrices and use them to measure
the robustness of a system.

A Robustness Hierarchy is a relative scale to find the
robustness characteristics that needs to be added to
programs. A Robustness Hierarchy is a technique used to
build a robust program. The Hierarchy starts with non-
robust program as first step then adds robust features
before reaching a robust program in the highest level of
the Hierarchy [7].

All the previous software measurement techniques do
not give the developer a fully detailed set of
measurements. Nor do they specify the parts of the
program that need to be modified to raise its quality. Thus
the focus of this study is to give the programmer a full
description for all the robustness features and the degrees
to which they are satisfied.

The Robustness Grid allows the developer to specify
the code lines that need to be modified to improve the
program Robustness Degree.

VI. CONCLUSION AND FUTURE WORK
A Robustness Grid has been defined and it has been

shown how it can work as an assessment tool. This means
that every function in a program can be certified using
MISRA C2 rules through the calculation of a robustness
degree.

The Robustness Degree show the MISRA C2 rules that
have been followed and satisfied by the program and the
rules that have been violated. The Robustness Degree
gives an indication as to where the developer or maintainer
should do some code changes to improve the robustness of
the program.

The calculation of the Robustness Degree can be
considered as simplistic in that is based on percentages of
rules that are passed or failed. It does not fall into the trap
of allowing positive and negative values to cancel each
other out. All rules are treated with the same weight. It is

clear that for any particular program this is not necessarily
so. In the future work, a dynamic robustness features will
be introduced to make the measurement more accurate and
reliable by giving weights to the important statements in
the program. Thus in the Robustness Grid, each static rule
will be weighted by the Dynamic rules to highlight the
different level of importance of the static rules.

REFERECES

[1] G.M. Weinberg, Kill That Code!, Infosystems, 1983, pp. 48-

49.

[2] IEEE, IEEE Standard Glossary of Software Engineering

Terminology, IEEE Std 610.12-1990, IEEE Computer Soc, 1990.

[3] S.D. Gribble, Robustness in complex systems, Proceedings of

the Eighth Workshop on Hot Topics in Operating Systems, 2001,

pp. 21-26.

[4] L.L. Pullum, Software fault tolerance techniques and

implementation, Artech House, Inc., 2001.

[5] L. Bin, L. Xuandong, L. Zhiming, M. Charles, and S. Volker,

Robustness testing for software components, Elsevier North-

Holland, Inc., 2009, pp. 879-897.

[6] M.I.S.R. Association, MISRA website, last access <retrieved:

7, 2011>.

[7] M. Abdallah, M. Munro, and K. Gallagher, Certifying

software robustness using program slicing, 2010 IEEE

International Conference on Software Maintenance, Timisoara,

Romania, 2010, pp. 1-2.

[8] I. Sommerville, Software Engineering, Addison-Wesley,

2006.

[9] ISO/IEC, International Standard ISO/IEC 9899, International

Organaization for Standardization, 1999.

[10] D.M. Jones, The New C Standard: A Cultural and Economic

Commentary, Addison-Wesley Professional, 2003.

[11] LDRA, LDRA Test Suite, last access <retrieved: 7, 2011>.

[12] E. Laroche, C programming language coding guidelines, last

access <retrieved: 7, 2011>.

[13] N.E. Fenton, and S.L. Pfleeger, Software Metrics, A

Rigorous and Practical Approach, PWS Publishing Company,

1997.

[14] A. Mukherjee, and D.P. Siewiorek, Measuring Software

Dependability by Robustness Benchmarking. IEEE Transactions

of Software Engineering 23 (1994) 94-148.

[15] B. Eslamnour, and S. Ali, Measuring robustness of

computing systems. Simulation Modelling Practice and Theory

17 (2009) 1457-1467.

[16] A. Hamann, R. Racu, and R. Ernst, Methods for multi-

dimensional robustness optimization in complex embedded

systems, Proceedings of the 7th ACM & IEEE international

conference on Embedded software, ACM, Salzburg, Austria,

2007, pp. 104-113.

68

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

TABLE II. SWAPADD.C ROBUSTNESS DEGREE

 Category C2 Rules incr FCS% swap FCS% main FCS% PACS%

Category 0

4.1& 7.1 0
3/3
=

100%

+2
5/7
=

71.4%

+1
6/8
=

75%

14/18
=

77.8%

4.2 +2 +2 +4

5.1 +1 +1 +1

5.2 0 -2 -2

Category 1

12.2 +1

4/5
=

80%

0

5/5
=

100%

-1

8/11
=

72.7%

17/21
=

81%

13.1 +1 +3 +4

13.4 0 0 +1

13.5 0 0 -2

13.6 0 0 +1

14.7 +1 +1 +1

17.1 -1 0 0

17.5 +1 +1 +1

ACD (0 – 1) 87.5% 83.3% 73.7% 79.5%

Category 2

8.1 +1

10/12
=

83.3%

+1

8/13
=

61.5%

0

9/12
=

75%

27/37
=

73%

8.2 +1 +1 +1

8.3 +1 +1 +1

8.6 +1 +1 +1

8.11 -1 -1 -2

14.8 0 0 +1

16.1 +1 +1/-2 +3

16.2 +1 0 0

16.3 +2 +2 0

16.4 +1/-1 -2 0

16.5 0 0 -1

16.8 0 0 +1

16.9 +1 +1 +1

ACD (0 – 2) 85% 72% 74.2% 76.3%

Category 3 16.7 +1 100% +2 100% 0 0 100%

ACD (0 – 3) 85.7% 74.1% 74.2% 77.2%

Category 4

19.6 0
2/2
=

100%

0
2/2
=

100%

+1
4/4
=

100%

8/8
=

100%

20.1 +1 +1 +1

20.2 +1 +1 +1

20.9 0 0 +1

ACD (0 – 4) 87 75.9 77.1 79.3

Category 5

5.7 -1
1/2
=

50%

-2
1/3
=

33.3%

-3
3/6
=

50%

5/11
=

45.5%

19.1 0 0 +1

19.2 0 0 +1

19.7 +1 +1 +1

FACS 84% 71.9% 73.2%
WPCS
75.5%

69

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

