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Abstract— Adaptive random testing (ART) is a new family of 
random-based test data generation and selection strategies that 
enhances the effectiveness of tests over the classical random 
testing (RT). ART has been widely investigated and studied in 
numerous research papers over the recent years. These studies 
have included proposing various techniques for implementing 
and improving the intuition behind ART (evenly spread of test 
cases over the input domain, measured by some distance 
measures) generally for procedural programs with numerical 
input domain and most recently object-oriented programs. 
However, there is currently no work available in the literature 
that discusses the applicability of ART to aspect-oriented 
programming (AOP), as it is gaining popularity in software 
development. Inspired by this, this paper aims to investigate the 
possible ways that ART can be applied to AOP. This investigation 
focuses on a multi-perspective analysis of the current ART-based 
techniques. In this respect, we identified three related 
perspectives based on the current state of art in the area of ART. 
Each perspective was analyzed in terms of its applicability and 
possibility for aspect-oriented programs, particularly its 
constituent distance measure. As a result, our study gives rise to 
some interesting points and outlines a number of potential 
research directions in applying ART to AOP. This can pave the 
way for efficient development on applying of ART to AOP and 
finally AOP success. 
 

Keywords-software testing; random testing; adaptive random 
testing; aspect-oriented programming; aspect testing. 

I.  INTRODUCTION  
Aspect-oriented programming [1],[2],[3] is one of the 

prominent modularization techniques emerged to cope with the 
complexity of software development process. To realize the 
benefits of aspect-oriented programming, the programs 
developed by this programming paradigm should be effectively 
tested. The reason is that the aspect-related defects [4],[5], 
stemmed from the unique characteristics of AOP, can affect the 
quality of these programs and consequently their general 
benefits, i.e., enhanced modularity and maintainability. 

Software testing as the most widely used practice of 
ensuring the program’s correctness, is useful to help finding 
these defects (i.e., their presence) and thus to provide a higher 
level of software quality. However, it has to be said that there is 
comparatively little work on testing of AOP in the literature 
and very little on automated testing of AOP such as [6],[7],[8]. 
This obviously indicates an insufficiency of testing approaches 
for the aspect-oriented programs at the current time and 
provides a primary motivation for leveraging the current testing 

techniques and/or developing new techniques for these 
programs.  

Adaptive random testing proposed by Chen et al. [9] (as a 
recent derivative of random testing [10]) is an active and 
interesting research topic, which has shown [11],[12],[13],[14], 
[15] to have higher fault detection effectiveness compared to 
classical random testing, with facility of test automation. This 
is why Jaygarl et al. [16] has noted that ART is one of the most 
effective technique in automated test generation. The essential 
idea of ART techniques is that the evenly spread random test 
cases over the whole input domain allows finding faults 
through fewer test cases than with classical random testing. 
ART has shown to reduce the number of tests required to 
reveal the first fault by as much as 50% over classical random 
testing [17]. Adaptive random testing has seen remarkable 
progress during the recent past years in order to address the 
notion of evenly spread of test cases. It seems reasonable to 
conjecture that ART would continue to be active and become 
popular among the other random-based testing strategies.  

In line with importance of AOP testing and on the other 
hands its current insufficiency, we believe the idea behind 
adaptive random testing can be worthwhile and attractive for 
automated testing of aspect-oriented programs since current 
research on testing of AOP, especially automated has not been 
adequately performed and is still in stage of infancy. In order to 
investigate the applicability of ART to AOP, we indentified 
three perspectives/directions based on scouring the current 
ART-based techniques in the literature. Corresponding to each 
perspective and its underlying technique (i.e., distance 
measure), we analyzed and discussed the feasibility of the 
given technique to AOP.  

As far as we are aware, this is the first attempt made in the 
literature to discuss the applicability of ART for aspect-
oriented programs. In other words, this paper takes some initial 
steps towards addressing the ART concept for automated test 
data generation and selection of the aspect-oriented programs. 
The specific contributions made by the paper are:  
• It makes the current vague realization of ART to AOP 

more understandable by providing thought-provoking 
perspectives on this matter. Specifically, it gives a 
theoretical analysis and comparison of three known ART 
criterions adopted (presented under three identified 
perspectives) to calculate the distance among different test 
cases for aspect-oriented programs. 

• It analyzes and potentially guides the application of ART 
in AOP and discusses the potential of using current ART 
techniques and their results to foster the development of 
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new testing techniques in area of aspect-oriented software 
development (AOSD).  

The remainder of this paper is organized as follows. Section 
II provides the background on ART and overviews the current 
state of the art in this field of research; Section III presents and 
analyzes the perspectives on adaptive random testing of AOP; 
Section IV summarizes the results of the analyses; and Section 
V reports the conclusion and future work. 

