

Exploring Architecture Design Alternatives for

Global Software Product Line Engineering

Bedir Tekinerdogan

Department of Computer Engineering

Bilkent University

Ankara, Turkey

e-mail: bedir@cs.bilkent.edu.tr

Semih Cetin, Ferhat Savcı

Cybersoft Information Technologies, Ata Plaza 3/3,

34758,

Atasehir, Istanbul, Turkey

e-mail: {semih.cetin, ferhat.savci}@cs.com.tr

Abstract — Current trends in software engineering show that

large software projects have to operate with teams which are

working in different locations. An analysis of current global

software engineering literature shows that the focus has been

basically on single system development. Yet, very often

organizations do not aim to develop a single product but a

product line for a particular market segment. Unfortunately,

the notion of global software development has not been

explicitly addressed in product line engineering. We introduce

and define the notion of global software product line

engineering (GSPLE) to integrate global software engineering

paradigm with the software product line engineering

paradigm. Based on an analysis of architectural approaches in

both paradigms we define the space of the different software

architecture design alternatives for GSPLE. We illustrate the

architecture design alternatives using examples of an industrial

context.

Keywords-Product Line Engineering; Global Software

Development; Business Strategies

I. INTRODUCTION

Current trends in software engineering show that large
software projects have to operate with teams that are
working in different locations. The reason behind this
globalization of software development stems from clear
business goals such as reducing cost of development, solving
local IT skills shortage, and supporting outsourcing and
offshoring [1]. There is ample reason that these factors will
be even stronger in the future, and as such we will face a
further globalization of software development [8]. To cope
with these problems the concept of global software
engineering (GSE) is introduced [9]. GSE is a relatively new
concept in software development that can be considered as
the coordinated activity of software development that is not
localized and central but geographically distributed.

An analysis of current global software engineering
literature shows that the focus has been basically on single
system development. Yet, very often organizations do not
aim to develop a single product but a product line. A product
line is defined as a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific
needs of a particular market segment or mission and that are

developed from a common set of core assets in a prescribed
way [11]. Despite earlier software reuse approaches,
software product line engineering (SPLE) aims to provide
pro-active, pre-planned reuse at a large granularity to
develop applications from a core asset base. The key
motivation for adopting a product line engineering process is
to develop products more efficiently, get them to the market
faster to stay competitive and produce with higher quality
[14]. In alignment with these goals different software
product line engineering approaches have been proposed
[5][11].

Unfortunately, the notion of global software development
has not been explicitly addressed in product line engineering.
On the other hand, an analysis of the current product line
engineering approaches shows that global software
development is not explicitly addressed. We can observe
valuable knowledge on defining organization structures for
product lines [4][11] but these do not explicitly consider the
concern of globalization of the product line engineering
process. To apply systematic, anticipated reuse for global
software development we believe that global software
development will substantially benefit from software product
line engineering. In parallel, similar to single system
development in which teams might be spread over different
locations [3], it is also expected that product line engineering
projects might operate with teams which are working in
different locations. The reason for this globalization of
product line engineering will also be based on the general
motivations for global software development.

In this paper, we introduce and define the notion of
global software product line engineering (GSPLE) to
integrate global software engineering paradigm with the
software product line engineering paradigm. The motivation
for GSPLE stems from the industrial context of Cybersoft, a
leading company in global software development in Turkey.
The efforts to define the architecture for GSPLE have shown
that the integration of SPLE and GSE can be done in
multiple different ways. Based on an analysis of architectural
approaches in both paradigms and our experiences we define
the space of the different software architecture design
alternatives for GSPLE. We illustrate the architecture design
alternatives using examples of an industrial context.

515

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The remainder of the paper is organized as follows. In
Section II we briefly introduce a conceptual model for GSE,
followed by an analysis to software product line engineering
in section III. Section IV discusses the stakeholder analysis
for GSPLE. Section V describes the strategies for integrating
SPLE with GSE. Section VI discusses the design
alternatives. Section VII provides the related work and
section VIII concludes the paper.

