
Devising Mutant Operators for Dynamic Systems Models by Applying the HAZOP
Study

Rodrigo Fraxino Araujo
José Carlos Maldonado

Márcio Eduardo Delamaro
Instituto de Cîencias Mat. e de Computação

Universidade de S̃ao Paulo
São Carlos, Brazil

{rfaraujo, jcmaldon, delamaro}@icmc.usp.br

Auri Marcelo Rizzo Vincenzi
Instituto de Inforḿatica

Universidade Federal de Goiás
Goiânia, Brazil
auri@inf.ufg.br

François Delebecque
Met., Alg. et Log. pour l’Automatique
Inst. Nat. de Recherche en Inf. et Aut.

Rocquencourt, France
francois.delebecque@inria.fr

Abstract—Embedded systems are increasingly present in
many electronic devices. Therefore, it is necessary to use rig-
orous testing techniques aimed at ensuring that these systems
behave as expected. Our contribution is the definition of mutant
operators for the context of embedded systems models. We
focus on dynamic systems models, specifically on Simulink
and Scicos models, which are considered standards in many
industrial application domains, such as avionics and automotive
control. The HAZOP study was applied to investigate and
analyze all the main features of such models, in order that the
resulting mutant operators could be systematically generated.
We developed a testing environment to support the mutation
testing for dynamic system models, which was used to employ
the defined mutant operators in a sample application.

Keywords-Simulink, Scicos, HAZOP, mutation testing.

I. I NTRODUCTION

Due to the complexity of systems and the ever-increasing
needs for shortening time-to-market pressures, the testing
task has become even more challenging. A common problem
is the testing stage being performed at the end of a project
development life cycle. Thus, when faults are found, the cost
to fix them is much higher [19].

A possibility to lessen the aforemetioned problem is by
using precise models that support a system development life
cycle. Models are concise and understandable abstractions
that capture the decisions of the functions of a system whose
semantics are derived from the concepts and theories of a
specific domain [18].

In this context, platforms such as ScicosLab/Scicos [12]
and Matlab/Simulink [20] are widely used to design and
simulate dynamic system models. One of their advantages
is the applications analysis at different levels of abstraction.
Another benefit is the automatic code generation, which
reduces development costs and programming faults. In this
paper we will usedynamic systemsaiming specifically at
SimulinkandScicossystems.

To ensure the reliability of this kind of system, the
industry has been investing in an approach known as model
based testing [6]. In this approach, it is easier to automate

the testing activity, which includes an automatic generation
of test sets. The testing activity can begin to take place in
a more abstract level, even before the software is coded.
This leads to a more efficient process with significant cost
reduction and a final product with higher quality.

In order to support this approach, our goal is to make
possible the application of the mutation testing in embedded
systems models, or specifically in dynamic systems models.
In this paper, we show how a set of mutant operators was
defined by the employment of the HAZOP (Hazard and
Operability) [14] study to evaluate the features of such
models. Some of these mutant operators were implemented
in a testing tool that supports the mutation testing for
dynamic systems models.

The mutant operators are responsible for determining the
testing requirements of a model, that must be satisfied by the
choice of an adequate input test set. A reason that ensures
the wide usage of the mutation testing is the quality of the
resulting final test set, i.e., its proneness to reveal faults [1].

In order to describe our study and the resulting mu-
tant operators, the remainder of this paper is structured
as follows. Section II describes dynamic systems models
and the HAZOP study. In Section III, we show how the
HAZOP study was employed in dynamic systems models.
Section IV presents the mutant operators generated by a
rigorous analysis of the achieved results. In Section V, a
testing tool to support the mutation testing is described along
with a sample application regarding the employment of our
defined mutant operators. Section VI presents a discussion
regarding related work. Section VII concludes with some
final remarks and an outlook on future directions.

II. BACKGROUND

Mutation Testing is a testing approach in which the
product under test is altered several times, creating a set
of alternative products with slight syntactical differences, the
so-called mutants. The tester is responsible for choosing test
data that show difference in the behavior among the original

58

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

product and the mutant products [16]. The test set quality is
measured according to its likelihood of revealing faults [9].

