
Practical Experiences with Software Factory Approaches

in Enterprise Software Delivery

Alan W. Brown, Ana Lopez Mancisidor, Luis Reyes Oliva

IBM Rational

Sta Hortensia, 26-28, Madrid, Spain

(alanbrown, ana.lopez, luis.reyes)@es.ibm.com

Abstract—There are many pressures on software delivery

organizations to produce more software faster in the context of

extreme cost pressure and growing globalization of the

software delivery organization. The concept of a Software

Factory is beginning to emerge as one way to address these

challenges. This paper discusses the principles of software

factories for enterprise software delivery using practical

examples that explore the how software delivery quality can be

managed across the software supply chain. In particular, we

discuss two case studies where large commercial organizations

have achieved significant improvements in software quality

when adopting a software factory approach. We conclude with

a set of observations that highlight where this work can be

usefully refined and extended.

Keywords – software engineering; software process

improvement; application management; software delivery

I. INTRODUCTION

Many companies have experienced a great deal of change
over the past few years due to evolution of the business
environment, financial upheavals, societal changes, and
technical advancement. Key to addressing these changes has
been analysis of core business processes to see how they can
be refined and optimized, followed by a restructuring of
those business processes to better meet the new context. This
business process reengineering has helped to refocus on the
most compelling and valuable aspects of the business, and is
a first step in readjusting investment priorities toward those
business activities that are considered essential, while
looking to divest those considered secondary [1].

At the same time all IT groups have been forced to lower
operating costs across the organization. The direct
implication is that they must not only minimize waste and
inefficiency, but increase productivity and relevance to the
businesses they serve.

This combination of business process restructuring and
close focus on delivery efficiency have been seen in many
business domains, and have resulted in techniques such as
“lean manufacturing”, “supply-chain management”, and
“product line engineering”. The application of these ideas in
software delivery is what we refer to here as a “software
factory approach” to enterprise software delivery [2, 3].

In this paper we examine this view of enterprise software
delivery. We first explore the idea of the “software supply
chain” and introduce the concept of the software factory. We

then detail the characteristics of the software factory
approach, and illustrate those concepts using real world
examples. We conclude with several key observations.

II. ELEMENTS OF A SOFTWARE FACTORY APPROACH

Analogous with changes in the industrial sector, a
software factory approach to enterprise software delivery
aims to reduce time to market for new products, increase
flexibility and agility in component assembly, and reduce
costs of production while increasing quality and end-user
satisfaction. It is important to highlight several key elements
of such an approach that impact enterprise software delivery.

A. Aligning business and engineering

A software factory approach to enterprise software
delivery requires a well-established, multiplatform process
with tooling that aligns business strategy with engineering
and system deployment. Critical in building applications that
meet the needs of the customer, such processes can help to
identify business needs and stakeholder requirements, and
drive those business goals into enterprise software delivery
projects and solutions, ensuring that the final product meets
the business objectives with the lowest possible cost and
highest possible quality.

B. Automating processes and tasks

Automating the enterprise software delivery lifecycle can
help reduce errors and improve productivity, leading to
higher quality products. An integrated portfolio of tools can
help teams automate specific, labor-intensive tasks—similar
to the way automation is used to perform repetitive manual
tasks in manufacturing. Using automation, practitioners are
able to focus on creating more innovative solutions with
industry-leading design and development environments that
help support the delivery of high-quality, secure and scalable
products. Companies that invest in automation and a more
efficient means of production and delivery can experience a
sizeable jump in productivity, quality, time to market and
scalability.

C. Leveraging assets across the enterprise

Modern architectural and product development
frameworks can be considered complex supply-chains that
integrate third-party, custom, off-the-shelf and outsourced
components in the overall software or system. This has led to
approaches such as Service-Oriented Architecture (SOA)

465

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

frameworks, which focus on assembly of standard
components to promote reuse across the enterprise, and more
generally to product line engineering (PLE), where the focus
is strategic reuse in developing portfolios of similar products
that share many components but are differentiated by
variations in features and functions [4].

The first step is to understand what assets exist and
leverage them to create reusable components to extend
architectural frameworks in meaningful, predictable ways.