II. ADAPTIVE RANDOM TESTING (ART) 

A. Overview and Classification 
Random testing [18],[10],[19] as one of the eldest 

techniques that include automated test input generation and 
selection has been studied and applied in different 
programming paradigms and application domains for decades. 
The first emergence of the random testing was meant for 
programs with numerical input domain, however with passage 
of time and emerging different paradigms the interest in 
random testing has been substantially increased due to the 
merits it offers. This matter is evident by various studies in the 
literature that have extended/applied the RT to the area of their 
interest.  

Random testing is normally referred as the opposite of 
systematic testing such as functional or structural testing. The 
techniques in this family, i.e., random-based, can be generally 
classified into classical/pure random testing (the word classical 
and pure are interchangeability used in this paper) and enriched 
random testing due to the strategies they use for test input 
generation and selection, see Figure 1. 

 

Figure 1. General classification of random testing techniques 

By enriched, we mean those strategies that have been 
equipped with some guidance to their normal random 
generation process to pick up test inputs that give higher 
effectiveness in results, in contrast to the classical random 
testing in which test inputs are only picked at just random. In 
other words, both classical RT and enriched RT randomly 
generate test inputs from the input domain, but enriched RT 
uses additional guidance/criteria to help systematically test case 
selection rather than randomly selection. Note, in classical 
random testing test cases are generated by selecting random 
values of the input variables, which means the generation and 
selection are not two separated process but rather both imply 
each other and carried out randomly, see  Fig. 2. (Note, in the 
classical RT, the test generation and test selection processes are 
the same but in the figure they have been separated for only the 
purpose of contrasting).  

ART [9],[20] is the most dominant family of the enriched 
RT that suggests a selection criterion of “enforcing the test 
cases to be evenly spread over the entire input domain”. 
Spreading evenly the test cases over the input domain is not 
only the basic idea underlying the ART but also Quasi-Random 
Testing (QRT) [21] and somewhat the Diversity-Oriented Test 
Data Generation (DOTG) [22]. These techniques emphasize on 
the idea of existence a correlation between the fault detection 
effectiveness and the evenness of the test case distribution in 
which the more even distribution of the test cases over the 
input domain the more fault detection capability with fewer test 
cases is gained. 

 

 

Figure 2. The contrasts between the classical and enriched random testing 

In ART has been tried to enhance the fault detection 
effectiveness of classical RT by imposing some additional 
criteria on the test inputs selection process. As we mentioned 
before, the basic intuition of ART technique is that the evenly 
spread random test cases over the whole input domain allows 
finding faults through fewer test cases than with purely random 
testing. In literature several algorithms and variations of the 
techniques have been proposed to address the “even spread” 
intuition. The different ART algorithms give different test case 
selection criteria to ensure an even spread of the test cases. 
These algorithms attempt to maintain the benefits of random 
testing while increasing its effectiveness. For instance, one of 
the test case selection criterions used in one typical ART 
algorithm called the Fixed Size Candidate Set ART (FSCS-
ART) [9] is as follows, which ensures the evenly spread of the 
test cases by means of a distance measure. The technique 
defines two test sets: the Executed Set, containing the test data 
that have been executed, and the Candidate Set, containing a 
set of randomly selected test data. The Executed Set is initially 
empty and the first test datum is randomly chosen. The 
Executed Set is then incrementally updated with the elements 
selected from the Candidate Set until a fault is revealed. The 
choice of the test datum from the Candidate Set requires the 
measurement of the distances of each candidate to all test data 
in the Executed Set. The chosen candidate is the datum that has 
the maximal value for the minimal distance among the 
distances to each test data in the Executed Set (furthest away 
from the already used inputs). 

B. State of the Art in ART 
Based on the idea of ART great deals of related algorithms, 

i.e., various implementation of the idea, have been proposed 
(distance-based ART, DART [23] was the first ART 
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algorithm). The different algorithms give different test case 
selection criteria towards achieving this idea. Some of these 
algorithms are closely related to the ART, however, with slight 
changes. Example of these include the Restricted Random 
Testing (RRT) [24] or Ordinary Random Testing [25], while a 
plenty of them, as explained below, emphasize on the 
improvement to ART itself since its emergence [9].   

Although ART has shown to be able to improve the fault 
detection effectiveness of RT, it requires additional 
computation overhead (considered as main problem associated 
with ART) to evenly spread test cases [26]. On this regard, a 
great deal of research has been proposed to minimize the 
boundary effect [27] and the overhead of primary ART 
algorithm. Mirror ART (called MART) [28], Fuzzy ART [13], 
ART by restriction [29], ART by localization [30], ART 
through dynamic partitioning [31], ART with CG constraints 
[32] are examples of these improvements which alleviate the 
pitfalls of the original ART algorithm, especially its overhead.  

