

On the Preliminary Adaptive Random Testing of Aspect-Oriented Programs

Reza Meimandi Parizi, Abdul Azim Abdul Ghani
Department of Information Systems, University Putra Malaysia,

43400 Serdang, KL, Malaysia
{parizi, azim}@fsktm.upm.edu.my

Abstract— Adaptive random testing (ART) is a new family of
random-based test data generation and selection strategies that
enhances the effectiveness of tests over the classical random
testing (RT). ART has been widely investigated and studied in
numerous research papers over the recent years. These studies
have included proposing various techniques for implementing
and improving the intuition behind ART (evenly spread of test
cases over the input domain, measured by some distance
measures) generally for procedural programs with numerical
input domain and most recently object-oriented programs.
However, there is currently no work available in the literature
that discusses the applicability of ART to aspect-oriented
programming (AOP), as it is gaining popularity in software
development. Inspired by this, this paper aims to investigate the
possible ways that ART can be applied to AOP. This investigation
focuses on a multi-perspective analysis of the current ART-based
techniques. In this respect, we identified three related
perspectives based on the current state of art in the area of ART.
Each perspective was analyzed in terms of its applicability and
possibility for aspect-oriented programs, particularly its
constituent distance measure. As a result, our study gives rise to
some interesting points and outlines a number of potential
research directions in applying ART to AOP. This can pave the
way for efficient development on applying of ART to AOP and
finally AOP success.

Keywords-software testing; random testing; adaptive random
testing; aspect-oriented programming; aspect testing.

I. INTRODUCTION
Aspect-oriented programming [1],[2],[3] is one of the

prominent modularization techniques emerged to cope with the
complexity of software development process. To realize the
benefits of aspect-oriented programming, the programs
developed by this programming paradigm should be effectively
tested. The reason is that the aspect-related defects [4],[5],
stemmed from the unique characteristics of AOP, can affect the
quality of these programs and consequently their general
benefits, i.e., enhanced modularity and maintainability.

Software testing as the most widely used practice of
ensuring the program’s correctness, is useful to help finding
these defects (i.e., their presence) and thus to provide a higher
level of software quality. However, it has to be said that there is
comparatively little work on testing of AOP in the literature
and very little on automated testing of AOP such as [6],[7],[8].
This obviously indicates an insufficiency of testing approaches
for the aspect-oriented programs at the current time and
provides a primary motivation for leveraging the current testing

techniques and/or developing new techniques for these
programs.

Adaptive random testing proposed by Chen et al. [9] (as a
recent derivative of random testing [10]) is an active and
interesting research topic, which has shown [11],[12],[13],[14],
[15] to have higher fault detection effectiveness compared to
classical random testing, with facility of test automation. This
is why Jaygarl et al. [16] has noted that ART is one of the most
effective technique in automated test generation. The essential
idea of ART techniques is that the evenly spread random test
cases over the whole input domain allows finding faults
through fewer test cases than with classical random testing.
ART has shown to reduce the number of tests required to
reveal the first fault by as much as 50% over classical random
testing [17]. Adaptive random testing has seen remarkable
progress during the recent past years in order to address the
notion of evenly spread of test cases. It seems reasonable to
conjecture that ART would continue to be active and become
popular among the other random-based testing strategies.

In line with importance of AOP testing and on the other
hands its current insufficiency, we believe the idea behind
adaptive random testing can be worthwhile and attractive for
automated testing of aspect-oriented programs since current
research on testing of AOP, especially automated has not been
adequately performed and is still in stage of infancy. In order to
investigate the applicability of ART to AOP, we indentified
three perspectives/directions based on scouring the current
ART-based techniques in the literature. Corresponding to each
perspective and its underlying technique (i.e., distance
measure), we analyzed and discussed the feasibility of the
given technique to AOP.

As far as we are aware, this is the first attempt made in the
literature to discuss the applicability of ART for aspect-
oriented programs. In other words, this paper takes some initial
steps towards addressing the ART concept for automated test
data generation and selection of the aspect-oriented programs.
The specific contributions made by the paper are:
• It makes the current vague realization of ART to AOP

more understandable by providing thought-provoking
perspectives on this matter. Specifically, it gives a
theoretical analysis and comparison of three known ART
criterions adopted (presented under three identified
perspectives) to calculate the distance among different test
cases for aspect-oriented programs.

• It analyzes and potentially guides the application of ART
in AOP and discusses the potential of using current ART
techniques and their results to foster the development of

49

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

new testing techniques in area of aspect-oriented software
development (AOSD).

The remainder of this paper is organized as follows. Section
II provides the background on ART and overviews the current
state of the art in this field of research; Section III presents and
analyzes the perspectives on adaptive random testing of AOP;
Section IV summarizes the results of the analyses; and Section
V reports the conclusion and future work.

II. ADAPTIVE RANDOM TESTING (ART)

A. Overview and Classification
Random testing [18],[10],[19] as one of the eldest

techniques that include automated test input generation and
selection has been studied and applied in different
programming paradigms and application domains for decades.
The first emergence of the random testing was meant for
programs with numerical input domain, however with passage
of time and emerging different paradigms the interest in
random testing has been substantially increased due to the
merits it offers. This matter is evident by various studies in the
literature that have extended/applied the RT to the area of their
interest.

Random testing is normally referred as the opposite of
systematic testing such as functional or structural testing. The
techniques in this family, i.e., random-based, can be generally
classified into classical/pure random testing (the word classical
and pure are interchangeability used in this paper) and enriched
random testing due to the strategies they use for test input
generation and selection, see Figure 1.

Figure 1. General classification of random testing techniques

By enriched, we mean those strategies that have been
equipped with some guidance to their normal random
generation process to pick up test inputs that give higher
effectiveness in results, in contrast to the classical random
testing in which test inputs are only picked at just random. In
other words, both classical RT and enriched RT randomly
generate test inputs from the input domain, but enriched RT
uses additional guidance/criteria to help systematically test case
selection rather than randomly selection. Note, in classical
random testing test cases are generated by selecting random
values of the input variables, which means the generation and
selection are not two separated process but rather both imply
each other and carried out randomly, see Fig. 2. (Note, in the
classical RT, the test generation and test selection processes are
the same but in the figure they have been separated for only the
purpose of contrasting).