II. CONCEPTUAL MODEL FOR GSE

GSE is a software development approach that can be

considered as the coordinated activity of software

development that is not localized and central but

geographically distributed. Overall we can identify four

important key concerns in GSE:

Development - the software development activities

typically using a software development process. This

includes activities such as requirements analysis, design,

implementation and testing. Each product development site

will address typically a subset of these activities.

Communication – communication mechanisms within

and across sites. Typically the different sites need to adopt a

common communication protocol.

Coordination – coordination of the activities within and

across sites to develop the software according to the

requirements. Coordination will be necessary to align the

workflows and schedules of the different sites. An important

goal could be to optimize the development using appropriate

coordination mechanisms.

Control – systematic control mechanisms for analyzing,

monitoring and guiding the development activities. This

does not only include controlling whether the functional

requirements are performed but also which and to what

extent quality requirements are addressed.

Each of these concerns and the way they are allocated in

the GSE environment will have a direct impact on the

architecture. In principle, we assume that each of these

concerns can be mapped to a separate implementation unit,

or layer. Based on this assumption we have defined the

conceptual layered model for GSE system as defined in

Figure 1.

Here we have depicted GSE system as consisting of a

structure with separate activity layers that depend on each

other. The layering is defined based on conceptual relations.

Activities in the development layer are coordinated by the

coordination layer. The coordination of the activities will be

controlled by functionality in the control layer. Finally, the

development, coordination and control layers will require

suitable communication mechanisms which are provided by

the communication layer. In Figure 1, we have provided

communication layer as a sidebar indicating that all layers

will use this layer. Alternatively, a separate specific

communication mechanism could be provided for each

layer.

 Based on this layered view of GSE system we need to

decide how to allocate each layer to different nodes in the

GSE environment. In the following sections we will define

the different concrete deployment alternatives for GSE

systems based on this model.

 KEY
Conceptual

Layer
depends on

Coordination

Development

Control
C

o
m

m
u

n
ic

a
tio

n

Figure 1. Layered View of GSE system with four key concerns

III. SOFTWARE PRODUCT LINE ENGINEERING

Global software development can be focused on single

software development or product line engineering [5].

Although different product line engineering processes have

been proposed they share the same concepts of domain

engineering, in which a reusable platform and product line

architecture is developed, and application engineering, in

which the results of the domain engineering process are

used to develop the product members.

In general the adopted product line engineering approach

has not been directly considered for global software

engineering. Integration of both paradigms would in

principle mean to define and align the common product line

engineering process to a given GSE software architecture.

Since each unit can be considered as a separate,

independent unit, the GSE system can be also set up as a

production line. The concept of production line is defined in

the industrial engineering and denotes a set of sequential

operations established in a factory whereby materials are put

through a refining process to produce an end-product; or

components are assembled to make a finished article.

Although the notion of software product line engineering is

quite popular this does not seem to be the case for software

production line engineering. Nevertheless, we think that this

is important for GSE. In principle, the development units in

GSE can also be considered as separate domain specific

entities that aim to develop particular intermediate products,

and likewise a production line can be set up.

IV. DESIGN SPACE FOR GSPLE ARCHITECTURE

It appears that we can combine the three different

concepts of Global Software Engineering, Software

Production Line and Software Product Line Engineering in

different ways. We depict the different possibilities in Table

1. The names of the alternatives indicate whether the

development is local (L) or global (G), whether production

line (Pn) is applied or a conventional approach is used (C),

and whether the focus is on product line (Pl) or single-

system development (S). As such, the first four alternatives

define the case of local software development in which the

516

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

development units are co-located. The last four alternatives

define the alternatives for global software development.

To denote the integration of global software engineering

with product line engineering we define the notion of global

software product line engineering. GSPLE spans the last

two rows of Table 1 (GCPl and GPnPl). GSPLE can be

considered as a special form of product line engineering

process in which the development teams are not collocated

but distributed as it is defined by the GSE paradigm. The

integration of both paradigms might be based on practical

necessity but in parallel will also combine the benefits of

both product line engineering and global software

development. From a reuse perspective we could state that

GSPLE even further broadens reuse by also reusing

development teams and not only artefacts. In the following

we describe each alternative and provide the architectural

template and an example.