Further advancement to ART has also been provided by 
lattice-based ART. Lattice-based ART (L-ART) is a distinctive 
ART method that generates test cases by systematically placing 
and then randomly shifting lattice nodes in the input domain. 
The first introduction of L-ART [33] showed that L-ART is 
capable of yielding a better fault detection capability than RT, 
at the same generation cost. However, the test cases of L-ART 
may be highly concentrated on certain parts of the input 
domain and cause a skewed distribution of test cases. This 
skewed distribution of test cases can cause a tight coupling 
between the fault detection capability and the failure region 
location in the input domain. This means, when failure regions 
coincidentally reside in the area where L-ART selects a high 
density of test cases, L-ART may show a better fault detection 
capability than when failure regions are in the low density area. 
In reality, however, failure regions can be in any part of the 
input domain, therefore this dependency of fault detection 
capability on the failure region location is undesirable. 

The issue of skewed test case distributions was addressed in 
an enhanced version of L-ART presented by Chen et al. [34]. 
The new L-ART not only had a less-skewed test case 
distribution, but also demonstrated better and more consistent 
fault detection capability compared to the original L-ART. This 
superiority of the fault detection capability of the new L-ART 
has been shown to be better than the results by Restricted ART 
by random partitioning [35], ART by bisection with restriction 
[36] and localization [37], ART through iterative partitioning 
revisited [38] and not revisited [39], ART with enlarged and 
high dimensional input domains [40], ART with randomly 
translated failure region [41], ART using Voronoi diagram 
[42], ART by balancing [43]. 

Distribution Metric Driven ART [44] has been conducted to 
measure how evenly an ART algorithm can distribute its test 
cases according to some distribution metrics such as 
discrepancy and dispersion, which reflect different aspects of 
the test case distribution. Discrepancy and dispersion are two 
commonly used metrics for measuring the equidistribution of 
sample points. Intuitively, low discrepancy and low dispersion, 
not in isolation, indicate that sample points are reasonably 
equidistributed [45] and finally implies an even spread of test 
cases. These distribution metrics have not only been used to 
measure and compare the equidistribution of various ART 

algorithms but also they have recently been adopted as criteria 
for the test case selection process aiming at improving the 
evenness of test case distribution and the fault detection 
capability of ART [45], [46].  

More recently, a new family of ART [47] algorithms, 
namely adaptive random testing with dynamic non-uniform 
candidate distribution (ART-DNC) has been proposed. ART-
DNC uses a new test profile called failure driven instead of 
uniform distribution or operational profiles used in the original 
ART algorithm to maximize the effectiveness of fault 
detection. These new algorithms showed better fault detection 
capabilities in contrast with the original ART and RT. 
Moreover, a new ART approach [48] based on the application 
of an evolutionary search algorithm, called Evolutionary 
Adaptive Random Testing (EART), was proposed lately.  

As could be seen from above, there are so many different 
growing approaches that address the concept of ART and its 
further improvements. This matter may raise the question how 
the results of this work can be related to each other to come up 
with a completed and optimally effective ART approach. 
Recently, the work in [49] has taken into account this issue. 
This work presented a classification, amalgamation of the 
influential research work related to ART by highlighting the 
connections, and dependency relationships among the current 
work in this area. 

 The review of the current state of the art, as given in this 
section, shows that none of the presented work has discussed 
the applicability of adaptive random testing to AOP yet. This 
has primarily provided the motivation for the research in this 
paper to address this gap.  

III. PERSPECTIVES ON ADAPTIVE RANDOM TESTING OF AOP 
In this section, we present and discuss three perspectives on 

adaptive random testing of AOP. For each of the perspective, 
the discussion is based on the following: 

• Its underlying technique and difference measure it 
encompasses 

• Analysis (i.e., theoretical) of its applicability/ 
feasibility to AOP 

A. Overview  
It has been generally believed that how evenly an ART 

technique spreads test cases has an impact on how effectively it 
detects software failures, and an even distribution of test cases 
brings a good fault detection capability [11],[12],[13],[14],[15], 
[50]. However, this matter has only been proven for the 
numerical and recently objects input types, where there is no 
evidence on the other complex contexts such as aspect-oriented 
yet. 

In order to be able to apply a typical ART technique (such 
as FSCS-ART) to a given program the following two issues 
should be generally figured out [49]: 

(1) A strategy to help random sampling from the input 
domain of the program under test. In other words, this strategy 
is used to generate random test inputs/data. 

