
Usage of Robot Framework

in Automation of Functional Test Regression

Stanislav Stresnjak

Siemens CMT
Osijek, Croatia

e-mail: stanislav.stresnjak@siemens.com

Zeljko Hocenski

Computer and Software Engineering Department
University Josip Juraj Strossmayer in Osijek

Osijek, Croatia
e-mail: zeljko.hocenski@etfos.hr

Abstract — Manual testing is a time consuming process. In

addition, regression testing, because of its repetitive nature, is

error-prone, so automation is highly desirable. Robot

Framework is simple, yet powerful and easily extensible tool

which utilizes the keyword driven testing approach. Easy to

use tabular syntax enables creating test cases in a uniform way.

Ability to create reusable high-level keywords from existing

keyword ensures easy extensibility and reusability. Simple

library API, for creating customized test libraries in Python or

Java, is available, while command line interface and XML

based output files ease integration into existing build

infrastructure, for example continuous integration systems. All

these features ensure that Robot Framework can be quickly

used to automate test cases. This paper describes how it is used

for automation of existing functional regression test cases

within short time and with great success and thus saving costs

and enhancing the quality of the software project.

Keywords-software testing; integration testing; regression

testing; test automation; robot framework

I. INTRODUCTION

In order to integrate a component within a larger system,
three major properties, the fitness, the correctness, and the
robustness, have to be tested [1]. The fitness of a component
for an application is in general treated as the compatibility of
the provided interface of the component and the specification
of the required interface of the application. The correctness
of a component is its ability to return the correct output when
provided with the correct input, while the robustness
concerns the absence of a behavior possibly jeopardizing the
rest of the system, especially under wrong input. When lot of
components is present, integration testing became quite
complex and one of the software development improvement
steps pertains to testing process improvements which can
hardly be done without test automation.

There are various tools for test automation available –
commercial and open source, but few are suitable for black
box testing (for a black-box testing, see [2]). Many of
available tools are most suitable for the unit tests performed
by the developers. When it comes to the integration testing
or functional verification – not so many tools are available.

Many of the testing tools provided by vendors are very
sophisticated and use existing or proprietary coding
languages. Effort to automate existing manual tests is similar

to a programmer, using a coding language, writing program
in order to automate any other manual process [3].

This paper is organized as follows. Section 2 explains
how the tool choosing is done. Section 3 describes why
specific tool was chosen. Section 4 describes the
implementation of the tool. Section 5 is about benefits of the
automation. Section 6 draws conclusions.

II. CHOOSING THE TOOL

What was needed was a tool simple enough to make fast
automation and in the same time powerful so these tests can
be extended and produce less error prone. The tool should be
platform independent. Client tests were run on Linux and
Windows and server tests were run on Linux and Solaris.
The tool obtained complete platform independence. And the
main focus was on regression testing of the integration
functional tests. This includes various protocols testing using
proprietary protocol simulator as main tool that triggers
application logic under test. Although most of the tests were
already executed at least once, it became difficult to run
regressions, as with end milestone approaching number of
test cases began to grow (speaking about few hundreds of the
test cases dealing with various scenarios and protocols –
CAP [4], TCP [5], SIP [6], LDAP [7], Diameter [8], SOAP
[9], SMPP [10], SMTP [11], POP3 [12]) and more important
it was rather problematic to check all the logs for errors.
When various servers, against which tests were run, were
introduced, situation got even more complicated because of
their different configuration they had. Not to mention error-
prone process because of large number of small actions that
should be repeated.

Basic procedure was the same for all test cases – create
configuration, start tracing on the platform, run test script,
stop tracing on the platform, check script traces, and check
platform traces. It was important not to omit generation of
report at the end with statistics which could take great
amount of time and effort because it is needed to update test
cases list, mark those which have failed, make some notes
why they failed and for few hundred of test cases – it can
take a while.

First idea was to write just a simple shell script that
would execute all the tests and analyze the results from log
files – but after a while (when it is realized that tests will be
required to run with different configurations against different

30

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

servers) it is realized that could be benefited from real test
framework.

Keyword-driven testing, which enables executing of the
test scripts at a higher level of abstraction, was considered to
be used as a framework. The idea of keyword driven testing
is similar to that of a service or subroutine in programming
where the same code may be executed with different values
[13], what would make it a perfect choice for the required
automation.