TABLE 1. DESCRIPTION OF PRODUCT LINE INTEGRATION ALTERNATIVES

WITH GLOBAL SOFTWARE DEVELOPMENT

Strategy Description

LCS
Software development at a single site without
product and production lines.

LPnS

Software development at a single site with

production line but not focused on product

variability management

LCPl
Software development at a single site focused on
product variability management without

production line

LPnPl
Software development at a single site with
production line and focused on product variability

management

GCS
Software development at multiple sites without

product and production lines

GPnS

Software development at multiple sites with

production line but not focused on product

variability management

GCPl
Software development at multiple sites focused on
product variability management without

production line

GPnP1
Software development at multiple sites with
production line and focused on product variability

management

A. Local Single System Development

Local Single System Development is the traditional way

of software development located at a single site. In the

following sections we will also introduce product line and

production line engineering for GSE, but for now we

assume that a single system is developed at a single site.

The deployment view for GSE system for this case is shown

in Figure 2. Note that the four layers/concerns are mapped

to a single deployment node. From a theoretical perspective

we could consider local system development as a special

case, the simplest one, of global software development.

Example:

John Doe Software Co. develops an accounting system

accustomed for Non-Exist Tech. Ltd.. The accounting

system is developed at a single site using a traditional, non-

product line engineering, development approach.

 KEY
Product

Development

Site

Conceptual

Layer
depends on

Coordination

Development

Control

C
o

m
m

u
n

ic
a

tio
n

Figure 2. Local Single System Development

B. Local Single System Development with Production Line

We could define a software product line engineering as

an application of the Pipes and Filters pattern [2]. Hereby

the filters define processing units, whereas the pipes define

the mechanism for distribution and communication. A

conceptual model of software product line engineering is

given in Figure 3. In principle a number of filters, i.e.

production units can be defined which can be linked in

different ways to each other. However, the key design

principle for having independent filters as defined in the

Pipes and Filters pattern also seem to apply for the software

production line engineering process. This is to say that each

production unit can be (largely) seen as a separate, black

box unit that can accept input, process this and provide it to

the output. In principle, the production units are not aware

of each other.

 KEY

Development

Unit

Connection

(for Communication)

D1 D2 D3 Dn

Figure 3. Software Production Line Engineering Process defined

using the Pipes and Filter Pattern

Figure 4 shows the deployment view when we apply

production line engineering to single-site single system

development. Here the Pipes and Filters pattern has been

applied to the development process units within a single

site. These could be typically the applied workflows of the

software development process. In Figure 4, we assume that

we apply a centralized control and coordination mechanism.

517

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

However, these could also be equally distributed leading to

a distributed coordination and control system of the

development process.

 KEY

Development

Site

Conceptual

Layer
depends on

Coordination

Development

Control

C
o

m
m

u
n

ic
a

tio
n

A2 AnA1

Figure 4. Local Single System Development with Production Line

Example:

John Doe Software Co. has a custom software production

line based on SpringSource [12], which is used to develop

an accounting system accustomed for Non-Exist Tech. The

company intentionally employed the production line to

reuse infrastructural modules such as logging, content

management, object to relational mapping, etc.

C. Local Software Product Line Development

A product line is defined as a set of software-intensive

systems sharing a common, managed set of features that

satisfy the specific needs of a particular market segment or

mission and that are developed from a common set of core

assets in a prescribed way [5]. The key motivation for

adopting a product line engineering process is to develop

products more efficiently, get them to the market faster to

stay competitive and produce with higher quality. In

alignment with these goals different software product line

engineering approaches have been proposed. These

approaches seem to share the same concepts of domain

engineering, in which a reusable platform and product line

architecture is developed, and application engineering, in

which the results of the domain engineering process are

used to develop the product members [5][9].

Example:

John Doe Software Co. develops accounting products for

different customers like Non-Exist Tech. by reusing the

assets and managing the variability of these assets specific

to accounting domain. The company developed the product

by using conventional techniques, but not based on a

production line infrastructure.