(2) A mechanism to compare any two members of the input 
domain and determine the distance between them to select 
those test inputs that ensures the evenly spread of the test 
cases over the input domain. The distance measure should be 
able to represent the probability of common failure behavior 
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between two inputs. In other words, the distance measure can 
be viewed as a difference measure that tries to maximize the 
diversity of the inputs in which the smaller the distance, the 
more likely the test cases will show a similar failure behavior. 
Up to the present time, ART and its all variations in the 
literature are limited to programs with numeric inputs. On this 
regards, these studies have calculated the distance between 
two test cases, i.e., values from input domain, using the 
Euclidean measure. 

Nevertheless, the first issue is common between any pure 
random testing and adaptive random testing techniques in 
which a given strategy needs to provide random generation of 
the test inputs (i.e., random testing). The second issue is meant 
to be only for ART techniques, i.e., solely unique to the 
adaptive random testing. It is worth mentioning that the first 
issue, which is RT, for different programming 
paradigms/languages and many application domains has been 
popularly resolved for decades, e.g., [51],[52],[53], [54]. In 
particular, there have been some recent attempts [55],[56] 
towards application of random testing to aspect-oriented 
programs, however the second issue has received lesser 
attention as the major challenge towards applying the concept 
of ART to AOP. Therefore, we place emphasis on discussing 
the second issue as the target objective in this paper. 

The main question that we seek to provide insight into it is 
how the concept of distance measure can be lifted or applied to 
aspect-oriented programs. The answer to this question can 
consequently help developing adaptive random testing 
techniques towards automated testing of aspect-oriented 
programs. 

According to the current evidence from literature, there are 
three perspectives in which this question can provoke 
discussion in the applying the notion of distance measure 
(second issue) or more generally ART to AOP. These 
perspectives are presented and discussed in the following sub- 
sections. Furthermore, in our discussion AspectJ [57],[58] is 
adopted as the target language. The reason is that the AspectJ is 
the most commonly used aspect-oriented programming 
language that warrants special attention. 

B. Category and Choice-based Perspective  
1) Underlying technique: This perspective is based on the 

concepts of categories and choices [59] to which the failure 
behavior of test cases (i.e., their ability to trigger faults) can be 
predicated according to the similarity of computation in the 
executions of them [49]. With regard to this idea, a difference 
measure (hereafter category and choice distance, CCD) for the 
category-partition method was first proposed by Kuo [60], 
who claimed that this measure can be used to help applying 
ART to a broad range of software input types.  

The category-partition method is a specification-based 
testing approach. In this approach, the parameters and 
environment conditions that define the behavior of the 
program under test are first identified, which called as 
categories. Then, for each category, a set of mutual values that 
possibly triggers similar computation forms the choices. The 
more categories in which two inputs have various choices, the 
more diversifiable computation they trigger. Therefore, the 
number of categories containing differing choices is used as 
predictor of this difference measure, i.e., CCD.   

In order to illustrate this difference measure, a simple object 
recognition system that is capable of distinguishing shapes, 
sizes and colors is presented as follows (taken from [49]). 
Suppose that the color of objects can only be light-red, red, 
deep-red, light-blue, blue, deep-blue, light-green, green and 
deep-green, and objects are spheres, cubes or pyramids in 
shape. The size is in the range (0,10] in m3. The system 
behavior depends only on the object shape, the base color (i.e., 
red, blue or green), and whether the object is larger than 1 m3. 
In this case, three categories can be defined: Color, Shape and 
Size; three choices for the Color category: red, blue and green; 
three choices for the Shape category: sphere, cube and 
pyramid; and two choices for the Size category: large and 
small. Some choices contain more than one possible value. For 
example, the red choice has light-red, red and deep-red as its 
possible values and large has any size more than 1 m3. 
Consider two program inputs (i.e., test cases) T1 and T2, where 
T1 is a light-red sphere of size 3.2 m3, and T2 is a deep-blue 
sphere of size 2.7 m3. T1 has the choices (red), (sphere) and 
(large) while T2 has the choices (blue), (sphere) and (large). 
Therefore, there is only one category, color, in which T1 and T2 
differ, thus the difference between the two inputs is 1 according 
to the given distance measure. This is to say that, these two 
tests are computationally similar as there is not much 
differences and thus might possibly have a similar failure 
behavior. 

 
2) Analysis: The primary intension of Kuo [60] was to 

suggest the CCD difference measure as a generic metric for 
developing ART algorithms of non-numeric input types, but 
his primary work has not provided any practical example or 
case study to discuss this matter for modern programs such as 
object-oriented (OO) or aspect-oriented (AO). Thus, one 
might think of how this measure could be possibly generalized 
to these programs with non-numeric input types. 

Following the same source of motivation that the CCD 
difference measure can be possibly applied to a broad range of 
program input types (as claimed by Kuo [60]), we have here 
analyzed its feasibility of the application to object- and aspect-
oriented programs. To this end, we need to define what would 
be the categories and choices with respect to these programs 
and how truly they can represent the essential idea of ART.  