III. WHY ROBOT FRAMEWORK

After careful analysis Robot Framework [14] was found
to satisfy all needed requirements. It is created in Python
which can be implemented on all major platforms.
Therefore, multiplatform requirement was completely
fulfilled. Among other open source tools, Robot Framework
seems to be one of the very few tools, which supports multi
platform environment and it is maintained regularly, as it is
listed on [15]. The tool is sponsored by Nokia Siemens
Networks and released under Apache 2.0 license, meaning it
is allowed to be used for free (quite important topic, not only
these days).

Robot Framework is a generic, application and
technology independent framework. It has a highly modular
architecture illustrated in the Figure 1.

Figure 1. High level architecture [14]

The test data is in simple, easy-to-edit tabular format.
When Robot Framework is started, it processes the test data,
executes test cases and generates logs and reports. The core
framework does not know anything about the target under
test, and the interaction with it is handled by test libraries.
Libraries can either use application interfaces directly or use
lower level test tools as drivers [14].

What was missing was the GUI - for easy test case
adding and editing. After considering options, it was decided
to use RIDE, which stands for Robot Framework Integrated
Development Environment [16]. Its purpose is to be an easy-
to-use editor for creating and maintaining test data for Robot
Framework. It is still in alpha state, but surprisingly stable
for 0.3 version.

Robot Framework is a keyword-driven test automation
framework [17]. Test cases are stored in HTML files (in a
form of a ordinary HTML tables, as shown in TABLE I.)
and make use of keywords implemented in test libraries to
drive the software under test, while test suites are created

from files and directories so it’s convenient to store into any
version of control system.

TABLE I. USING HTML FORMAT

Setting Value Value Value

Library OperatingSystem

Library lib/MyLibrary.py

Variable Value Value Value

${MESSAGE} Hello, World!

Test case Action Argument Argument

My Test [Documentation] Example test

 [Setup] Some Setup

 [Timeout] 5 minutes

 Log
${MESSAG
E}

Check If Directory
Exist

/tmp

 [Teardown] Some Finish

Another Test Should Be Equal
${MESSAG
E}

Hello,
World!

Keyword Action Argument Argument

Check If
Directory Exist

[Arguments] ${path}

Directory Should
Exist

${path}

It is possible to create new higher-level keywords by

combining and grouping existing keywords together. These
keywords are called user keywords to differentiate them
from lowest level library keywords that are implemented in
test libraries. The syntax for creating user keywords is very
close to the syntax for creating test cases, which makes it
easy to learn - TABLE I. Rules that should be followed is
that keyword names should be descriptive, clean and they
should explain what the keyword does, not how it does it.

IV. REAL LIFE EXAMPLE

A. Test suite creation

One way to mitigate mistakes, which arise when new tool
usage is started, is to create scripts that will provide
immediate pay back [1]. That is, create scripts that won't take
too much time to create yet will obviously save manual
testing effort and, more important, by creating the scripts you
will learn more about the tool's functionality and learn to
design even better scripts. Not much is lost if these scripts
are thrown away since some value has already been gained
from them. Since Robot Framework is based on keywords,
and combination of keyword can form a new user keyword -
it can be seen as a script.

Robot Framework has some libraries already defined (for
example, OperatingSystem, Telnet, String, Collection, etc.),
but since it is Python based tool, it is easy to extend it with

Test Data

Robot Framework

Test Libraries

System Under Test

Test tools

Test data syntax

Test library API

Application interfaces

31

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

libraries written in Python or Java. What is needed is just to
write your own function and return some value (if needed).

def FTP_Delete(self, host, user, pwd,

file_remote):

 ftp = ftplib.FTP()

 ftp.connect(host, 21)

 try:

 try:

 ftp.login(user, pwd)

 ftp.delete(file_remote);

 return True

 finally:

 ftp.quit()

 except:

 traceback.print_exc()

 return False

Figure 2. New library keyword (FTP Delete) definition in Python

Writing and including own library with newly defined
keywords it is easy – example for deleting file on FTP server
is shown in Figure 2. When using newly defined keywords in
the Robot Framework it is only necessary to replace “_” with
spaces and new keyword is ready for usage.

RIDE has keyword completion feature that shows the
keywords that are found either from the test suite, resource
being edited, from its imported resource files or libraries.
Also arguments are validated automatically for all known
keywords and validation is shown on the grid editor and
visualized as different cell backgrounds (everything ok –
white background, too many or too few arguments - red
background, optional argument - light gray, and if no
arguments are allowed then cell background is dark gray).
This feature works for built-in and user defined keywords.