 KEY

Development

Site

Conceptual

Layer
depends on

Domain Engineering

Domain

Requirements

Analysis

Product

Management

Domain

Design

Domain

Implementation

Application Engineering

Application

Requirements

Analysis

Application

Design

Application

Implementation

Figure 5. Local Single Product Line Development

D. Local Product Line Development with Production Line

A product line development can be realized on a

production line platform. Hereby multiple variant products

are developed based on set of sequential production units

whereby components are assembled to make a finished

article. Similar to the case for single system development

with production line we could apply here the Pipes and

Filters pattern.

Figure 6 shows an example of a local product line

development with production line. Hereby, we have chosen

for centralized control and coordination of the product line

engineering activities (domain engineering and application

engineering).

It appears that we could also have different

interpretations and applications of local product line

development with production line. For example, we could

also apply production line engineering only for domain

engineering, or only for application engineering.

Example:

John Doe Software Co. develops accounting products

for different customers like Non-Exist Tech. by reusing the

assets and managing the variability of these assets specific

to accounting domain. The company developed the product

by using its custom production line based on SpringSource.

In this case, both the business domain specific assets and

infrastructural modules are reused.

518

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 KEY

Development

Site

Conceptual

Layer
depends on

Coordination

Domain Engineering

Control

C
o

m
m

u
n

ic
a

tio
n

D2 DnD1

Application Engineering

A2 AnA1

Figure 6. Local Product Line Development using a Production Line for
both Domain Engineering and Application Engineering with Centralized

Control and Coordination

E. Global Software Development with Single System

Development

This section and the following three sections focus on

defining the architecture design alternatives for GSE system

in particular. We first consider GSE for single system

development. We have defined the GSE with single system

development alternative in Figure 7. Here the development

of a single product is distributed over multiple sites

(denoted by multiplicity 1..*).

 KEY
Product

Development

Site

Conceptual

Layer

connected to

association

Site

 internet

Data Storage

1..*

Coordination

Development

Control

C
o

m
m

u
n

ic
a

tio
n

1..*

Figure 7. Global Software Development Single System Development

However, again we can observe here several sub-

alternatives. These are defined basically due to the different

application of the coordination and control mechanisms. In

particular we can distinguish among the following

alternatives as defined in Table 2.

TABLE 2. POSSIBLE ALTERNATIVE CONFIGURATIONS FOR CONTROL AND

COORDINATION CONCERNS IN GSE

Alternative Control Coordination

1 Central Central

2 Central Distributed

3 Distributed Central

4 Distributed Distributed

A selection of one of the four alternatives will result in a

refinement of the architecture in Figure 7. For example,

Figure 8 shows the alternative with a central control and

coordination, whereby development is distributed. Figure 9

defines an alternative with distributed control and central

coordination. Of course not all the possible deployment

alternatives might make sense. These should be validated

from the requirements in practice.

 KEY
Product

Development

Site

Conceptual

Layer

connected to

Site

Control

Site

Site

Site

internet

association

Data Storage

Coordination

Development Development

Development

Data Storage

Data Storage

Data Storage

Figure 8. Deployment View of GSE with Single System Development

using Central Control and Central Coordination

 KEY
Product

Development

Site

Conceptual

Layer

connected to

Site

Site

Site

Site

internet

association

Coordination

Development

Control

Data Storage

Data Storage

Data Storage

Data Storage
Development

Control

Development

Control

Figure 9. Deployment View of GSE with Single System Development

using Distributed Control and Central Coordination

Example:

John Doe Software Co. distributes the development of an

accounting system accustomed for Non-Exist Tech. Ltd. to

different units all over the world. The company employed

classical processes and approaches without having reuse

insight for assets and infrastructural modules.

F. Global Single Software Development with Production

Line

Figure 10 shows the case for global single software

development with production line. Since GSE is used, the

architecture will consist of multiple sites. The focus is on

the development of a single system and as such the domain

519

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

engineering process is missing. However, the development

is based on the production line paradigm.