ART [9],[20] is the most dominant family of the enriched
RT that suggests a selection criterion of “enforcing the test
cases to be evenly spread over the entire input domain”.
Spreading evenly the test cases over the input domain is not
only the basic idea underlying the ART but also Quasi-Random
Testing (QRT) [21] and somewhat the Diversity-Oriented Test
Data Generation (DOTG) [22]. These techniques emphasize on
the idea of existence a correlation between the fault detection
effectiveness and the evenness of the test case distribution in
which the more even distribution of the test cases over the
input domain the more fault detection capability with fewer test
cases is gained.

Figure 2. The contrasts between the classical and enriched random testing

In ART has been tried to enhance the fault detection
effectiveness of classical RT by imposing some additional
criteria on the test inputs selection process. As we mentioned
before, the basic intuition of ART technique is that the evenly
spread random test cases over the whole input domain allows
finding faults through fewer test cases than with purely random
testing. In literature several algorithms and variations of the
techniques have been proposed to address the “even spread”
intuition. The different ART algorithms give different test case
selection criteria to ensure an even spread of the test cases.
These algorithms attempt to maintain the benefits of random
testing while increasing its effectiveness. For instance, one of
the test case selection criterions used in one typical ART
algorithm called the Fixed Size Candidate Set ART (FSCS-
ART) [9] is as follows, which ensures the evenly spread of the
test cases by means of a distance measure. The technique
defines two test sets: the Executed Set, containing the test data
that have been executed, and the Candidate Set, containing a
set of randomly selected test data. The Executed Set is initially
empty and the first test datum is randomly chosen. The
Executed Set is then incrementally updated with the elements
selected from the Candidate Set until a fault is revealed. The
choice of the test datum from the Candidate Set requires the
measurement of the distances of each candidate to all test data
in the Executed Set. The chosen candidate is the datum that has
the maximal value for the minimal distance among the
distances to each test data in the Executed Set (furthest away
from the already used inputs).

B. State of the Art in ART
Based on the idea of ART great deals of related algorithms,

i.e., various implementation of the idea, have been proposed
(distance-based ART, DART [23] was the first ART

50

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

algorithm). The different algorithms give different test case
selection criteria towards achieving this idea. Some of these
algorithms are closely related to the ART, however, with slight
changes. Example of these include the Restricted Random
Testing (RRT) [24] or Ordinary Random Testing [25], while a
plenty of them, as explained below, emphasize on the
improvement to ART itself since its emergence [9].

Although ART has shown to be able to improve the fault
detection effectiveness of RT, it requires additional
computation overhead (considered as main problem associated
with ART) to evenly spread test cases [26]. On this regard, a
great deal of research has been proposed to minimize the
boundary effect [27] and the overhead of primary ART
algorithm. Mirror ART (called MART) [28], Fuzzy ART [13],
ART by restriction [29], ART by localization [30], ART
through dynamic partitioning [31], ART with CG constraints
[32] are examples of these improvements which alleviate the
pitfalls of the original ART algorithm, especially its overhead.

Further advancement to ART has also been provided by
lattice-based ART. Lattice-based ART (L-ART) is a distinctive
ART method that generates test cases by systematically placing
and then randomly shifting lattice nodes in the input domain.
The first introduction of L-ART [33] showed that L-ART is
capable of yielding a better fault detection capability than RT,
at the same generation cost. However, the test cases of L-ART
may be highly concentrated on certain parts of the input
domain and cause a skewed distribution of test cases. This
skewed distribution of test cases can cause a tight coupling
between the fault detection capability and the failure region
location in the input domain. This means, when failure regions
coincidentally reside in the area where L-ART selects a high
density of test cases, L-ART may show a better fault detection
capability than when failure regions are in the low density area.
In reality, however, failure regions can be in any part of the
input domain, therefore this dependency of fault detection
capability on the failure region location is undesirable.

The issue of skewed test case distributions was addressed in
an enhanced version of L-ART presented by Chen et al. [34].
The new L-ART not only had a less-skewed test case
distribution, but also demonstrated better and more consistent
fault detection capability compared to the original L-ART. This
superiority of the fault detection capability of the new L-ART
has been shown to be better than the results by Restricted ART
by random partitioning [35], ART by bisection with restriction
[36] and localization [37], ART through iterative partitioning
revisited [38] and not revisited [39], ART with enlarged and
high dimensional input domains [40], ART with randomly
translated failure region [41], ART using Voronoi diagram
[42], ART by balancing [43].

Distribution Metric Driven ART [44] has been conducted to
measure how evenly an ART algorithm can distribute its test
cases according to some distribution metrics such as
discrepancy and dispersion, which reflect different aspects of
the test case distribution. Discrepancy and dispersion are two
commonly used metrics for measuring the equidistribution of
sample points. Intuitively, low discrepancy and low dispersion,
not in isolation, indicate that sample points are reasonably
equidistributed [45] and finally implies an even spread of test
cases. These distribution metrics have not only been used to
measure and compare the equidistribution of various ART

algorithms but also they have recently been adopted as criteria
for the test case selection process aiming at improving the
evenness of test case distribution and the fault detection
capability of ART [45], [46].

More recently, a new family of ART [47] algorithms,
namely adaptive random testing with dynamic non-uniform
candidate distribution (ART-DNC) has been proposed. ART-
DNC uses a new test profile called failure driven instead of
uniform distribution or operational profiles used in the original
ART algorithm to maximize the effectiveness of fault
detection. These new algorithms showed better fault detection
capabilities in contrast with the original ART and RT.
Moreover, a new ART approach [48] based on the application
of an evolutionary search algorithm, called Evolutionary
Adaptive Random Testing (EART), was proposed lately.

As could be seen from above, there are so many different
growing approaches that address the concept of ART and its
further improvements. This matter may raise the question how
the results of this work can be related to each other to come up
with a completed and optimally effective ART approach.
Recently, the work in [49] has taken into account this issue.
This work presented a classification, amalgamation of the
influential research work related to ART by highlighting the
connections, and dependency relationships among the current
work in this area.

 The review of the current state of the art, as given in this
section, shows that none of the presented work has discussed
the applicability of adaptive random testing to AOP yet. This
has primarily provided the motivation for the research in this
paper to address this gap.