D. Supporting integration and lean processes

Today’s enterprise software delivery teams can be highly
distributed geographically. Consequently, they need flexible
and agile processes with real-time collaboration, integrated
across disparate platforms, roles and geographies to reap the
benefits of modern software and systems frameworks.
Globally distributed development can be facilitated through
defined, customizable processes and best practices to support
flexibility, mitigate risk with comprehensive quality
management and enhance developer productivity through
task and process automation.

E. Automating operational measurement and control

To help ensure predictable outcomes, the enterprise
software delivery process must be governed so it can be
continuously measured and improved. A fundamental aspect
of this is the definition and codification of processes for
developing products. These processes and best practices are
corporate assets, and need to be captured in an actionable
form so teams can be guided to adhere to appropriate best
practices through automated workflows.

Relevant metrics should be gathered automatically at
each step, including after software and systems are delivered
into production. By constantly, automatically measuring the
specific key value aspects of processes, these metrics can
provide insight into the efficacy of existing processes and
identify areas for improvement. Automated measurement
and control is also critical in tightly regulated industries,
such as government, aerospace, medical or financial sectors.

III. REALIZING A SOFTWARE FACTORY

Realizing a software factory requires a blueprint to
organize and structure the methods and tools that deliver the
capabilities to make this real.

Domain Focus

Business
Management

Asset
Production &
Maintenance

Application
Development
and Delivery
Management

Manage Method and Processes

Manage Services

Manage

Knowledge

And Guidance

(HOW TO)

Manage

Assets and

Deliverables

Manage Portfolio

(Releases, Programs and Projects)

Planning

Manage resource capacity

Manage estimates

Reporting/

Dashboards

G
o
v
e
rn
a
n
c
e

P
la
n
 t
o
o
li
n
g
 l
a
n
d
s
c
a
p
e
 s
e
le
c
ti
o
n
,

d
e
p
lo
y
m
e
n
t,
 r
e
ti
re
m
e
n
t

Application
Infrastructure/
Deployment
Management

Figure 1. A Simplified Blueprint for a Software Factory.

Figure 1 illustrates a simplified software factory blueprint
that we have used as the basis for several large scale
enterprises. In this approach the software factory provides a
collection of capabilities that support the management and
delivery of enterprise software, covering 5 key areas. We
briefly review each of these in turn.

A. Business management

Effective business and IT planning and portfolio
management helps to streamline the business by empowering
faster, better-informed decisions, and can reduce costs by
prioritizing enterprise software investments to support
business goals. Ultimately, proficiency in this area allows
strategic intent to be converted into executable processes
with measurable business results. To implement this
typically requires several elements:

� Enterprise architecture management to help make

faster, better-informed strategic and tactical decisions,

prioritize enterprise software investments to support

business goals, and analyze, plan and execute change

with reduced risk.

� Business process management to help to optimize

business performance by discovering, documenting,

automating, and continuously improving business

processes to increase efficiency and reduce costs.

� Requirements definition and management to

minimize the number of inaccurate, incomplete, and

omitted requirements. This helps teams collaborate

effectively with stakeholders, reduce rework, accelerate

time to market, and respond better to change.

B. Asset production and maintenance

Knowledge management and reuse best practices allow
organizations to discover and leverage existing data and
assets. With an understanding of the key assets, it is possible
to enforce policies and best practices, manage model
dependencies and even trace assets to versioned artifacts.

It is important to determine what assets exist by
providing the ability to search and select across multiple
asset repositories and data warehouses, relate assets to one
another and leverage existing assets for reuse. Such solutions
can also help administrators enforce policies and best
practices, manage model dependencies and trace assets to
versioned artifacts, creating a link between systems, sub-
systems, code, requirements, test cases and delivered
solutions. Finally, teams create new assets, transforming
code into standardized artifacts such as Web or Business
Process Execution Language (BPEL) services that can be
used as components for building value-added applications.