 KEY
Product

Development

Site

Conceptual Layer

connected to

internet

association

Data Storage

1..*Coordination

Development

Control

C
o

m
m

u
n

ic
a

tio
n

A2 AnA1

Figure 10. Global Software Development Single System Development with
Production Line

Example

John Doe Software Co. has a custom distributed software

production line based on SpringSource, which is installed at

its business units all over the world to develop an

accounting system accustomed for Non-Exist Tech. The

company intentionally employed the production line to

reuse infrastructural modules such as logging, content

management, object to relational mapping, etc. within all its

units.

G. Global Software Development for Product Line

Engineering

Figure 11 represents the most difficult case for designing

GSE system. It focuses on distributed development for a

product line, in which the concept of production line is

adopted.

 KEY
Product

Development

Site

Conceptual

Layer

connected to

Site

internet

association

Data Storage

1..*

Coordination

Domain Engineering

Control

C
o

m
m

u
n

ic
a

tio
n

Application Engineering

Figure 11. Global Software Development for Product Line Engineering

Example

John Doe Software Co. develops accounting products for

different customers like Non-Exist Tech. by reusing the

assets and managing the variability of these assets specific

to accounting domain. The company distributed the

development efforts of the product to different business

units all over the world by using classical techniques, but

not based on a production line infrastructure.

H. Global Software Development for Product Line

Engineering with Production Line Engineering

Figure 12 represents the most difficult case for designing

GSE system. It focuses on distributed development for a

product line, in which the concept of production line is

adopted.

 KEY
Product

Development

Site

Conceptual

Layer

connected to

internet

association

Data Storage

1..*

Coordination

Domain Engineering

Control

C
o

m
m

u
n

ic
a

tio
n

D2 DnD1

Application Engineering

A2 AnA1

Figure 12. Global Software Development for Product Line Engineering

with Production Line Engineering

Example:

John Doe Software Co. develops accounting products for

different customers like Non-Exist Tech. by both reusing the

assets and managing the variability of these assets specific

to accounting domain. The company developed the product

by using its custom distributed production line based on

SpringSource, which can centrally control and monitor the

whole development items and deliverables precisely. The

production line based product variability management

allows the reuse of business domain specific assets and

infrastructural modules in a distributed way.

V. RELATED WORK

Notably, architecting in GSE has not been widely

addressed. The key research focus in the GSE community

seems to have been in particular related to tackling the

problems related to communication, coordination and

control concerns. Clerk et al. [4] report on the use of so-

called architectural rules to tackle the GSE concerns.

Architectural rules are defined as “principles and statements

about the software architecture that must be complied with

throughout the organization”. They have defined four

challenges in GSE: time difference and geographical

distance, culture, team communication and collaboration,

and work distribution. For each of these challenges they list

possible solutions and describe to what extent these

solutions can be expressed as architectural rules. The work

520

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

of Clerk et al. aims to shed light on what kind of

architectural rules are necessary to guide the GSE. We

consider our work complementary to this work. In our work

the design actions that relate to the expected answers of

questions are defined as design actions.

In a position paper of Siemens, Paulish [10] provides

some guidelines about how to develop a product line using a

centralized product line management team and distributed

component development teams. For this, the author

proposes to decompose the large-scale requirements into a

well-structured set of software components that can be

developed in parallel among globally distributed

development teams. Likewise it is aimed to develop the

product line using global software engineering practices.

Further it is recommended to keep small teams that use agile

processes and which are controlled by a central

organization. Further, the author describes some best

practices for formal requirements engineering and

architecture design to develop the software components that

will make up the product line. Using the approach it is

aimed to reduce the time-to-market and increase

productivity. The architecture as proposed by Paulish is one

of the alternatives that we have defined in Table 1. In fact,

Paulish focuses more on the overall process for supporting

product line engineering using global software engineering.

In our approach we have focused on the architectural design

of global software product line engineering. We believe

that both approaches are complementary to each other.