III. PERSPECTIVES ON ADAPTIVE RANDOM TESTING OF AOP
In this section, we present and discuss three perspectives on

adaptive random testing of AOP. For each of the perspective,
the discussion is based on the following:

• Its underlying technique and difference measure it
encompasses

• Analysis (i.e., theoretical) of its applicability/
feasibility to AOP

A. Overview
It has been generally believed that how evenly an ART

technique spreads test cases has an impact on how effectively it
detects software failures, and an even distribution of test cases
brings a good fault detection capability [11],[12],[13],[14],[15],
[50]. However, this matter has only been proven for the
numerical and recently objects input types, where there is no
evidence on the other complex contexts such as aspect-oriented
yet.

In order to be able to apply a typical ART technique (such
as FSCS-ART) to a given program the following two issues
should be generally figured out [49]:

(1) A strategy to help random sampling from the input
domain of the program under test. In other words, this strategy
is used to generate random test inputs/data.

(2) A mechanism to compare any two members of the input
domain and determine the distance between them to select
those test inputs that ensures the evenly spread of the test
cases over the input domain. The distance measure should be
able to represent the probability of common failure behavior

51

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

between two inputs. In other words, the distance measure can
be viewed as a difference measure that tries to maximize the
diversity of the inputs in which the smaller the distance, the
more likely the test cases will show a similar failure behavior.
Up to the present time, ART and its all variations in the
literature are limited to programs with numeric inputs. On this
regards, these studies have calculated the distance between
two test cases, i.e., values from input domain, using the
Euclidean measure.

Nevertheless, the first issue is common between any pure
random testing and adaptive random testing techniques in
which a given strategy needs to provide random generation of
the test inputs (i.e., random testing). The second issue is meant
to be only for ART techniques, i.e., solely unique to the
adaptive random testing. It is worth mentioning that the first
issue, which is RT, for different programming
paradigms/languages and many application domains has been
popularly resolved for decades, e.g., [51],[52],[53], [54]. In
particular, there have been some recent attempts [55],[56]
towards application of random testing to aspect-oriented
programs, however the second issue has received lesser
attention as the major challenge towards applying the concept
of ART to AOP. Therefore, we place emphasis on discussing
the second issue as the target objective in this paper.

The main question that we seek to provide insight into it is
how the concept of distance measure can be lifted or applied to
aspect-oriented programs. The answer to this question can
consequently help developing adaptive random testing
techniques towards automated testing of aspect-oriented
programs.

According to the current evidence from literature, there are
three perspectives in which this question can provoke
discussion in the applying the notion of distance measure
(second issue) or more generally ART to AOP. These
perspectives are presented and discussed in the following sub-
sections. Furthermore, in our discussion AspectJ [57],[58] is
adopted as the target language. The reason is that the AspectJ is
the most commonly used aspect-oriented programming
language that warrants special attention.

B. Category and Choice-based Perspective
1) Underlying technique: This perspective is based on the

concepts of categories and choices [59] to which the failure
behavior of test cases (i.e., their ability to trigger faults) can be
predicated according to the similarity of computation in the
executions of them [49]. With regard to this idea, a difference
measure (hereafter category and choice distance, CCD) for the
category-partition method was first proposed by Kuo [60],
who claimed that this measure can be used to help applying
ART to a broad range of software input types.

The category-partition method is a specification-based
testing approach. In this approach, the parameters and
environment conditions that define the behavior of the
program under test are first identified, which called as
categories. Then, for each category, a set of mutual values that
possibly triggers similar computation forms the choices. The
more categories in which two inputs have various choices, the
more diversifiable computation they trigger. Therefore, the
number of categories containing differing choices is used as
predictor of this difference measure, i.e., CCD.

In order to illustrate this difference measure, a simple object
recognition system that is capable of distinguishing shapes,
sizes and colors is presented as follows (taken from [49]).
Suppose that the color of objects can only be light-red, red,
deep-red, light-blue, blue, deep-blue, light-green, green and
deep-green, and objects are spheres, cubes or pyramids in
shape. The size is in the range (0,10] in m3. The system
behavior depends only on the object shape, the base color (i.e.,
red, blue or green), and whether the object is larger than 1 m3.
In this case, three categories can be defined: Color, Shape and
Size; three choices for the Color category: red, blue and green;
three choices for the Shape category: sphere, cube and
pyramid; and two choices for the Size category: large and
small. Some choices contain more than one possible value. For
example, the red choice has light-red, red and deep-red as its
possible values and large has any size more than 1 m3.
Consider two program inputs (i.e., test cases) T1 and T2, where
T1 is a light-red sphere of size 3.2 m3, and T2 is a deep-blue
sphere of size 2.7 m3. T1 has the choices (red), (sphere) and
(large) while T2 has the choices (blue), (sphere) and (large).
Therefore, there is only one category, color, in which T1 and T2
differ, thus the difference between the two inputs is 1 according
to the given distance measure. This is to say that, these two
tests are computationally similar as there is not much
differences and thus might possibly have a similar failure
behavior.

2) Analysis: The primary intension of Kuo [60] was to

suggest the CCD difference measure as a generic metric for
developing ART algorithms of non-numeric input types, but
his primary work has not provided any practical example or
case study to discuss this matter for modern programs such as
object-oriented (OO) or aspect-oriented (AO). Thus, one
might think of how this measure could be possibly generalized
to these programs with non-numeric input types.

Following the same source of motivation that the CCD
difference measure can be possibly applied to a broad range of
program input types (as claimed by Kuo [60]), we have here
analyzed its feasibility of the application to object- and aspect-
oriented programs. To this end, we need to define what would
be the categories and choices with respect to these programs
and how truly they can represent the essential idea of ART.

In adoption of this measure to the object-oriented programs
(as complementary to AOP), categories can be viewed as
classes and their associated choices can be considered as
instances of those classes, say objects. Therefore, the number
of classes containing differing object’s values would be a
refined definition of the CCD measure for OO programs.
Given this, recall the previous example (i.e., recognition
system) and test inputs T1 and T2, we now assume this system
is an object-oriented application containing three classes:
Color, Shape and Size that does the same functionality but
implemented in different programming paradigm, e.g., Java. In
this case, we define three classes to represent the three
categories, Color, Shape and Size respectively. Accordingly,
three objects are instantiated to be as choices of the Color
category that is red, blue and green. Likewise, three objects for
the Shape category: sphere, cube and pyramid; and two objects
for the Size category: large and small. According to the
definition, there is only one class, color, in which T1 and T2

52

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

has different object’ values, thus the difference between the
two inputs is 1.