The construction of mutant operators must be driven by
an analysis of the characteristics of the product under test.
A great deal of authors do not employ general guidelines
and a rigorous methodoloy for their definition. The mutant
operators are usually a representation of a fault model
considering the underlying product [10]. In our case, we
are exploring a larger number of mutant operators generated
by systematically applying the HAZOP study in dynamic
systems models, which may later be minimized by the
conduction of experiments.

In the following subsections we present a brief overview
of a dynamic system model and of the HAZOP study. We
used it to analyze the features of a dynamic system model,
making possible to define appropriate mutant operators, that
can guide the test data generation process for this sort of
model.

A. Dynamic System Model

A dynamic system consists of a set of possible states,
together with a rule that determines the present state from a
past state. According to Korn [15], dynamic systems relate
model-system states to earlier states. Classical physics,for
example, predicts continuous changes of quantities such as
position, velocity, or voltage with continuous time.

With the increasing complexity of these systems, de-
velopment tools have become imperative to support their
design. Simulink [20] and Scicos [12] are environments for
sharing data, designs and specifications, making possible to
develop more reliable critical systems and safely generating
code. They are widely used within industry due to the large
expressiveness of their languages.

The models used by such environments are based on block
diagrams. These blocks include a library of sinks, sources,
connectors and linear and non-linear components. Models
can be hierarchical, which helps to understand the model
organization and how the components interacts with each
other [20, 12].

Such platforms offer a convenient way to describe systems
that evolve according to time. Such systems are math-
ematically represented by systems of equations, that are
differential equations in the case of continuous time systems,
difference equations in the case of discrete time systems,
and a mix of both in the case of hybrid systems. The
simulation of these types of systems is based on numerical
algorithms, where the solution of a system of equations, i.e.,
the semantics of a dynamic system model, is given by the
sequence of values representing the temporal functions [7].
The input values can be read from a file or provided by a
signal generator, e.g., a sinusoid or a square wave generator.

Figure 1 contains an example of a dynamic system model
that is divided into three subsystems [7]. A continuous
time subsystem is present in Figure 1a and represents a

braking pedal as a mass-spring-damper mechanical system.
A discrete time subsystem is present in Figure 1b and is
responsible for detecting when the pressing force is greater
than a given threshold to activate the brake. Figure 1c
presents the main system, a composition of both subsystems,
containing an input, the force, and an output, the detection
result.

(a) Continuous Time Model

(b) Discrete Time Model

(c) Hybrid Model

Figure 1: Dynamic Systems Models

These models are composed by blocks connected by lines
(signals). The blocks can be elementary, containing simple
operations (as arithmetics, for instance), or subsystems,
that contains a composition of elementary blocks. In the
models of Figure 1, it is worth emphasizing theIntegrator
and theUnitDelay blocks, which introduce the notion of
time. When an Integrator is used, the model is called of
continuous time, and the operation associated to the block
is a mathematical integration over time. A model that uses a
UnitDelay is called of discrete time. A mix of both produces
a hybrid model, defined as a data flow where the signals are
continuous or discrete time functions.

A block worth mentioning is theSwitch, which contains
two data inputs and one control input. The developer must
specify how the evaluation of the second input (control) must
be performed, in order to redirect the first or third data input
to the output. Thereby, this block can be compared to an
if-then-else sentence. Table I, adapted from Chapoutot and
Martel [7], presents the main blocks of a dynamic system
model. VIADINHO

B. HAZOP (Hazard and Operability Study)

Hazard and operability studies (HAZOP) [14] originated
in the chemical industry and, thereafter, have been widely

59

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Table I: DYNAMIC SYSTEM BLOCKS

Name Block Descript. Equation

Input Input l1 = In(t), ∅

Const. Constant l1 = c, ∅

Output Output Out(t) = l1, ∅

Add Adittion l3 = l1 + l2, ∅

Sub Subtraction l3 = l1 - l2, ∅

Product Multipl. l3 = l1 * l2, ∅

Divide Division l3 = l1 / l2, ∅

Gain
Multipl.