In adoption of this measure to the object-oriented programs 
(as complementary to AOP), categories can be viewed as 
classes and their associated choices can be considered as 
instances of those classes, say objects. Therefore, the number 
of classes containing differing object’s values would be a 
refined definition of the CCD measure for OO programs. 
Given this, recall the previous example (i.e., recognition 
system) and test inputs T1 and T2, we now assume this system 
is an object-oriented application containing three classes: 
Color, Shape and Size that does the same functionality but 
implemented in different programming paradigm, e.g., Java. In 
this case, we define three classes to represent the three 
categories, Color, Shape and Size respectively. Accordingly, 
three objects are instantiated to be as choices of the Color 
category that is red, blue and green. Likewise, three objects for 
the Shape category: sphere, cube and pyramid; and two objects 
for the Size category: large and small. According to the 
definition, there is only one class, color, in which T1 and T2 
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has different object’ values, thus the difference between the 
two inputs is 1.  

It can be said that the adaptive random testing of OO 
programs with respect to this category and choice-based 
measure (i.e., CCD) is possible to be performed.  However, 
effectiveness of this measure would be another research effort 
that is worth further investigating.  

Concerning the aspect-oriented programs, we now further 
assume that the recognition system example is an aspect-
oriented application written in AspectJ that include the same 
classes as well as one more feature implemented in one aspect 
to keep track of the object’s movement. The aspect is used to 
monitor the movement of the recognized objects to refresh the 
object’s display whenever they actually move. Note, tracking 
movement of object is a crosscutting concern for the system, 
where it has been implemented as an aspect straightforwardly. 
If the aforementioned distance measure is chosen to be used 
for addressing the notion of evenly spread of test cases on this 
system, the only way to perform the adaptive random testing is 
to apply the given measure on the base code of the aspect-
oriented program (by employing the aforementioned CCD for 
OO programs). The reason is that the aspects in most of AO 
languages (including AspectJ) do not have independent 
identity or existence in the system and cannot be instantiated. 
This articulates an aspect-related property known as 
obliviousness [61] in which objects, generally base code, are 
not aware of the aspects in the system. Consequently, such 
unique properties and characteristics related to AOP perhaps 
avoid adopting the categories and choices concepts to aspects, 
generally aspect code. (Typically, a given AO program such as 
AspectJ is comprised of two parts known as base code and 
aspect code. The base code contains all the classes and objects 
and provides the context execution (join points information) 
for the aspects. The aspect code contains all the existing 
aspects in the program and run based upon reaching certain 
join points in the base code. For more information on this 
please refer to [58]). 

To sum up, we can state that the CCD measure is possible 
to be applied to adaptive random testing of AOP, however, it 
will not consider the direct testing of aspect code, specifically 
the aspect’s constructs such as pointcuts and advice (as the 
focus is more on relationships between the affected/advised 
classes and aspects, i.e., base code). In this case, the tests 
mostly stress the integration between aspects and affected 
classes. 

C. Object-based Perspective  
1) Underlying technique: This perspective was inspired by 

two recent work on adaptive random testing of object-oriented 
programs. Since OO programs are considered as 
complementary parts to AO programs, thus the discussion 
regarding the prior application of ART to OO would be clearly 
helpful and connected to the objective of the paper, i.e., 
investigating the applicability of ART to AOP. Nevertheless, 
this work has been proposed for object-oriented programs 
written in Eiffel and Java languages, as briefly presented in the 
following.  

a) ART for Eiffel: Ciupa et al. [17] propose adaptive 
random testing for object-oriented programs written in Eiffel, 
called ARTOO. Their approach initially share the idea of the 
DART approach [23] to select input objects (considered as test 

data/cases) from a testing pool. Since DART for object-
oriented programs needs to calculate the distance between two 
arbitrary objects, accordingly they developed a new distance 
measure, object distance [62],[63] to be applied in adaptive 
random testing of OO programs. The proposed object distance 
was made up of the summation of three measure components 
namely elementary distance (i.e., the distance between the 
direct values of data types associated with objects), type 
distance (i.e., the distance between types of objects 
irrespective of object values), and field distance (i.e., the 
distance between matching fields of the objects). In addition to 
these three components, some weights and normalization were 
incorporated to the calculation process. 