It can be said that the adaptive random testing of OO
programs with respect to this category and choice-based
measure (i.e., CCD) is possible to be performed. However,
effectiveness of this measure would be another research effort
that is worth further investigating.

Concerning the aspect-oriented programs, we now further
assume that the recognition system example is an aspect-
oriented application written in AspectJ that include the same
classes as well as one more feature implemented in one aspect
to keep track of the object’s movement. The aspect is used to
monitor the movement of the recognized objects to refresh the
object’s display whenever they actually move. Note, tracking
movement of object is a crosscutting concern for the system,
where it has been implemented as an aspect straightforwardly.
If the aforementioned distance measure is chosen to be used
for addressing the notion of evenly spread of test cases on this
system, the only way to perform the adaptive random testing is
to apply the given measure on the base code of the aspect-
oriented program (by employing the aforementioned CCD for
OO programs). The reason is that the aspects in most of AO
languages (including AspectJ) do not have independent
identity or existence in the system and cannot be instantiated.
This articulates an aspect-related property known as
obliviousness [61] in which objects, generally base code, are
not aware of the aspects in the system. Consequently, such
unique properties and characteristics related to AOP perhaps
avoid adopting the categories and choices concepts to aspects,
generally aspect code. (Typically, a given AO program such as
AspectJ is comprised of two parts known as base code and
aspect code. The base code contains all the classes and objects
and provides the context execution (join points information)
for the aspects. The aspect code contains all the existing
aspects in the program and run based upon reaching certain
join points in the base code. For more information on this
please refer to [58]).

To sum up, we can state that the CCD measure is possible
to be applied to adaptive random testing of AOP, however, it
will not consider the direct testing of aspect code, specifically
the aspect’s constructs such as pointcuts and advice (as the
focus is more on relationships between the affected/advised
classes and aspects, i.e., base code). In this case, the tests
mostly stress the integration between aspects and affected
classes.

C. Object-based Perspective
1) Underlying technique: This perspective was inspired by

two recent work on adaptive random testing of object-oriented
programs. Since OO programs are considered as
complementary parts to AO programs, thus the discussion
regarding the prior application of ART to OO would be clearly
helpful and connected to the objective of the paper, i.e.,
investigating the applicability of ART to AOP. Nevertheless,
this work has been proposed for object-oriented programs
written in Eiffel and Java languages, as briefly presented in the
following.

a) ART for Eiffel: Ciupa et al. [17] propose adaptive
random testing for object-oriented programs written in Eiffel,
called ARTOO. Their approach initially share the idea of the
DART approach [23] to select input objects (considered as test

data/cases) from a testing pool. Since DART for object-
oriented programs needs to calculate the distance between two
arbitrary objects, accordingly they developed a new distance
measure, object distance [62],[63] to be applied in adaptive
random testing of OO programs. The proposed object distance
was made up of the summation of three measure components
namely elementary distance (i.e., the distance between the
direct values of data types associated with objects), type
distance (i.e., the distance between types of objects
irrespective of object values), and field distance (i.e., the
distance between matching fields of the objects). In addition to
these three components, some weights and normalization were
incorporated to the calculation process.

ARTOO is capable to automatically specify how to
calculate the difference measure, however exponential
calculation time, i.e., time complexity, imposed by increasing
the dimension of the input domain is a major issue associated
with object distance. For instance, checking the distance of
integer type values are easier and quicker; however,
calculating an object distance takes considerable much longer
time (ARTOO takes 160% longer time compared to normal
random testing [17]). Recently, in response to this issue,
ARTOO has been further enhanced by Jaygarl et al. [16] for
the purpose of more efficient testing of object-oriented
programs. In this work, they suggested a simplified object
distance that calculates object distance with lesser time
complexity. They divided input data types into three
categories− primitive types (including boxed types and a string
type), array types, and object types. This separation was able
to reduce unnecessary calculation of the ARTOO’s object
distance.

b) ART for Java: Lin et al. [64] propose a divergence-
oriented technique to adaptive random testing of Java
programs. The primary idea of this approach is to provide the
program under test with a pool of test data each of which has
considerable difference from the others (i.e., high divergence),
and then to use the ART technique to select test data from the
pool for the program under test. Unlike ARTOO that came up
with a well-defined distance measure, this work employed
only an intuitive divergence measure that was simply
measured as distances of the objects in the pool, without
providing any details about what this measure is and how it
was calculated. This obviously makes the analysis of this
measure’s applicability to AOP difficult and therefore, it shall
be excluded from the discussion in the analysis section in the
following. Nevertheless, from an abstract point of view, since
AspectJ is an AO extension of Java, the approach proposed by
this work is likely to be applied to AOP, i.e., AspectJ
programs. However, prior to that, a clear definition of the used
distance measure along with further configurations to consider
crosscutting constructs, e.g., advice and pointcuts, into the test
generation process would be required.

2) Analysis: In the first place, one might think that the

unique characteristics of AOP (including obliviousness
property) can completely bar the notion of object distance
(calculating the distance between two arbitrary objects) from
applying to AOP and to some extent makes no sense of it, i.e.,
constructing difference measure between two arbitrary aspects
is not feasible. The reason is that, contrary to the objects in

53

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

object-oriented programs, in most of AOP languages such as
AspectJ a given aspect does not have independent identity or
existence in the system (i.e., the base code has no references to
the given aspects) and cannot be instantiated. Note, in some
special cases, it is possible to create several instances of a
given aspect in AspectJ but by default, a unique instance of an
aspect is only created and shared by all the objects when the
application is launched. The aspect is then said to be a
singleton [65].

However, it is important to note that it is just an instinctive
misunderstanding. Because, in object-oriented programs
(where the object distance was proposed for), the test
data/cases to the programs are regarded as objects. Thus, in
line with the idea of ART, measuring the distance between
two objects would represent the difference between two test
cases. Whereas, in the context of aspect-oriented programs it
makes no sense to similarly measure the difference between
two arbitrary aspects, while it should be between the tests for
the aspects not aspects themselves.

Therefore, similar to the first perspective or specifically the
category and choice-based measure (i.e., CCD), the object
distance measure can only be used in the context of base code
of the AO programs towards their adaptive random testing
(i.e., the tests that stress the integration between aspects and
affected classes). Because, the objects will form the base part
of AO programs, i.e., base code.