l2 = g * l1, ∅by
Constant

AND AND l3 = l1 && l2, ∅

NAND NAND
l3 = !(l1 && l2)

,∅

OR OR l3 = l1 || l2, ∅

NOR NOR
l3 = !(l1 || l2),

∅

XOR XOR
l3 = (l1 && !l2)

||
(!l1 && l2), ∅

NOT NOT l2 = !(l1), ∅

== ==
l3 = (l1 == l2),

∅

∼= ! =
l3 = (l1 != l2),

∅

> >

l3 = (l1 > l2),
∅

>= >=
l3 = (l1 >= l2),

∅

< <

l3 = (l1 < l2),
∅

<= <=
l3 = (l1 <= l2),

∅

Switch
Conditional l4 = if(ρ(l2),
Command l1, l3), ∅

Integr.
Continuos l2(t) = η(t),

Time η̇(t) = l1(t)
Integration

Unit Discrete l2(t) = η(t),
Delay Time η(t + 1) = l1(t)

Delay
Sub

Subsystem l2 = f(l1), ∅System

applied in different contexts to assess varying sorts of sys-
tems. The main purpose of such studies is to systematically
examine the behavior of the underlying system in order to
determine deviations and hazards that might arise as well as
potential related problems. They are currently used in several
areas for qualitative risk analysis [3].

The first step in the HAZOP study consists in identifying
entities and attributes of the system under examination by
means of an analysis of its description. For instance, taking a
software system into consideration, such a description canbe
the software control flow. The next step is to apply a number
of predeterminedguidewordsto system attributes in order to
investigate possible deviations and determine possible causes
and consequences [13].

The role of these guidewords is to act as mnemonics.
After structurally applying each of them to attributes of the
system under examination, it is possible to focus on a certain
sort of anomalous behavior and ponder over it. Thus, this
method provides additional insight into potential deviations.
However, matching a guideword with an attribute requires
interpretation. Depending on the context, guidewords may
have more than one interpretation. For instance,MORE
applied to a data value attribute can be interpreted asgreater,
i.e., yielding a greater value then it should be. Similarly,
applying MORE to bit rate attributes can be interpreted as
higher. Moreover, guidewords may be meaningless in certain
contexts, demanding the creation of additional guidewords.

III. HAZOP IN A DYNAMIC SYSTEM MODEL

The testing activity is typically applied taking in con-
sideration source code, platform independent intermediate
representations or machine-specific code. However, several
researches propose its use in a representation at a higher
level of abstraction, i.e., models [16]. In our case, we address
the testing of Simulink and Scicos models by applying the
HAZOP study to the specification of a dynamic system
model.

The representation examined is the syntax of the model
construction. Attributes are identified for each constructof a
dynamic system model, and syntactic deviations are investi-
gated by the employment ofguidewordsto these attributes.
For each possible deviation, the cause and consequence of a
deviation are examined in order that mutant operators, that
result in minor syntactic modifications, can be derived [13].

Table II presents the identified attributes for a dynamic
system model. To show how the employment of the HAZOP
guidewords to the attributes of a dynamic system model were
performed, we present some examples as follows.

In the first example the constructtypesand the atribute
compatibility affect the blocksInput and Output. It is pos-
sible to apply 2 guidewords:

• AS WELL AS. Cause: replacement among compatible
types among double, single, int8, uint8, int16, uint16,

60

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Table II: ATTRIBUTES OF ADYNAMIC SYSTEM MODEL

Constructs Attributes Related
Blocks

Types Compatibility Input
Intervals Output

Variables Stored Values Lines
Constants Stored Values Constant

Blocks

Execution Result of Switch
Switch Statement

Execution Result of UnitDelay
Temporal Statement Integrator
Interaction Among Subsystem

Subsystems

Expressions

Evaluation Result
Relat. Op.of Relat. Op.

Evaluation Result
Logic. Op.of Logic. Op.