ARTOO is capable to automatically specify how to 
calculate the difference measure, however exponential 
calculation time, i.e., time complexity, imposed by increasing 
the dimension of the input domain is a major issue associated 
with object distance. For instance, checking the distance of 
integer type values are easier and quicker; however, 
calculating an object distance takes considerable much longer 
time (ARTOO takes 160% longer time compared to normal 
random testing [17]). Recently, in response to this issue, 
ARTOO has been further enhanced by Jaygarl et al. [16] for 
the purpose of more efficient testing of object-oriented 
programs. In this work, they suggested a simplified object 
distance that calculates object distance with lesser time 
complexity. They divided input data types into three 
categories− primitive types (including boxed types and a string 
type), array types, and object types. This separation was able 
to reduce unnecessary calculation of the ARTOO’s object 
distance. 

b) ART for Java: Lin et al. [64] propose a divergence-
oriented technique to adaptive random testing of Java 
programs. The primary idea of this approach is to provide the 
program under test with a pool of test data each of which has 
considerable difference from the others (i.e., high divergence), 
and then to use the ART technique to select test data from the 
pool for the program under test. Unlike ARTOO that came up 
with a well-defined distance measure, this work employed 
only an intuitive divergence measure that was simply 
measured as distances of the objects in the pool, without 
providing any details about what this measure is and how it 
was calculated. This obviously makes the analysis of this 
measure’s applicability to AOP difficult and therefore, it shall 
be excluded from the discussion in the analysis section in the 
following. Nevertheless, from an abstract point of view, since 
AspectJ is an AO extension of Java, the approach proposed by 
this work is likely to be applied to AOP, i.e., AspectJ 
programs. However, prior to that, a clear definition of the used 
distance measure along with further configurations to consider 
crosscutting constructs, e.g., advice and pointcuts, into the test 
generation process would be required. 

 
2) Analysis: In the first place, one might think that the 

unique characteristics of AOP (including obliviousness 
property) can completely bar the notion of object distance 
(calculating the distance between two arbitrary objects) from 
applying to AOP and to some extent makes no sense of it, i.e., 
constructing difference measure between two arbitrary aspects 
is not feasible. The reason is that, contrary to the objects in 
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object-oriented programs, in most of AOP languages such as 
AspectJ a given aspect does not have independent identity or 
existence in the system (i.e., the base code has no references to 
the given aspects) and cannot be instantiated. Note, in some 
special cases, it is possible to create several instances of a 
given aspect in AspectJ but by default, a unique instance of an 
aspect is only created and shared by all the objects when the 
application is launched. The aspect is then said to be a 
singleton [65]. 

However, it is important to note that it is just an instinctive 
misunderstanding. Because, in object-oriented programs 
(where the object distance was proposed for), the test 
data/cases to the programs are regarded as objects. Thus, in 
line with the idea of ART, measuring the distance between 
two objects would represent the difference between two test 
cases. Whereas, in the context of aspect-oriented programs it 
makes no sense to similarly measure the difference between 
two arbitrary aspects, while it should be between the tests for 
the aspects not aspects themselves.  

Therefore, similar to the first perspective or specifically the 
category and choice-based measure (i.e., CCD), the object 
distance measure can only be used in the context of base code 
of the AO programs towards their adaptive random testing 
(i.e., the tests that stress the integration between aspects and 
affected classes). Because, the objects will form the base part 
of AO programs, i.e., base code.  

It is also worth mentioning that, the object distance has an 
added advantage of requiring less effort compared to the first 
measure. This is why the object distance was originally 
developed and well-defined for OO programs, thus unlike the 
first measure no further effort would be required to leverage 
the underlying technique to OO programs, prior its application 
to AOP.  

Finally, the explanations on the analysis of the object 
distance lead us to conjecture that the idea of the ART, using 
this measure, cannot be currently applied to aspect code of 
AOP (only base code). Hence, future research might include 
in-depth investigation of ART notion’s applicability to AOP 
inspired by this measure, of course with a focus on adaptive 
random testing of aspects, i.e., aspect code. If one can figure 
out the feasibility or applicability of this matter then a metric 
model on top of object distance, as next step, will be required. 
This model should be designed in a way to capture an 
appropriate distance between arbitrary test cases (not aspects) 
for a given aspect under test to ensure the evenly spread of test 
cases (maybe “aspect distance” similar to its corresponding in 
object-oriented programs, object distance). 

D. Coverage-based Perspective  
1) Underlying technique: This perspective was motivated 

by some work related to coverage-based test case selection 
and prioritization [66],[67] in the context of regression testing. 
This work proposed methods to measure the distance between 
test cases based on coverage information such as statement 
and branch coverage, as presented below. 