It is also worth mentioning that, the object distance has an
added advantage of requiring less effort compared to the first
measure. This is why the object distance was originally
developed and well-defined for OO programs, thus unlike the
first measure no further effort would be required to leverage
the underlying technique to OO programs, prior its application
to AOP.

Finally, the explanations on the analysis of the object
distance lead us to conjecture that the idea of the ART, using
this measure, cannot be currently applied to aspect code of
AOP (only base code). Hence, future research might include
in-depth investigation of ART notion’s applicability to AOP
inspired by this measure, of course with a focus on adaptive
random testing of aspects, i.e., aspect code. If one can figure
out the feasibility or applicability of this matter then a metric
model on top of object distance, as next step, will be required.
This model should be designed in a way to capture an
appropriate distance between arbitrary test cases (not aspects)
for a given aspect under test to ensure the evenly spread of test
cases (maybe “aspect distance” similar to its corresponding in
object-oriented programs, object distance).

D. Coverage-based Perspective
1) Underlying technique: This perspective was motivated

by some work related to coverage-based test case selection
and prioritization [66],[67] in the context of regression testing.
This work proposed methods to measure the distance between
test cases based on coverage information such as statement
and branch coverage, as presented below.

Zhou [66] proposes a metric, called the Coverage
Manhattan Distance (CMD) as in (1), to measure the
difference between any two arbitrary test cases, applicable to
adaptive random testing. This measure uses the branch
coverage information associated with the test cases. The
formal definition of this measure is as follows. Given x as one

test case, and Ex as a vector that records the branch coverage
information related to x. The vector is defined to be Ex = (x1,
x2, . . . , xn), where xi ∈ {0, 1} for 1≤ i ≤ n, and n is the total
number of branches in a given program. The value of xi is set
to 1 if and only if the ith branch of the program has been
exercised by execution of x; otherwise xi is set to 0. Similarly,
let y be another test case, and Ey = (y1, y2, . . . , yn) records the
branch coverage information of y. The Coverage Manhattan
Distance (CMD) between x and y is captured by:

∑ −=
=

n

i
ii yxyxCMD

1
),((1)

Similar to the work by Zhou, Jiang et al. [67] suggested a
distance measure based on the Jaccard distance of the two sets
to be used as measured distance between two test cases. The
Jaccard distance between two test cases x and y is defined as:
D (x, y) = 1−|A∩B|/|A∪B|, where A and B are the sets of the
coverage of elements such as statements or branches exercised
by x and y, respectively.

Empty-intersection set is a problem associated with Jaccard
measure. That is, whenever the intersection between set A and
B is empty the Jaccard measure just returns the maximum
value of 1. This problem can result in capturing the distance
between the test cases in a wrong way and consequently
misguide the ART algorithm in picking the test case
candidates (see [66] for example on this problem). However,
this is not the case with CMD measure, whereas it is capable
of yielding result that is more effective. This superiority led us
to put emphasis on the CMD measure in the analysis of its
capability to AOP, in the next sub-section.

2) Analysis: The two preceding measures, i.e., category

and choice-based and object distance, focus on the input
values (according to the program’s input domain/space) as
their sources of measurements. This dependency on input
values makes these measures to be only applicable to certain
types of programs (or at least more suited to some). On the
contrary, CMD measure relies on a totally different source,
which is independent of the input values. In our view, this
measure is promising as it has the advantage (i.e., by using
coverage information) that enables ART to be applied to a
border range of programs with lesser limitations. In addition,
the coverage fulfillment has been the most analyzed and
required test criterion through the testing studies, which CMD
has also taken into account.

In adoption of this measure to AOP, towards the ART,
there can be two interesting ways of further exploration:

First, we suggest including the aspectual branch coverage
[8] instead of the traditional branch coverage in the original
CMD measure to record the required coverage information.
Aspectual branch coverage is a coverage metric that captures
the aspectual behavior, specifically the branch coverage within
the aspect code (i.e., including branches from predicates in
advice and methods in aspects). This metric has been
previously used to guide the test generation in area of AOP
testing [8],[6]. As a result, the selection of the test cases
according to this adopted CMD measure (one may call it
Aspectual Coverage Manhattan Distance, ACMD) would be
based on test cases that are able to cover new aspectual

54

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

branches that have not been covered by the previous executed
test cases.

In order to make the point clear, a simple example showing
the applicability of the coverage Manhattan distance to an
aspect code is presented below. Given the aspect
ODRuleAspect shown in Figure 2 (adapted from AspectJ
examples by Laddad [58]):

public aspect ODRuleAspect

pointcut debitExecution(Account account, float
withdrawalAmount) : execution(void
Account.debit*(float) && this(account) &&
args(withdrawalAmount);
before(Account account, float withdrawalAmount)
: debitExecution(account, withdrawalAmount) {
 Customer customer = account.getCustomer();
 if (customer == null) return;
 if (account.getAvailableBalance()>
withdrawalAmount){
 float deductedAmount =
 account.getAvailableBalance()-

withdrawalAmount;
 ...
 } else System.out.println("not enough
money!");
 }
 ...
 }

public class Account {
 private float balance;
 private int accountNumber;
 private Customer customer;
 public Account(int accountNumber,Customer
customer) { ... }

 public void debit(float amount) { ... }
...
}

Figure 2. An AspectJ example

In this case, there are two predicates (surrounded by a red
box in Figure 2) which result in four aspectual branches in the
given aspect, that is n=4. Suppose x and y are two test cases,
where each of which contains a different instance of
Account class, say Ac1 and Ac2 respectively. In addition,
two calls to debit method (plus two parameter values for
method’s calls) on these instances are required to trigger the
execution of the advice. Thus, for instance Ac1.debit
(95.60) and Ac2.debit (64.35) would form the test
cases x and y respectively. Assume, Ac1. getCustomer
will return null, in this case x would be able to exercise only
one branch, i.e., customer == null, hence Ex = (1,0,0,0).
Similarly assume, Ac2. getCustomer has not returned
null and its Ac2.getAvailableBalance is 120 (which
is higher than 64.35). Thus, the test case y is able to exercise
two branches, i.e., customer ≠ null and
(account.getAvailableBalance()>
withdrawalAmount), so Ey = (1,1,0,0). Now, recall the
metric in (1) the difference measured between these two cases
would be of 1.