C. Application development and delivery management

Smart product design and delivery optimization requires
collaboration across teams to deliver quality software and
systems. In addition, applying lean processes with
disciplined teams in focused “centers of excellence” ensures
flexibility and facilitates globally distributed enterprise
software delivery. Collaborative services, automation and
measurement feedback throughout the software development

466

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

lifecycle are essential to achieve levels of productivity and
consistency beyond those accomplished using traditional,
craft-oriented software development tools.

This requires capabilities that can help teams to
collaborate across the lifecycle and automate routine tasks.
Key capabilities include:

� Change and release management. Improving quality

and productivity by effectively unifying distributed

teams by managing change processes from

requirements gathering through to deployment.

� Quality management. Advancing quality across the

entire software delivery lifecycle from requirements,

design, development, quality assurance, security, and

compliance to deployment.

� Architecture management. Software development

tools for design, development, and delivery that support

modeling and coding activities in appropriate high-level

languages, supported with a range of analysis

capabilities for maintaining the architectural quality of

the delivered solution.

D. Application infrastructure and deployment management

A modern application infrastructure allows organizations
to cost effectively build, deploy and manage applications and
products for varying business needs. Integrating service
delivery across organizational boundaries and all stages of
the lifecycle helps to improve time-to-market and reduce cost
and risk while providing the visibility, control and
automation needed to deliver a dynamic infrastructure that
adapts to changing business requirements. These solutions
provide capabilities to help organizations develop a robust
application infrastructure, including capabilities for:
� Product deployment. Offering services to

automatically deploy, track, and manage applications

across the lifecycle.

� Application delivery. A set of technologies that

support system build and deployment across mainframe

and distributed environments.

� Connectivity and application integration. Services

that foster collaboration, insight and cost effective re-

use of data and knowledge across the organization.

E. Governance

Automated capabilities to monitor operational
environments and provide feedback to the software and
systems delivery processes are critical in a modern approach.
Iterative improvement across the entire lifecycle ensures
timely problem resolution and ensures flexibility to adapt to
change in today’s business environment. These solutions for
operations provide capabilities to help organizations develop
a robust set of practices for automating operational
monitoring and measurement. These solutions can help in:

� Application health monitoring.

� Performance management.

� Security and compliance.

� Service management.

� Performance optimization.

� Monitoring and measurement.

IV. RATIONAL JAZZ: AN INTEGRATED SOFTWARE

FACTORY PLATFORM

A common collaborative platform is critical for
effectively introducing a software factory approach. A
collaborative development platform automates and simplifies
the challenges of enterprise software delivery from project
management, to the ability to leverage innovation, to the
visibility and access of the development and delivery teams
across the distributed supply chain.

Rational Team Concert

Work items:

Requirements, Issues,
ClearQuest bridge

Build System:

Automation and integration
with SCM and work items

traceability, Local and Server
builds, BuildForge integration

Project Planning and
Management:

Agile/Traditional planning,
Reporting & Dashboards

Collaboration

Presentation:
Mashups

Discovery

Query

Storage

Administration: Users,
projects, process

Jazz Team Server

REST APIs: Jazz Foundation Services and Open
Services for Lifecycle Collaboration (OSLC)

Jazz Foundation Services

Rational Quality
Manager

Rational
Requirements
Composer

Rational Project
Conductor

3rd Party ALM
Tools

Rational Build
Forge

Rational Test and
Lab Management

Other Jazz-based
Rational
Products

Software Configuration
Management:

Server-based sandbox,
Changesets, Streams,

Components, Snapshots and
Baselines, ClearCase Bridge

Figure 2. The Rational Jazz Platform.

IBM Rational’s approach to provide a collaborative

platform for software factories is the Jazz technology – a set
of integrated capabilities to unify all stakeholders in the
software supply-chain, a basis for governance and
management of standardized delivery processes, and the glue
that enables visibility and transparency across the complete
software delivery process [5].