Zhou [66] proposes a metric, called the Coverage 
Manhattan Distance (CMD) as in (1), to measure the 
difference between any two arbitrary test cases, applicable to 
adaptive random testing. This measure uses the branch 
coverage information associated with the test cases. The 
formal definition of this measure is as follows. Given x as one 

test case, and Ex as a vector that records the branch coverage 
information related to x. The vector is defined to be Ex = (x1, 
x2, . . . , xn), where xi ∈ {0, 1} for 1≤ i ≤ n, and n is the total 
number of branches in a given program. The value of xi is set 
to 1 if and only if the ith branch of the program has been 
exercised by execution of x; otherwise xi is set to 0. Similarly, 
let y be another test case, and Ey = (y1, y2, . . . , yn) records the 
branch coverage information of y. The Coverage Manhattan 
Distance (CMD) between x and y is captured by: 

∑ −=
=

n

i
ii yxyxCMD

1
),(   (1) 

Similar to the work by Zhou, Jiang et al. [67] suggested a 
distance measure based on the Jaccard distance of the two sets 
to be used as measured distance between two test cases. The 
Jaccard distance between two test cases x and y is defined as: 
D (x, y) = 1−|A∩B|/|A∪B|, where A and B are the sets of the 
coverage of elements such as statements or branches exercised 
by x and y, respectively. 

Empty-intersection set is a problem associated with Jaccard 
measure. That is, whenever the intersection between set A and 
B is empty the Jaccard measure just returns the maximum 
value of 1. This problem can result in capturing the distance 
between the test cases in a wrong way and consequently 
misguide the ART algorithm in picking the test case 
candidates (see [66] for example on this problem). However, 
this is not the case with CMD measure, whereas it is capable 
of yielding result that is more effective. This superiority led us 
to put emphasis on the CMD measure in the analysis of its 
capability to AOP, in the next sub-section. 

 
2) Analysis: The two preceding measures, i.e., category 

and choice-based and object distance, focus on the input 
values (according to the program’s input domain/space) as 
their sources of measurements. This dependency on input 
values makes these measures to be only applicable to certain 
types of programs (or at least more suited to some). On the 
contrary, CMD measure relies on a totally different source, 
which is independent of the input values. In our view, this 
measure is promising as it has the advantage (i.e., by using 
coverage information) that enables ART to be applied to a 
border range of programs with lesser limitations. In addition, 
the coverage fulfillment has been the most analyzed and 
required test criterion through the testing studies, which CMD 
has also taken into account. 

In adoption of this measure to AOP, towards the ART, 
there can be two interesting ways of further exploration: 

First, we suggest including the aspectual branch coverage 
[8] instead of the traditional branch coverage in the original 
CMD measure to record the required coverage information. 
Aspectual branch coverage is a coverage metric that captures 
the aspectual behavior, specifically the branch coverage within 
the aspect code (i.e., including branches from predicates in 
advice and methods in aspects). This metric has been 
previously used to guide the test generation in area of AOP 
testing [8],[6]. As a result, the selection of the test cases 
according to this adopted CMD measure (one may call it 
Aspectual Coverage Manhattan Distance, ACMD) would be 
based on test cases that are able to cover new aspectual 
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branches that have not been covered by the previous executed 
test cases.  

In order to make the point clear, a simple example showing 
the applicability of the coverage Manhattan distance to an 
aspect code is presented below. Given the aspect 
ODRuleAspect shown in Figure 2 (adapted from AspectJ 
examples by Laddad  [58]): 

 
public aspect ODRuleAspect 

pointcut debitExecution(Account account,  float 
withdrawalAmount)  : execution(void 
Account.debit*(float)  && this(account) && 
args(withdrawalAmount); 
before(Account account, float withdrawalAmount)  
: debitExecution(account, withdrawalAmount) { 
  Customer customer = account.getCustomer(); 
  if (customer == null) return; 
  if (account.getAvailableBalance()> 
withdrawalAmount){ 
  float deductedAmount =  
   account.getAvailableBalance()- 

withdrawalAmount; 
  ... 
   } else System.out.println("not enough 
money!"); 
  } 
  ... 
 } 
 

public class Account { 
  private float balance; 
  private int accountNumber; 
  private Customer customer; 
 public Account(int accountNumber,Customer   
customer) { ... } 

  public void debit(float amount) { ... } 
... 
} 

Figure 2. An AspectJ example 

In this case, there are two predicates (surrounded by a red 
box in Figure 2) which result in four aspectual branches in the 
given aspect, that is n=4. Suppose x and y are two test cases, 
where each of which contains a different instance of 
Account class, say Ac1 and Ac2 respectively. In addition, 
two calls to debit method (plus two parameter values for 
method’s calls) on these instances are required to trigger the 
execution of the advice. Thus, for instance Ac1.debit 
(95.60) and Ac2.debit (64.35) would form the test 
cases x and y respectively.  Assume, Ac1. getCustomer 
will return null, in this case x would be able to exercise only 
one branch, i.e., customer == null, hence Ex = (1,0,0,0). 
Similarly assume, Ac2. getCustomer has not returned 
null and its Ac2.getAvailableBalance is 120 (which 
is higher than 64.35). Thus, the test case y is able to exercise 
two branches, i.e., customer ≠ null and 
(account.getAvailableBalance()> 
withdrawalAmount), so Ey = (1,1,0,0). Now, recall the 
metric in (1) the difference measured between these two cases 
would be of 1.  