Alternatively, in order to obtain the proper coverage
information to make use of the CMD measure in ART of
AOP, we suggest employing the program’s control flow graph
of aspect-oriented programs. For this purpose, aspect-oriented
control flow graph (AOCFG) proposed by Parizi et.al [68] (or
other similar approaches such as [69]) would be a capable
choice to help testers gain coverage-related information. This
type of structural modeling and graph embodiment of aspects
not only allows obtaining information related to the branch
coverage but also a variety of coverage elements such as node,
edge, etc. However, further research needs to be done to study
the usefulness of these types of coverage information for ART,
including coverage of elements in graphs/models used in
aspect-oriented modeling.

In summary, the above analysis demonstrates that it is
possible to construct more meaningful distance measure (using
the idea of coverage information) in compared with the other
presented measures for adaptive random testing of aspect-
oriented programs. However, it still requires conducing further
research to produce a well-suited coverage-based ART
technique for aspect-oriented programs and then to proof the
effectiveness of the produced technique through
experimentation or proper case study.

IV. SUMMARY OF ANALYSES
For the brevity, a summary of the presented perspectives

along with the analyses of the distance measure’s properties,
are presented in Table I.

TABLE I. SUMMARY OF THE DISTANCE MEASURES OF DIFFERENT
PERSPECTIVES

Perspective
Distance/
difference
measure

Source of
measurement

Original
Paradigm/

Application
domain

Applicability
to AOP

Category and
choice-based

Category
and choice
distance

Input values
Procedural

programs (with
numerical inputs)

Base code

Object-based Object
distance Input values Object-oriented

programs Base code

Coverage-
based

Coverage
manhattan
distance

Structural
information
(e.g., branch

coverage)

Procedural and
object-oriented

programs

Base & aspect
code

With respect to above table, the first column lists down the

reviewed perspectives. The second column gives the original
distance measure provided by the corresponding perspectives.
The third, presents the source from which the measurement of
the given measures are captured. The forth column lists the
programming paradigms/application domains that the given
measure were first proposed or applied to. Finally, the fifth
column gives the possible applicability of the distance
measures in terms of their suitability to adaptive random
testing of aspect-oriented programs.

From the table, it can be clearly seen that only one
measure, i.e., CMD, has the capability of being adopted to
both base and aspect code, generally the whole AO program.
Furthermore, the source of measurement used by this measure,
it is more fine-grained and desirable compared to the other two
measures.

Nevertheless, based on the theoretical analysis and
interpretation shown among different perspectives and their

55

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

distance measures and the fact that these measures are capable
of providing different level of adoptability to AOP (i.e.,
relative advantages and weakness), at the moment and based
on our understanding of these reviewed perspectives, the
coverage-based perspective, to be exact the CMD measure,
proposed by Zhou [66] shows to be one of the most suited
(with respect to the unique characteristics of AO programs)
and promising distance measure towards adaptive random
testing of the aspect-oriented programs.

V. CONCLUSION AND FUTURE WORK
Research on automated AOP testing is quite young and

there is still a way to grow to its maturity. In ambition to
advance the work with test automation of AOP and reaching to
a plausible maturity, we have performed some preliminary
research to investigate the applicability of one of the current
automated test generation and selection techniques (i.e., ART)
to AOP. The given investigation included the identification and
presentation of the three related perspectives (by comparing
their enclosed distance measures) on adaptive random testing
of AOP and their general limitations and applicability.

As a general conclusion, our study shows that it is possible
to apply the ART technique to AOP, however the current
distance measures would not be all applicable or sufficient to
address the notion of evenly spread of test cases suggested by
ART. Two of the measures were intended to be only
applicable to base code of AO programs while one was more
applicable in nature, having potential of calculating distance
between test cases meant for aspect code. Thus, aspect-
oriented programs require evolving the discussed measures
and/or developing new effective distance measure that can
truly represent the notion of evenly spread of test cases with
regard to the unique characteristics of these programs.

At last, we believe the work presented in this paper has
provided new avenues of exploration within the area of
AOP testing. Decidedly, this would be only the initial stage of
leveraging a well-known testing technique to AOP; hence, it
still requires further research to establish a concrete and useful
ART-based technique for AOP in the future.

ACKNOWLEDGMENT
The authors acknowledge the support of the Malaysian

Ministry of Higher Education for supporting
this research (Fundamental Research Grant Scheme Phase
2/2010 (FRGS/2/2010/SG/UPM/01/2)).

REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, "Aspect-Oriented Programming " in Proceedings
of the 11th European Conference on Object-Oriented Programming
1997, p. 220−242.

[2] G. Kiczales, J. Lamping, C. V. Lopes, J. J. Hugunin, E. A. Hilsdale, and
C. Boyapati, "Aspect-Oriented Programming," in United States Patent
6467086: Xerox Corporation, 2002.

[3] A. Colyer and A. Clement, "Aspect-Oriented Programming with
AspectJ," IBM systems journal, vol. 44, p. 301−308, 2005.

[4] R. T. Alexander, J. M. Bieman, and A. A. Andrews, "Towards the
Systematic Testing of Aspect-Oriented Programs," Colorado State
University 2004.

[5] F. C. Ferrari, J. C. Maldonado, and A. Rashid, "Mutation Testing for
Aspect-Oriented Programs," Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation, 2008, p.
52−61.

[6] M. Harman, F. Islam, T. Xie, and S. Wrappler, "Automated Test Data
Generation for Aspect-Oriented Programs," in Proceedings of the 8th
International Conference on Aspect-Oriented Software Development,
Charlottesville, Virginia, USA, 2009, p. 185−196.

[7] T. Xie, J. Zhao, D. Marinov, and D. Notkin, "Automated Test
Generation for AspectJ Programs
" in Proceedings of the 1st Workshop on Testing Aspect-Oriented
Programs, 2005, p. 1−6.

[8] T. Xie and J. Zhao, "A Framework and Tool Supports for Generating
Test Inputs of AspectJ Programs," in Proceedings of the 5th
International Conference on Aspect-Oriented Software Development,
2006, p. 190−201.

[9] T. Y. Chen, H. Leung, and I. K. Mak, "Adaptive Random Testing," in
Proceedings of the 9th Asian Computing Science Conference, 2004, p.
320−329.