As illustrated in Figure 2, the Rational Jazz platform
consists of a set of capabilities that deliver the services
necessary for a software factory. There are 2 major parts to
the solution. The first is the Jazz Team Server comprising
core capabilities for integrating and collaborating across
teams. Access to these capabilities is via the Open Services
for Lifecycle Collaboration (OSLC) interfaces. The second is
the Rational Team Concert solution that embeds the Jazz
Team Server as the basis for delivering core services for
work item management, project planning and management,
source code management, and build management. Any
software factory solution built on this technology customizes
and extends this platform through the addition of specific
capabilities in areas such as quality management,
requirements management, and so on.

The Rational Jazz Platform has been used in several
different kinds of scenarios. In particular, were companies
are moving toward a software factory approach, this platform
offers the core capabilities on which to build and deliver the
essential characteristics of a software factory: collaboration,
automation, and visibility.

467

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

V. EXAMPLES

We provide 2 examples
1
 of organizations that have

implemented a software factory approach, realized via the
Rational Jazz platform.

A. Subcontractor management at ABC Bank

1) Challenges
ABC Bank is a large worldwide financial institution with

a diverse, widely distributed IT organization. In an attempt to
efficiently manage rapid growth at ABC Bank, they have
substantially focused on subcontracting major parts of their
software development and delivery to large software centers
in Latin America, Europe, and Asia. This approach was
aimed at reducing fixed IT costs and increasing flexibility to
adapt to customer demand. The growth of this subcontracting
model is challenging due to:

� Lack of governance to control project progress.

Across the organization, different teams were using

different governance mechanisms, not connected, with

progress measured during informal weekly meetings.

� Poor communication due to different time zones,

location, cultural and political differences. Not all

team members were fluent in English language and due

to different time zones many discussions were

inconclusive, or had to be postponed for days.

� Inadequate planning and change management

procedures. Projects were subcontracted using a fixed-

price model, and there was little flexibility to negotiate

changes or modify initial planning.

� Mismatches between user expectations and the real

outcomes. End users were not involved in requirement

analysis or reviews and there were many rejected

requests and conflicts across the main stakeholders.

� Poor infrastructure for remote access and lack of a

common asset repository. Distributed teams were not

notified when new versions of the common architecture

framework were released and a lot of rework had to be

done to adapt these changes at the last minute.

� Unclear information sharing and privacy rules.

Integrating components from different providers raised

many poorly addressed privacy and security issues.

2) Approach
To recover from this situation, ABC Bank directly

focused on supply-chain management issues as part of a
wider software factory approach to software delivery. They
changed their development processes and infrastructure, and
implemented a common development environment based on
Rational Jazz platform to mitigate hidden costs and issues.
In their first wave of changes they focused on:

� Organization changes by creating a new Software

Factories Project Office in charge of negotiating and

managing subcontracted projects;

� Common infrastructure based on a central repository,

accessed from external locations using standard Internet

1
 Although the examples are real, we use fictitious name for reasons of
privacy.

connection protocols. This central repository is used to

share and integrate information across the teams.

� Governance Dashboards producing metrics and

reports that measure progress of individuals, teams, and

software factories to assess their performance. This

central governance dashboard was updated

automatically with project information in real time,

allowing the enterprise to keep external developments

under control and to reduce meeting and travel costs.

Figure 3. Software Factories Governance Dashboard.

� Planning and change management processes were

adapted to augment traditional waterfall software

development processes with iterative, agile techniques,

to enable faster response to changing demands.

� Confidentiality was addressed by identifying every

critical private data element that the company had,

isolating it from subcontractor access, and explicitly

granting permissions for common assets to be shared

with subcontractors via a central register of shared

artifacts (e.g., common architecture components).

3) Results
Implementing these changes was not easy and caused

many political and technical conflicts inside ABC Bank, and
across the supply-chain. However, as a result of this
transformation the enterprise was able to adapt to this new
software delivery model, and is starting to benefit from the
reduction of fixed costs and increased flexibility into their
development activities across their suppliers.

Thanks to the governance dashboard they are now able to
measure status and progress of each supplier, penalizing or
terminating contracts of those with less efficient delivery.

B. Testing Factory Services at XYZ

1) Challenges
XYZ is a European software services and consulting

company, specializing in software development and testing
services. One of the company's most important concerns is
consistency and quality of delivered services, and a
repeatable lean approach to software delivery. To that end,
XYZ has standardized many key practices, and has obtained
a CMMI Level 3 certification [6]. XYZ's engineering and
quality assurance (QA) culture encourages agile practices
along the full software lifecycle, making it compatible with
the rules and constraints associated with CMMI.