Alternatively, in order to obtain the proper coverage 
information to make use of the CMD measure in ART of 
AOP, we suggest employing the program’s control flow graph 
of aspect-oriented programs. For this purpose, aspect-oriented 
control flow graph (AOCFG) proposed by Parizi et.al [68] (or 
other similar approaches such as [69]) would be a capable 
choice to help testers gain coverage-related information. This 
type of structural modeling and graph embodiment of aspects 
not only allows obtaining information related to the branch 
coverage but also a variety of coverage elements such as node, 
edge, etc. However, further research needs to be done to study 
the usefulness of these types of coverage information for ART, 
including coverage of elements in graphs/models used in 
aspect-oriented modeling. 

In summary, the above analysis demonstrates that it is 
possible to construct more meaningful distance measure (using 
the idea of coverage information) in compared with the other 
presented measures for adaptive random testing of aspect-
oriented programs. However, it still requires conducing further 
research to produce a well-suited coverage-based ART 
technique for aspect-oriented programs and then to proof the 
effectiveness of the produced technique through 
experimentation or proper case study.   

IV. SUMMARY OF ANALYSES  
For the brevity, a summary of the presented perspectives 

along with the analyses of the distance measure’s properties, 
are presented in Table I.      

TABLE I.  SUMMARY OF THE DISTANCE MEASURES OF DIFFERENT 
PERSPECTIVES  

 
 

Perspective 
Distance/ 
difference 
measure 

Source of 
measurement 

Original 
Paradigm/ 

Application 
domain 

 

Applicability 
to AOP 

Category and 
choice-based 

Category 
and choice 
distance 

Input values 
Procedural 

programs (with 
numerical inputs)

Base code 

Object-based Object 
distance Input values Object-oriented 

programs Base code 

Coverage-
based 

Coverage 
manhattan 
distance 

Structural 
information 
(e.g., branch  

coverage) 

Procedural and 
object-oriented 

programs 

Base & aspect 
code 

 
With respect to above table, the first column lists down the 

reviewed perspectives. The second column gives the original 
distance measure provided by the corresponding perspectives. 
The third, presents the source from which the measurement of 
the given measures are captured. The forth column lists the 
programming paradigms/application domains that the given 
measure were first proposed or applied to. Finally, the fifth 
column gives the possible applicability of the distance 
measures in terms of their suitability to adaptive random 
testing of aspect-oriented programs. 

From the table, it can be clearly seen that only one 
measure, i.e., CMD, has the capability of being adopted to 
both base and aspect code, generally the whole AO program. 
Furthermore, the source of measurement used by this measure, 
it is more fine-grained and desirable compared to the other two 
measures.  

Nevertheless, based on the theoretical analysis and 
interpretation shown among different perspectives and their 
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distance measures and the fact that these measures are capable 
of providing different level of adoptability to AOP (i.e., 
relative advantages and weakness), at the moment and based 
on our understanding of these reviewed perspectives, the 
coverage-based perspective, to be exact the CMD measure, 
proposed by Zhou [66] shows to be one of the most suited 
(with respect to the unique characteristics of AO programs) 
and promising distance measure towards adaptive random 
testing of the aspect-oriented programs.  

V. CONCLUSION AND FUTURE WORK 
Research on automated AOP testing is quite young and 

there is still a way to grow to its maturity. In ambition to 
advance the work with test automation of AOP and reaching to 
a plausible maturity, we have performed some preliminary 
research to investigate the applicability of one of the current 
automated test generation and selection techniques (i.e., ART) 
to AOP. The given investigation included the identification and 
presentation of the three related perspectives (by comparing 
their enclosed distance measures) on adaptive random testing 
of AOP and their general limitations and applicability.  

As a general conclusion, our study shows that it is possible 
to apply the ART technique to AOP, however the current 
distance measures would not be all applicable or sufficient to 
address the notion of evenly spread of test cases suggested by 
ART. Two of the measures were intended to be only 
applicable to base code of AO programs while one was more 
applicable in nature, having potential of calculating distance 
between test cases meant for aspect code. Thus, aspect-
oriented programs require evolving the discussed measures 
and/or developing new effective distance measure that can 
truly represent the notion of evenly spread of test cases with 
regard to the unique characteristics of these programs. 

At last, we believe the work presented in this paper has 
provided new avenues of exploration within the area of  
AOP testing. Decidedly, this would be only the initial stage of 
leveraging a well-known testing technique to AOP; hence, it 
still requires further research to establish a concrete and useful 
ART-based technique for AOP in the future. 
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