A common practice is to model and document different

architectural views for describing the architecture according

to the stakeholders’ concerns [6][9]. An architectural view is

a representation of a set of system elements and relations

associated with them to support a particular concern. Having

multiple views helps to separate the concerns and as such

support the modeling, understanding, communication and

analysis of the software architecture for different

stakeholders. Architectural views conform to viewpoints

that represent the conventions for constructing and using a

view. An architectural framework organizes and structures

the proposed architectural viewpoints. Different

architectural frameworks have been proposed in the

literature. Examples of architectural frameworks include the

Kruchten’s 4+1 view model [9], the Siemens Four View

Model and the Views and Beyond approach (V&B)[6]. In

our work we have defined the architecture that represents

the deployment view of the system. This view appeared to

be one of the most useful views since it is able to depict the

multi-site character of GSE. However, we could easily

consider other views such as decomposition view or uses

view. We consider this as part of our future work.

VI. CONCLUSIONS

We have defined the notion of global software product

line engineering that considers the application of product

line engineering in a global development environment. Our

study shows that we can in essence identify 8 possible

integration alternatives of product line engineering with

global software engineering. We have made a distinction

between two global software product line engineering

approaches: (1) GSPLE without production line and (2)

GSPLE with production line. Obviously the latter GSPLE

approach is the most difficult alternative but on the other

hand will also lead to enhanced reuse.

The goal of this work was primarily to shed light on the

challenges related to the architecture design of GSE system.

The alternatives that we have shown can be used as

templates for GSE architect to derive the architect for a

particular project. Further, we consider this work as an

initial step towards integrating product line with global

software engineering. Our future work will focus on

enhancing the concepts that we have discussed in this paper

and applying this within an industrial context of Cybersoft.

REFERENCES

[1] R.D. Battin, R. Crocker, J. Kreidler, K. Subramanian. Leveraging
Resources in Global Software Development. IEEE Software, 18(2), p.
70-77, Mar/Apr, 2001.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
Pattern-Oriented Software Architecture Volume 1 - A System of
Patterns, Wiley, 1996.

[3] E. Carmel and R. Agarwal. Tactical Approaches for Alleviating
Distance in Global Software Development. IEEE Software,
March/April,p. 22-29, 2001.

[4] V. Clerc, P. Lago, H. van Vliet. Global Software Development: Are
Architectural Rules the Answer? In: Proc. of the 2nd International

Conference on Global Software Engineering, pp. 225–234. IEEE

Computer Society Press, Los Alamitos, 2007.

[5] P. Clements, L. Northrop. Software Product Lines: Practices and
Patterns. Boston, MA:Addison-Wesley, 2002.

[6] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Merson, R. Nord, J. Stafford. Documenting Software Architectures:
Views and Beyond. Second Edition. Addison-Wesley, 2010.

[7] J.D. Herbsleb. Global Software Engineering: The Future of Socio-
technical Coordination. International Conference on Software
Engineering. p. 188-198, 2007.

[8] J.D. Herbsleb and D. Moitra. Global Software Development. IEEE
Software, March/April, p. 16- 20, 2001.

[9] P. Kruchten. The 4+1 View Model of Architecture. IEEE Software,
12(6):42–50, 1995.

[10] D. Paulish, Product Line Engineering for Global Development,
Siemens AG, pp. 1-6, 2005.

[11] K. Pohl, G. Böckle, F. van der Linden. Software Product Line
Engineering – Foundations, Principles, and Techniques, Springer,
2005.

[12] SpringSource Tool Suite. http://www.springsource.com/products/sts

[13] T. Stahl, M. Voelter. Model-Driven Software Development, Addison-
Wesley, 2006.

[14] K. Schmid, M. Verlage. The Economic Impact of Product Line
Adoption and Evolution. IEEE Software, Vol. 19, No. 4, July/August
2002, 50-57.

[15] B. Sengupta, S. Chandra, V. Sinha. A research agenda for distributed
software development, In Proceedings of the 28th international

conference on Software engineering, pp. 731-740, 2006.

[16] J. Whitehead, Collaboration in Software Engineering: A Roadmap, In

FOSE '07: 2007 Future of Software Engineering, pp. 214-225, 2007.

[17] J.A. Zachman. A Framework for Information Systems Architecture.
IBM Systems Journal, Vol. 26. No 3, pp. 276-292, 1987

521

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