[10] R. Hamlet, "Random Testing," Encyclopedia of software Engineering, p.
970−978, 1994.

[11] J. Mayer and C. Schneckenburger, "An Empirical Analysis and
Comparison of Random Testing Techniques," in Proceedings of the
2006 ACM/IEEE International Symposium on Empirical Software
Engineering, Rio de Janeiro, Brazil, 2006, p. 105−114.

[12] T. Y. Chen, F.-C. Kuo, and R. G. Merkel, "On the Statistical Properties
of the F-measure," in Proceedings of the 4th International Conference
on Quality Software, 2004, p. 146−153.

[13] K. P. Chan, T. Y. Chen, and D. Towey, "Good Random Testing," in
Proceedings of the 9th Ada-Europe International Conference on
Reliable Software Technologies, 2004, p. 200−212.

[14] Y. Liu and H. Zhu, "An Experimental Evaluation of the Reliability of
Adaptive Random Testing Methods," in Proceedings of the 2nd
International Conference on Secure System Integration and Reliability
Improvement 2008, p. 24−31.

[15] T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong, "Does Adaptive
Random Testing Deliver a Higher Confidence than Random Testing?,"
in Proceedings of the 8th International Conference on Quality Software
2008, p. 145−154.

[16] H. Jaygarl, C. K. Chang, and S. Kim, "Practical Extensions of a
Randomized Testing Tool," in Proceedings of the 33rd Annual IEEE
International Computer Software and Applications Conference 2009, p.
148−153.

[17] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, "ARTOO: Adaptive
Random Testing for Object-oriented Software," in Proceedings of the
30th International Conference on Software Engineering, Leipzig,
Germany, 2008, p. 71−80.

[18] J. W. Duran and S. C. Ntafos, "An Evaluation of Random Testing,"
IEEE Transactions on Software Engineering, vol. SE-10, p. 438−444,
1984.

[19] P. S. Loo and W. K. Tsai, "Random testing Revisited," Information and
Software Technology, vol. 30, p. 402−417, 1988.

[20] T. Y. Chen, F.-C. Kuo, and H. Liu, "Distributing Test Cases More
Evenly in Adaptive Random Testing," Journal of Systems and Software,
vol. 81, p. 2146−2162, 2008.

[21] T. Y. Chen and R. G. Merkel, "Quasi-Random Testing," in Proceedings
of the 20th IEEE/ACM International Conference on Automated Software
Engineering, Long Beach, CA, USA, 2005, p. 309−312.

[22] P. M. S. Bueno, W. E. Wong, and M. Jino, "Improving Random Test
Sets using the Diversity Oriented Test Data Generation," in Proceedings
of the 2nd International Workshop on Random testing Atlanta, Georgia:
ACM, 2007, p. 10−17.

[23] P. Godefroid, N. Klarlund, and K. Sen, "DART: Directed Automated
Random Testing," in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Chicago, IL, USA, 2005, p. 213−223.

[24] K. P. Chan, T. Y. Chen, and D. Towey, "Restricted Random Testing:
Adaptive Random Testing by Exclusion," International Journal of
Software Engineering and Knowledge Engineering, vol. 16, p. 553−584,
2006.

[25] S. Xu, "Orderly Random Testing for Both Hardware and Software," in
Proceedings of the 14th IEEE Pacific Rim International Symposium on
Dependable, 2008, p. 160−167.

[26] T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou, "On Favourable Conditions for
Adaptive Random Testing," International Journal of Software
Engineering and Knowledge Engineering, vol. 17, p. 805−825, 2007.

56

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[27] J. Geng and J. Zhang, "A New Method to Solve the "Boundary Effect"
of Adaptive Random Testing," in Proceedings of International
Conference on Educational and Information Technology, 2010, p.
298−302.

[28] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and S. P. Ng, "Mirror Adaptive
Random Testing," Information and Software Technology, vol. 46, p.
1001−1010, 2004.

[29] K. P. Chan, T. Y. Chen, F.-C. Kuo, and D. Towey, "A Revisit of
Adaptive Random Testing by Restriction," in Proceedings of the 28th
Annual International Computer Software and Applications Conference,
2004, p. 78−85.

[30] T. Y. Chen and D. H. Huang, "Adaptive Random Testing by
Localization," in Proceedings of the 11th Asia-Pacific Software
Engineering Conference 2004, p. 292−298.

[31] T. Y. Chen, R. G. Merkel, G. Eddy, and P. K. Wong, "Adaptive Random
Testing Through Dynamic Partitioning," in Proceedings of the 4th
International Conference on Quality Software, 2004, p. 79−86.

[32] F. T. Chan, K. P. Chan, T. Y. Chen, and S. M. Yiu, "Adaptive Random
Testing with CG Constraint," in Proceedings of the 28th Annual
International Computer Software and Applications Conference, 2004, p.
96−99.

[33] J. Mayer, "Lattice-based Adaptive Random Testing," in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering 2005, p. 333−336.

[34] T. Y. Chen, D. H. Huang, F.-C. Kuo, R. G. Merkel, and J. Mayer,
"Enhanced Lattice-based Adaptive Random Testing," in Proceedings of
the 2009 ACM Symposium on Applied Computing, Honolulu, Hawaii,
2009, p. 422−429.

[35] J. Mayer, "Restricted Adaptive Random Testing by Random
Partitioning," in Proceedings of the International Conference on
Software Engineering Research and Practice 2006.

[36] J. Mayer, "Adaptive Random Testing by Bisection with Restriction," in
Proceedings of the 7th International Conference on Formal Engineering
Methods, 2005, p. 251−263.

[37] J. Mayer, "Adaptive Random Testing by Bisection and Localization," in
Proceedings of the 5th International Workshop on Formal Approaches
to Testing of Software 2006, p. 72−86.

[38] J. Mayer, T. Y. Chen, and D. H. Huang, "Adaptive Random Testing
Through Iterative Partitioning Revisited," in Proceedings of the 3rd
International Workshop on Software Quality Assurance, Portland,
Oregon, 2006, p. 22−29.

[39] T. Y. Chen, D. H. Huang, and Z. Q. Zhou, "Adaptive Random Testing
Through Iterative Partitioning," in Proceedings of the 11th International
Conference on Reliable Software Technologies, 2006, p. 155−166.