Evaluation Result
Arith. Op.of Arith. Op.

int32, uint32 and boolean. Consequence: no loss of
information.

• PART OF. Cause: types with lower capacity can be
used as, for instance, single instead of double. Conse-
quence: it is possible to lose information or precision.

In the next example the constructconstantsand the
atributestored valuesaffect the blockConstant. It is possible
to apply 3 guidewords:

• MORE. Cause: increase of a numeric value. Conse-
quence: possible incorrect result.

• LESS. Cause: decrease of a numeric value. Conse-
quence: possible incorrect result.

• OTHER THAN. Cause: replacement among the con-
stants of a model. Consequence: possible incorrect
result.

Similar to the aforementioned examples, theguidewords
were applied to the defined attributes of a dynamic system
model, resulting in the analysis of all main blocks for this
kind of model. Due to the lack of space, we are not able to
present the relations among all guidewords and the defined
mutant operators.

IV. M UTANT OPERATORSDEFINITION

A set of mutant operators was derived from the employ-
ment of the HAZOP study in a dynamic system model and
is presented in this section. It is important to note that notall
guidewordsresulted in a mutant operator, because according
to our evaluation, in some occasions the operation would
not be significant, or would always result in a faulty model
impossible to be simulated.

We decided to keep a conservative approach in the defini-
tion of mutant operators, i.e., all coherent mutant operators
possible to be derived for this kind of system by the
application of the HAZOP study were defined.

Types
Type Replacement Operator
This operator replaces a type with compatible
types, and can be applied directly in the Input and
Output blocks, which are used in the interaction
among systems and subsystems.

Variables
Variable Change Operator
This operator acts in the connections among the
blocks of a model, increasing or decreasing the
value that is being carried. As it is not possible
to know a priori which value that is, a possible
implementation is to insert anadd or subtract
block between the source and destination blocks.
Variable Replacement Operator
This operator acts in the connections among the
blocks of a model, replacing the compatible values
that are being carried by swapping their connec-
tions. For the implementation, special attention
must be drawn to the compatibility analysis among
the number of inputs and outputs of each block.

Constants
Constant Change Operator
This operator is responsible for increasing or de-
creasing the value of the constants of a model.
Constant Replacement Operator
This operator replaces the values among the con-
stants of a model.

Blocks
Statement Swap Operator
This operator is responsible for swapping the first
and the third input of the Switch block, acting in a
way similar to modifying the evaluation result of
the blocks condition.
Delay Change Operator
This operator can increase or decrease the delay in
which the output of the UnitDelay or the Integrator
blocks will be provided to the system.
Subsystem Change Operator
This operator swaps the connections between two
subsystems or between a main system and a sub-
system aiming to act in the integration of com-
ponents of a model. Despite being a suboperator
of the Variable Replacement Operator (VRO), this
operator may be useful if the tester desires to
analyze only the interaction among the subsystems
of a model.
Block Removal Operator
This operator is responsible for removing each of
the blocks of a model, and can be useful to ensure
that every block is being used and that a test data
exists to force its execution.

Expressions

61

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Relational Op. Replacement Operator
This operator is responsible for the replacement
among the relational operators>, >=, ==, ∼=,
< e <=.
Arithmetic Op. Replacement Operator
This operator is responsible for the replacement
among the blocks Add, Sub, Product, Divide and
Gain.
Logical Op. Replacement Operator
This operator is responsible for the replacement
among the logical operators AND, OR, NAND,
NOR, NOT and XOR.

A. Summary

12 mutant operators were defined by employing the HA-
ZOP study for Simulink-like models and are summarized
in Table III. Most of the defined mutant operators deal with
the data flow of a Simulink-like model, which is the essence
of this type of system. Three mutant operators were defined
aiming at dealing with unique features of this kind of model.
Although most of the operators deals with modification in a
model, in certain cases for their implementations new blocks
need to be added and removed. As a result, we consider that
they are a complete set, taking into account that along with
our analysis, the defined mutant operators force addition,
alteration and deleting operations in Simulink-like models.