Descriptive keywords are one of the Robot Framework
features, and with RIDE possibility to create keywords, it is
possible to describe test case first and then to actually create
keywords and fill them with actions.

Figure 3. Test case definition in RIDE

Other thing that can happen is to find out that some
sequence is needed to be used repeatedly. In that case it is

possible to group that sequence, and define it as new
keyword. It is easy task in RIDE - it is just needed to mark
the sequence and RIDE will extract those lines and create the
new keyword with auto recognition if parameters are needed.
After new keyword creation RIDE will replace the sequence
and change the test case accordingly.

Keywords and variable definition can be saved into
resource file, so it can be used in various suites. It is a good
idea if the keyword could be useful also to other tests to
move it to shared resource. This way, those keywords can be
used later by other tests and duplicate work is avoided.

Usually, there is a need for some setup and cleaning
actions – this is also supported and, not only on the test case
level, but setup and teardown actions can also be defined on
the suite level.

TABLE II. TEST CASE DEFINITION IN HTML FORMAT

Test case Action Argument Argument

TCS2F185 [Setup]
Clean Batch
Data

 [Timeout] 5 minutes

 Transfer Batch
${SERVER_IP
}

${SERVER_
USER}

 Check Batch

Generate
Include File

 Compile CAP test

 Compile SIP SCSF

Run Protocol
Simulator

CAP Test

Run Protocol
Simulator

SIP SCSF

 ${OUT} Run TC runme.cmd

 Should Contain ${OUT}
TC run
finished

 ${OUT} Decode SIP

 … CAP

 Should Contain ${OUT}
Call finished
sucesfully

 [Teardown]
Clean Batch
Log

All this helps to read test cases, even for non technical

persons, since we used live language grammar and our test
case have execution defined as “Transfer Batch”, “Check
Batch”, “Generate Include File”, “Compile”, “Run Protocol
Simulator”, “Decode Output”, “Should Contain something”
as shown in Figure 3. and in native HTML format in TABLE
II.

B. Test case execution

It is possible to execute suite or just some test cases
directly from the RIDE GUI, however there is a need to run
test cases from the command line so its execution could be
easily automated – for example from some continuous
integration server. Since Robot Framework is command line
tool this is usually done this way. That way various switches

32

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

can be used. All possible switches are shown and explained
with running tool with “—help” switch. One of many things
that can be specified (via test case name pattern matching) is
the critical test cases definition. In order to complete the test
suite successfully, all critical test cases have to pass.

After executing our test suite HTML report is generated,
as shown on Figure 4. and the background color undoubtedly
tells whether the whole test suite finished correctly. Critical
test cases must be specified with a caution. If critical test
cases pass successfully, regardless of other test cases results,
the report will be marked as OK. However, statistics will
show the number of test cases failed and specify these cases,
if any.

Figure 4. Test case report file

For further manual analysis, there is also detailed log file
generated, as shown on I (also configurable with command
line switch) with all actions, detailed description of the input
and output parameters and keyword output with marked
actions that went wrong. There is a keyword “Log” defined,
so it is also possible to write additionally whatever need to
the log file.

Since all output, as input also, is in the HTML format and
already nicely formatted – it is very convenient to use it for
reporting.

Robot Framework also generates XML output file which
can be used for further analysis. In the source distribution
there are interesting tools, for example “risto.py”, used for
generating graphs about historical statistics of test executions
and “robotdiff.py“ tool for generating diff reports from
multiple Robot Framework output files.

Figure 5. Test case log file

V. BENEFITS OF THE AUTOMATION

An automated test suite can explore the whole product
every day. A manual testing effort will take longer to revisit
everything. So, the bugs automation does find will tend to be
found sooner after the incorrect change was made.
Debugging is much faster, which is also meaning – cheaper,
when there’s only been a day’s worth of changes. This raises
the value of automation.

Automated tests, if written well, can be run in sequence,
and the ordering can vary from day to day. This can be an
inexpensive way to create something like task-driven tests
from a set of feature tests.

Before Robot Framework execution of the test suite took
about two days with one person executing test cases
sequentially and looking for traces and, most important,
being busy all that time. With Robot Framework whole
process take only few hours, but only one batch command is
needed to run, so person is not busy during test suite
execution and can work on other topics, as shown in Table
III.