[40] F.-C. Kuo, T. Y. Chen, H. Liu, and W. K. Chan, "Enhancing Adaptive
Random Testing for Programs with High Dimensional Input Domains or
Failure-unrelated Parameters," Software Quality Journal, vol. 16, p.
303−327, 2008.

[41] J. Mayer, "Adaptive Random Testing with Randomly Translated Failure
Region," in Proceedings of the 1st International Workshop on Random
Testing, 2006, p. 70−77.

[42] T. Y. Chen and R. G. Merkel, "Efficient and Effective Random Testing
Using the Voronoi Diagram," in Proceedings of the 17th Australian
Software Engineering Conference 2006, p. 300−308.

[43] T. Y. Chen, D. H. Huang, and F.-C. Kuo, "Adaptive Random Testing by
Balancing," in Proceedings of the 2nd International Workshop on
Random Testing, 2007, p. 2−9.

[44] T. Y. Chen, F.-C. Kuo, and H. Liu, "Distribution Metric Driven
Adaptive Random Testing," in Proceedings of the 7th International
Conference on Quality Software, 2007, p. 274−279.

[45] T. Y. Chen, F.-C. Kuo, and H. Liu, "Adaptive Random Testing Based on
Distribution Metrics," The Journal of Systems and Software, vol. 82, p.
1419−1433, 2009.

[46] T. Y. Chen, F.-C. Kuo, and H. Liu, "Enhancing Adaptive Random
Testing through Partitioning by Edge and Centre," in Proceedings of the
18th Australian Software Engineering Conference, 2007, p. 265−273.

[47] T. Y. Chen, F.-C. Kuo, and H. Liu, "Application of a Failure Driven Test
Profile in Random Testing," IEEE Transactions on Reliability, vol. 58,
p. 179−192, 2009.

[48] A. F. Tappenden and J. Miller, "A Novel Evolutionary Approach for
Adaptive Random Testing," IEEE Transactions on Reliability, vol. 58,
p. 619−633, 2009.

[49] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, "Adaptive Random
Testing: The ART of Test Case Diversity," Journal of Systems and
Software, vol. 83 p. 60−66, 2010.

[50] T. Y. Chen and F.-C. Kuo, "Is Adaptive Random Testing Really Better
than Random Testing," in Proceedings of the 1st International Workshop
on Random Testing, Portland, Maine, 2006, p. 64−69.

[51] C. Csallner and Y. Smaragdakis, "JCrasher: An Automatic Robustness
Tester for Java," Software: Practice and Experience, vol. 34, p.
1025−1050, 2004.

[52] C. Oriat, "Jartege: A Tool for Random Generation of Unit Tests for Java
Classes," in Proceedings of the 1st International Conference on the
Quality of Software Architectures, 2005, p. 242−256.

[53] J. H. Andrews, S. Haldar, Y. Lei, and F. C. H. Li, "Tool Support for
Randomized Unit Testing," in Proceedings of the 1st International
Workshop on Random Testing, Portland, Maine, 2006, p. 36−45.

[54] B. Meyer, I. Ciupa, A. Leitner, and L. L. Liu, "Automatic Testing of
Object-Oriented Software," in Proceedings of the 33rd International
Conference on Current Trends in Theory and Practice of Computer
Science, 2007, p. 114−129.

[55] R. M. Parizi, A. A. A. Ghani, R. Abdulla, and R. B. Atan, "Towards a
Framework for Automated Random Testing of Aspect-oriented
Programs," in Proceedings of the ISCA 18th International Conference on
Software Engineering and Data Engineering, Las Vegas, Nevada, USA,
2009, p. 217−223.

[56] R. M. Parizi, A. A. A. Ghani, R. Abdulla, and R. B. Atan, "On the
Applicability of Random Testing for Aspect-Oriented Programs,"
International Journal of Software Engineering and its Applications vol.
3, p. 1−20, 2009.

[57] G. Kiczales, E. A. Hilsdale, J. J. Hugunin, M. Kersten, J. Palm, and W.
G. Griswold, "An Overview of AspectJ," in Proceedings of the 15th
European Conference on Object-Oriented Programming 2001, p.
327−353.

[58] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming,
first ed. Greenwich: Manning Publications Co. , 2003.

[59] T. J. Ostrand and M. J. Balcer, "The Category-partition Method for
Specifying and Generating Functional Tests," Communications of the
ACM, vol. 31, p. 676−686, 1988.

[60] F.-C. Kuo, "On Adaptive Random Testing," Melbourne, Australia:
Swinburne University of Technology, PhD Thesis, 2006.

[61] R. E. Filman and D. P. Friedman, "Aspect-oriented programming is
quantification and obliviousness," in Proceedings of the Workshop on
Advanced Separation of Concerns 2000.

[62] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, "Object Distance and Its
Application to Adaptive Random Testing of Object-oriented Programs,"
in Proceedings of the 1st International workshop on Random Testing
Portland, Maine: ACM, 2006, p. 55−63.

[63] I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer, "On the
Predictability of Random Tests for Object-Oriented Software," in
Proceedings of the 1st International Conference on Software Testing,
Verification, and Validation, 2008, p. 72−81.

[64] Y. Lin, X. Tang, Y. Chen, and J. Zhao, "A Divergence-Oriented
Approach to Adaptive Random Testing of Java Programs," in
Proceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering, 2009, p. 16−20.

[65] R. Pawlak, J.-P. Retaillé, and L. Seinturier, Foundations of AOP for
J2EE Development: Apress, 2005.

[66] Z. Q. Zhou, "Using Coverage Information to Guide Test Case Selection
in Adaptive Random Testing," in Proceedings of the IEEE 34th Annual
Computer Software and Applications Conference Workshops 2010, p.
208−213.

[67] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, "Adaptive Random Test
Case Prioritization," in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, 2009, p.
233−244.

[68] R. M. Parizi and A. A. A. Ghani, "AJcFgraph-AspectJ Control Flow
Graph Builder for Aspect-Oriented Software," International Journal of
Computer Science, vol. 3, p. 170−181, 2008.

[69] M. L. Bemardi and G. A. Di Lucca, "An Interprocedural Aspect Control
Flow Graph to Support the Maintenance of Aspect Oriented Systems," in
Proceedings of the International Conference on Software Maintenance
2007, p. 435−444.

57

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