Table III: MUTANT OPERATORS

Acron. Description
TRO Type Replacement Operator
VCO Variable Change Operator
VRO Variable Replacement Operator
CCO Constant Change Operator
CRO Constant Replacement Operator
SSO Statement Swap Operator
DCO Delay Change Operator
SCO Subsystem Change Operator
BRO Block Removal Operator

RORO Relational Op. Replacement Op.
AORO Arithmetic Op. Replacement Op.
LROO Logical Op. Replacement Op.

The first one, SSO, aims to swap the inputs of a Switch
block, altering the control flow of a system. The second
operator, DCO, deals with the temporal characteristics of a
system, and acts in the UnitDelay and Integrator blocks. The
third one, SCO, operates in the interaction among the sub-
systems of a model, swapping the blocks connections among
them or among a main system and possible subsystems.

Table IV presents the worst case scenario, or the max-
imum number of mutants to be generated by each mutant
operator regarding the model property that is being affected,
i.e., input and output ports, blocks or blocks connections
(lines). The VRO mutant operator is the most likely to
produce a larger number of mutants.

Table IV: NUMBER OF GENERATED MUTANTS

M. Op. Worst Case Scenario
TRO (Inputs + Outputs) * Data Types
VCO Lines * 2
VRO Lines * (Lines -1)/2
CCO Constants * 2
CRO Constants * (Constants-1)/2
SSO Switchs * 2
DCO Delays * 3
SCO SSLines * (SSLines -1)/2
BRO Blocks

RORO Relat. Op. * 5
AORO Op. * 2

Op.Inputs + Gain * 2
LROO Logic. Op. * 5

V. TESTING TOOL

TeTooDS (Testing Tool for Dynamic Systems) [2] can
interpret dynamic systems models, interact with simulation
environments such as Scicos or Simulink, and is used to
assist in the test data generation task. It was previously
developed to provide support for the application of func-
tional criteria, specifically the pairwise approach, in dynamic
systems models. This approach ensures that any two possible
values, belonging to two different parameters, will be present
in at least one test data [11].

We have extended TeTooDS to support mutation testing
in dynamic systems models. The first necessary step was the
development of a full-blown parser, that provides the infor-
mation required by the mutant operators to the generation of
mutants of a model. These information include input ports,
input datatypes, blocks, blocks parameters, connections and
output ports. Our parser makes use of the pyparsing module
[17], a flexible approach for creating and executing gram-
mars, against the lex/yacc approach or the use of regular
expressions. The pyparsing module provides a library of
classes that supports building grammars directly into the
Python code.

After parsing a Scicos or Simulink model, which is
accomplished when a testing project is created in TeTooDS,
several options become available to the tester. A possibility
is to select which mutant operator will be used for the
generation of the mutant models.

The tester can also visualize the mutant models inside
TeTooDS: (i) as an image;(ii) as the source code of the
model; or(iii) using TeTooDS to call Scicos/Simulink along
with the mutant model. It is useful for performing an analysis
of equivalent mutant models or to see which mutants are
alive or dead.

Test cases can be added by specifying input files that will
be read by the dynamic system model during its simulation,
together with the specification of which output files should
be read by the testing tool when the simulation finishes.

To run the simulation of the main dynamic system model
and the generated mutants, TeTooDS provides a default

62

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

script that can be used or customized in order that the
parameters values, such as start time, stop time and step
time, can be configured according to the tester needs. After
the simulation finishes, output files are analyzed and the mu-
tation score is updated with the mutants status information.

A. Sample Application

This model represents an electronic regulator which con-
tains a flow regulator, a temperature sensor and a logic
controller. The system has three input ports: temperature,
temperature lower bound and temperature upper bound.
When the temperature is below the lower bound, a valve
is closed, i.e., receives a zero value. When the temperature
is above the high bound, a valve is opened, receiving
a value of 100. When the temperature is between these
limits, the valve aperture is calculated by the expression
(5.0/3.0) ∗ (temperature− low bound) [4].