TABLE III. USED TIME COMPARISON

Time used (in hours)

Manual Automated

Preparation of one test case 8:00 8:00

Execution of one test case 0:02 0:02

Check of one test case 0:05 0:01

Automation of one test case - 2:00

Report for one test case 0:03 0:00

Total time used for one test case 8:10 10:03

One test run cycle 0:10 0:03

33

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Time used (in hours)

Manual Automated

For 100 test cases - one suite run
16:40

tester involved
5:00

machine time

20 suite runs
333:20

tester involved

100:00

machine time

20 suite runs with automation
time included
(suites run time + automation
time for all test cases)

333:20 300:00

VI. CONCLUSION

Benefit of working with Robot Framework is that writing
test cases follows natural work flow with test case
preconditions, action, verification and finally cleanup. Real
language is used for keyword description, so it’s easy to
follow test case – even for non technical person, which,
together with its simple usage and easy library extension,
make it great tool for test case automation.

Everything is checked automatically and all reports are
automatically generated and published on the web pages.
This also saved lot of time when decision to introduce
continuous integration was made.

The cost of automating a test is best measured by the
number of manual tests prevented from running and the bugs
it will therefore caused to miss [21], and this is probably the
biggest strength of the Robot Framework.

REFERENCES

[1] B. Lei, X. Li, Z. Liu, C. Morisset, and V. Stolz, Robustness Testing
for Software Components, Science of Computer Programming,
Volume 75 Issue 10, 2010, pp. 879-897

[2] R. Patton, Software Testing, Sams Publishing, 2005

[3] K. Zallar, Practical Experience in Automated Testing, METHODS &
TOOLS, Global knowledge source for software development
professionals, Volume 8, Spring 2000, pp. 5-9

[4] 3GPP, Customised Applications for Mobile network Enhanced Logic
(CAMEL) Phase 4; CAMEL Application Part (CAP) specification
(Release 6), TS 29.078 6.3.0, September 2004

[5] RFC: 793, TRANSMISSION CONTROL PROTOCOL DARPA
INTERNET PROGRAM PROTOCOL SPECIFICATION,
Information Sciences Institute University of Southern California,
September 1981

[6] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, Network Working Group,
Request for Comments: 3261, June 2002

[7] M. Wahl, T. Howes, and S. Kille, Network Working Group Request
for Comments: 2251, Lightweight Directory Access Protocol (v3),
December 1997

[8] H. Hakala, L. Mattila, J-P. Koskinen, M. Stura, and J. Loughney,
Network Working Group Request for Comments: 4006, August 2005

[9] E. O'Tuathail and M. Rose, Network Working Group Request for
Comments: 3288, Using the Simple Object Access Protocol (SOAP)
in Blocks Extensible Exchange Protocol (BEEP), June 2002

[10] SMPP Developers Forum, Short Message Peer to Peer Protocol
Specification v3.4 Issue 1.2, October 1999

[11] J.B. Postel, RFC 821 - SIMPLE MAIL TRANSFER PROTOCOL,
Information Sciences Institute University of Southern California,
August 1982

[12] M. Rose, Network Working Group Request for Comments: 1460,
Post Office Protocol - Version 3, June 1993

[13] A.M. Jonassen Hass, Guide to Advanced Software Testing,
ARTECH HOUSE INC, 2008

[14] http://code.google.com/p/robotframework/, May 2011

[15] http:// www.opensourcetesting.org/, May 2011

[16] http://code.google.com/p/robotframework-ride/, May 2011

[17] P. Laukkanen, Data-Driven and Keyword-Driven Test Automation
Frameworks, Master Thesis, HELSINKI UNIVERSITY OF
TECHNOLOGY, February 2006

[18] R.W.Rice, Surviving the top ten challenges of software test
automation, In Proceedings of the Software Testing, Analysis &
Review Conference (STAR) East 2003. Software Quality
Engineering, 2003.

[19] W.E.Lewis, Software Testing and Continuous Quality Improvement,
AUERBACH PUBLICATIONS, 2005

[20] J.Bach, Test Automation Snake Oil, Windows Technical Journal, pp.
40–44, October 1996.

[21] B.Marick, When Should a Test Be Automated? Proc. 11th Int'l
Software/Internet Quality Week, May 1998.

34

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