468

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

As part of their global strategy, XYZ offers expertise and
services in software testing, and provides a catalog of
services to their customers, including:

� Services to assure the quality of the work-products

generated in each phase of the software development

lifecycle, reducing defects across phases;

� Playing the role of facilitator between the different

actors in the QA process to objectively assess quality

practices and review project milestones;

� Advising on quality processes and practices, including

assessing deliverables, and designing appropriate test

and support processes to increase quality.

A software factory approach to XYZ is important

because it encourages early project involvement of testers
and other quality-focused roles, and makes quality
management throughout the project lifecycle a high priority.

2) Approach
To realize these needs, XYZ decided to set up several

large European delivery centres, and to adopt a software
factory approach to deliver its quality-focused services. It
refers to these as a “software test factories”.

The basis for their software test factories is an
infrastructure supporting software configuration
management, build management and continuous integration
practices, and agile project management. These core
capabilities are fully integrated with specific testing services
to manage the test plans, execute tests and assess test
coverage against the project requirements.

Figure 4. Testing Factory Solution Architecture.

A streamlined software factory infrastructure for QA is

the cornerstone of the XYZ solution. This solution,
augmented with additional tools for developers or test
engineers in their day-to-day work, offers the integrated
capabilities that ensure XYZ delivers quality solutions to its
clients. As illustrated in Figure 4, the testing factory services
were automated by providing a suite of integrated tools
covering several process areas of CMMI.

In addition, the need for supporting geographically
distributed teams and roles (PMO, Test Manager, Test
engineers, etc.) was critical. A series of customized
processes were designed that resulted in:

� Templates to specify test cases and test scripts to

define automated or manual tests;

� Automation of building and continuous integration

process, regression testing or other quality standards

such as those imposed by CMMI;

� Visual dashboards to monitor the state of the projects,

delayed activities, open vs. closed defects, metrics of

coverage, productivity of the team, etc.

Figure 5. A Dashboard from XYZ´s Software Test Factory.

3) Results
The software factory approach to testing and quality is a

critical part of XYZ´s strategy. As a result of this initiative,
XYZ has successfully increased the efficiency of their
processes, improving the productivity of their key testing
factory in Salamanca, Spain. This solution is now being
introduced at test factories across the XYZ organization.

VI. OBSERVATIONS

A. Agile Software Factories and CMMI

Is it possible to make agile methods and process maturity
compatible? In a software factory context, this goal is not
only possible, but mandatory. In all enterprise organizations
there are policies and rules which enforce achievement of
certain maturity levels. At the same time, the agile paradigm
is an emerging necessity to address the challenges of
flexibility in software development and delivery.

For many organizations, significant investment has been
made to improve the maturity of the key management
processes, with the CMMI as a focus for much of that effort.
To achieve many operational goals of a software factory,
CMMI can be very valuable in areas such as:

� Reducing operational costs;

� Improving the quality of the service;

� Managing capacity and resources efficiently;

� Industrialize the software lifecycle through reuse.
In contrast, the agile methods [7] (primarily oriented to

optimize software development teams) are very useful for
helping to ground the more abstracts ‘process areas’ into a

P2 P1 P3 P4 P5 P6 P7

469

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

more concrete and concise practices which will be used by
the development and testing teams in:
� Delivering working software on a frequent basis;

� Promoting whole team planning and face-to-face

collaboration;

� Reacting to frequent changes and reprioritizations with

rapid fact-based decision making.
At first glance, these agile practices do not align well

with more traditional high maturity approaches such as
CMMI. However, in our experiences we can adapt these
ideas in the context of a software factory model to balance
the need for repeatability and governance essential for
CMMI with the pragmatic needs expressed in agile
approaches. Achieving this balance is critical in enterprise
organizations such as ABC Bank and XYZ. A software
factory approach provides a framework to realize this.