We used all the defined mutant operators, applying one
mutation at a time, which resulted in 131 generated mutants.
For the execution of the mutants, firstly we selected input
data randomly. For the remaining mutants, in order to
achieve 100% of mutation score, we manually analyzed each
mutant aiming to select a test data that could kill it or
mark it as equivalent. Table V shows the number of mutants
generated by each operator.

Table V: NUMBER OF MUTANTS

Operator Mutants Operator Mutants
TRO 0 DCO 4
VCO 36 SCO 0
VRO 26 BRO 19
CCO 4 RORO 10
CRO 1 AORO 15
SSO 1 LROO 15

The TRO did not return any mutants, as we used a Scicos
model as source and it does not allow the use of several data
types. Mutants also were not generated by the SCO operator,
as the number of inputs of the subsystems of this particular
model are not compatible.

To show the viability of the defined mutant operators, the
second step of our case study was to manually generate the
C code that corresponds to this particular model. We used
Proteum [8] and its 73 mutant operators to generate mutants
for the C code, which resulted in 1473 mutants. By applying
the test set that was selected to achieve 100% of mutation
score in the model, which represents a simulation of the
system that is going to be hardware integrated, we could
achieve 98.1% in the C code.

Our first intention was to use the code that can be
automatically generated by Scicos. Nevertheless, it presents
too many unused variables and other pieces of unexecuted
code, resulting in a large number of equivalent mutants to
be analyzed (up to 100 000 mutants).

We consider that we achieved a high mutation score for
this particular model when applying the test set responsible
for achieving a full coverage of the model (100%) in the
C generated code (98.1%), which encourages the develop-
ment of a thorough experiment, taking into account all the
necessary validity levels. We emphasize that our intentionis
to assess the feasibility of all mutation operators aiming at
possible refinements.

VI. RELATED WORK

The existing literature shows that the mutation criterion
is very effective for revealing faults of traditional programs
and models. Nonetheless, this criterion has not been widely
explored for the context of dynamic systems models.

We are aware of two studies that aim at applying the
mutation testing in dynamic systems models. The first one
is described by Brillout et al. [5]. They developed a method-
ology to assess the correctness of Simulink models by
automating the test data generation activity. Their objective
is to cover the requirements imposed by the mutation testing.
In order to generate and optimize the test data, the approach
focus on model checking techniques. However, the authors
do not clearly present an solution of how to apply the
mutation testing, i.e., which mutant operators should be used
to generate the testing requirements.

The second study is the one of Zhan and Clark [21]. De-
spite introducing a testing framework for Simulink models
and focusing on the mutation testing, the approach presents
a few limitations. The authors make use of a random test
data generator and try to improve the test set by the use of
dynamic analysis and simulated annealing methods, in order
to satisfy the constraints imposed by their mutant operators.
We consider as a drawback of their approach the low number
of defined mutant operators, i.e.,add, multiplyand assign.
In our approach, we have tried to overcome such issue by
performing a systematic analysis of a dynamic system model
in order to define a complete set of mutant operators for this
context, that includes the ones defined by Zhan and Clark.

VII. F INAL REMARKS AND FUTURE WORK

We address the testing of Simulink and Scicos models.
Dealing with these models entails properly concerning their
domain specific language, which is geared towards code
generation, and also present specific features, as temporal
and combinatorial characteristics.

The employment of the HAZOP study to derive mutant
operators for a particular type of system can produce differ-
ent syntactic variations, which can assist in finding possible
faults of a system. In this paper we presented the solutions
that the authors consider appropriate for dynamic systems
models.

One of the advantages of the HAZOP study is that the
set of mutant operators can be more complete than those

63

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

generated based only on the experience of faults of a
developer, since the language constructs are analyzed.

Future work also includes the definition of a method for
the automatic generation of test data for dynamic systems
models, that aims at satisfying the mutation test require-
ments. Longer term future work includes the conclusion
of an integrated testing environment that can assist in the
automation of the testing activity for dynamic systems
models.