B. Software Factories in the Cloud

There is a high level of excitement about cloud
computing and the promises that it brings to enterprises to
reduce cost and increase flexibility of service delivery [8].
Many organizations are already involved in pilots, or are
actively using cloud technologies and cloud-based services.

Initially, we have seen many traditional enterprise
software solutions ported to a cloud platform, and included
in platform images that can be uploaded to a cloud
infrastructure. This is an important starting point for
enterprise system use on the cloud. However, it is very
limited in terms of many of the important usage scenarios for
cloud technology. There is less understanding of which new
enterprise software capabilities, services, and approaches
will be needed in much more complex scenarios. For
example, we already are seeing interesting scenarios that are
raising new challenges for enterprise software delivery
organizations:

• Several teams are deploying business application onto a
public cloud infrastructure for access by clients around
the world. How do those teams collaborate to share
information to ensure that they do place sensitive data
on the public infrastructure? What coordination is given
to the teams to ensure the management of shared images
is handled effectively?

• Multiple System Integrators and specialist vendors must
deliver different parts of key enterprise solutions as part
of a software supply chain that must be integrated to be
delivered into production. How can the cloud be used as
the delivery platform to coordinate and govern delivery
and integration of these components?
These, and many more such scenarios, are stretching

conventional processes, skills and technologies for enterprise
software delivery. Software delivery organizations are
actively working on new deployment approaches that
provide the additional governance, visibility, and control that
is demanded in such situations.

C. Metrics and measures for Software Factories

Although there are different development standards to
measure in-house development, there is little standardization

in evaluating supply-chains and software factories. Standard
approaches such as function point analysis and defect density
can be applied, but in practice they appear inadequate.

With more complex supply-chain delivery models
becoming more common, we need metrics that help us
address different questions: Which software factory is more
productive? How many defects are still opened? Which
software factory is delayed in their deliverables? These and
many other measures need to be defined and an automatic
mechanism to collect these metrics must be implemented to
help compare results across external providers in real time.

VII. SUMMARY

A fast-paced evolution is taking place in the context of
very dramatic shifts in how IT organizations view the value
they bring to their varied stakeholders, the services they
deliver to clients, and the way they invest to achieve their
goals. As a result, the last few years has seen a significant
change in the way enterprise systems are developed,
delivered, and maintained. By introducing a software factory
view to enterprise software delivery, organizations can focus
attention on the software supply chain, address inefficiencies
in software delivery, and gain greater control and visibility
into the delivery process.

In this paper we have examined the key principles that
underlie this kind of software factory thinking to enterprise
software delivery, and provided 2 real-world examples to
illustrate how solutions can be introduced that provide value
to the IT organization. The technology underpinning such an
approach is critical. We briefly discussed one example
technology approach based on Rational Jazz platform, and
illustrated its primary characteristics as the basis for a
software factory.

Much further work remains. We have made a number of
observations on critical areas requiring additional work. Over
the coming years we expect to see significant progress in
these, and in several other key areas.

REFERENCES

[1] J. Jeston and J. Nelis, "Business Process Management, Second
Edition: Practical Guidelines to Successful Implementations",
Butterworth-Heinemann, 2008.

[2] M. Poppendieck and T. Poppendieck, “Lean Software Development:
An agile toolkit”, Addison Wesley, 2003.

[3] M. Hotle and S. Landry, "Application Delivery and Support
Organizational Archetypes: The Software Factory", Gartner Research
Report G00167531, May 2009.

[4] P. Clements and L. Northrop, “Software Product Lines: Patterns and
Practices”, 3rd Edition, Addison Wesley, 2001.

[5] M. Goethe et al., "Collaborative Application Lifecycle Management
with IBM Rational Products", IBM Redbook, December 2008.

[6] “CMMi for Development, Version 1.3”, CMU/SEI-2010-TR-033,
November 2010.

[7] R.C. Martin, “Agile Software Development: Principles, patterns, and
practices”, Prentice Hall, 2002.

[8] G. Reese, “Cloud Application Architectures: Building Applications
and Infrastructures in the Cloud”, O´Reilly Press, 2009.

470

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