VIII. A CKNOWLEDGMENT

The authors would like to thank the financial support pro-
vided by CNPq (grant number 141976/2008-0). We are also
thankful to Vinicius Durelli, who proofread and commented
on drafts of this paper.

REFERENCES

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In27th ICSE, pages
402–411. ACM Press, 2005.

[2] R. F. Araujo and M. E. Delamaro. TeTooDS - Testing Tool
for Dynamic Systems. InTools Session – Brazilian Software
Engineering Symposium, Brazil, 2008. SBC.

[3] J. S. Arendt and D. K. Lorenzo.Evaluating Process Safety
in the Chemical Industry. A user guide to quantitative risk
analysis. AIChE, second edition, 2000.

[4] M. Blackburn, R. Busser, and A. Nauman. Why model-based
test automation is different and what you should know to get
started. InInternational Conference of Practical Soft. Quality
and Testing. SPC, 2004.

[5] A. Brillout, M. He, Nannan afend Mazzucchi, D. Kroening,
M. Purandare, P. Rümmer, and G. Weissenbacher. Mutation-
based test case generation for simulink models. InProceed-
ings of the 8th international conference on Formal meth-
ods for components and objects, FMCO’09, pages 208–227,
Berlin, Heidelberg, 2010. Springer-Verlag.

[6] M. Broy, B. Jonsson, J. Katoen, M. Leucker, and
A. Pretschner, editors. Model-Based Testing of Reactive
Systems, Advanced Lectures, volume 3472 ofLecture Notes
in Computer Science. Springer-Verlag, 2005.

[7] A. Chapoutot and M. Martel. Abstract simulation: A static
analysis of simulink models. InICESS ’09: Proceedings of the
2009 International Conference on Embedded Software and
Systems, pages 83–92, Washington, DC, USA, 2009. IEEE
Computer Society.

[8] M. E. Delamaro and J. C. Maldonado. Proteum – a tool for the
assessment of test adequacy for c programs. InProceedings
of the Conference on Performability in Computing Systems
(PCS 96), pages 79–95, 1996.

[9] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on
test data selection help for the practicing programmer.IEEE
Computer, 11(4):34–41, Apr. 1978.

[10] F. Ferrari, J. Maldonado, and A. Rashid. Mutation testing for
aspect-oriented programs. InSoftware Testing, Verification,
and Validation, pages 52 –61, april 2008.

[11] M. Grindal, J. Offutt, and S. F. Andler. Combination testing
strategies - a survey. Software Testing, Verification and
Reliability, 15(3):167–199, 2005.

[12] INRIA Rocquencourt. Scicos, 2011. Available at
http://www.scicos.org.

[13] S. Kim, J. A. Clark, and J. A. McDermid. The rigorous gener-
ation of java mutation operators using hazop. InProceedings

of the 12th International Conference on Software and Systems
Engineering and their Applications (ICSSEA’99), 1999.

[14] T. Kletz. Hazop and Hazan: Identifying and Assessing
Process Industry Hazards. CRC Press, fourth edition, 1999.

[15] G. A. Korn. Advanced Dynamic-system Simulation: Model-
replication Techniques and Monte Carlo Simulation. Wiley-
Interscience, 2007.

[16] A. Mathur. Foundations of Software Testing. Pearson
Education, 2008.

[17] P. McGuire. Pyparsing, 2011m. Available at
http://pyparsing.wikispaces.com.

[18] B. Meenakshi, A. Bhatnagar, and S. Roy. Tool for translating
Simulink models into input language of a model checker. In
Z. Liu and J. He, editors,ICFEM, volume 4260 ofLNCS,
pages 606–620. Springer, 2006.

[19] W. Perry.Effective methods for software testing, third edition.
John Wiley & Sons, Inc., 2006.

[20] The Mathworks Inc. MATLAB and Simulink, 2011. Available
at http://www.mathworks.com.

[21] Y. Zhan and J. A. Clark. A search-based framework for
automatic testing of matlab/simulink models.Journal of
Systems and Software, 81(2):262–285, 2008.

64

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

