
An Agile Model-Driven Development Approach
A case study in a finance organization

Mina Boström Nakićenović

SunGard Front Arena

Stockholm, Sweden

email: mina.bostrom@sungard.com

Abstract–In the Sungard Front Arena, current software

portfolio a business functionality called Market Server

Capability (MSC) is embedded and duplicated in many

components. By the application of Agile and Lean

principles on model-driven development, we will get an

Agile approach for constructing the architecture of a

new MSC definition which will eliminate the

duplication and inconsistency, while still maintaining a

short implementation phase. The resulting architecture

has a single modeling level, with merged PIM and

PSMs. The model is designed by reverse engineering of

the legacy code in a Test Driven Development fashion.

Keywords-agile; lean; MDD; TDD; finance

I. INTRODUCTION

SunGard is a large, world-wide financial services
software company. The company provides software
and processing solutions for financial services. It
serves more than 25000 customers in more than 70
countries. SunGard Financial Systems provides
mission-critical software and IT services to
institutions in virtually every segment of the financial
services industry. We offer solutions for banks,
capital markets, corporations, trading, investment
banking, etc. [1].

The Front Arena system includes functionality for
order management and deal capture for instruments
traded on electronic exchanges. Market access is
based on a client/server architecture. The clients for
market access include the Front Arena applications,
while the market servers, called an Arena Market
Servers (AMAS) provide services such as supplying
market trading information, entering or deleting
orders and reporting trades for a market.

Clients and AMAS components communicate

using an internal financial message protocol for

transaction handling, called Transaction Network

Protocol (TNP) and built on top of TCP/IP. The TNP

protocol uses its own messages, which contain TNP

message records with fields [2]. Many of the TNP

client components query the Market Server

Capability (MSC), information about the trading

functionality that one electronic exchange (market)

offers. Client applications need such information in

order to permit/disable the access to the different

markets.

A. Problem description

When a new market (AMAS) is introduced, the
information about functionality that the new market
offers (which transaction i.e., TNP messages are
supported) should be added to each client. MSCs
describe market trading transactions (Orders, Deals,
etc.), which command are supported for them
(entering, modifying, etc.) and which attributes and
fields could be accessed on the markets (Quantity,
Broker, etc.). This information is presently hard-
coded into each client application. New client
application releases need to be done before the
customers can start using the new AMAS. Depending
on the current release plans of the client applications
this can take a long time. Having to wait for the client
application releases may delay the production start of
the AMAS.

All components, which use the MSC
functionality, must use the same MSC definition.
Unfortunately the same MSCs are defined in several
different files. Different components are developed in
different programming languages so they do not share
the same definition file. Because of historical reasons
and the fact that some client components were
developed within separate teams, even the
components developed in the same programming
language do not share the same definition file. Each
client component has its own MSC definition file.
There is a lot of the duplication of information in
these files. Even worse they do not present exactly
same data since the different clients work within
different business domains, so their knowledge about
the MSCs is on the different levels. Two main
problems with this architecture are:

 Hard-coded MSC definition, requiring the
recompilation of components when a new
MSC is introduced

 Duplication of the MSC definition,
introducing the risk for data inconsistency.

These problems will be resolved in the future by
introducing a Dynamic Market Capabilities (DMC), a
new functionality that will be used to retrieve the
MSC definition dynamically, in run-time, instead of
having them hard-coded. Unfortunately, it will take a
long time, probably years, until the DMC solution
will be completely implemented and in use (for all
AMAS and all client components). Until then all
components have to support the hard-coded fashion.

8

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

All new components, which will be developed during
this time, have to support the hard-coded MSC way
also. That is why there is a need to find an
intermediate solution which will remove the
duplication and which will be used under the
transition phase. Since such an architecture will not
be long lived company management put some time
and resource constraints on the implementation. The
question we address in this paper is how to create
such intermediate solution, taking all conditions and
constraints into account.

Introduction and problem description are
presented in Section I. Section II explains, in more
details, the architectures of both the present and the
DMC solution as well as it introduces reasons for
having an intermediate solution. In Section III,
requirements and constraints are explained. The
produced intermediate solution, an Agile MDD
approach, is presented in Section IV. In Section V,
the benefits are discussed of applying Agile and Lean
principles on the MDD. Finally, Section VI presents
our conclusion.

II. ARCHITECTURE OF THE MSC DEFINITION

A. The present architecture

The client components use the MSC definition
from the different sources, developed in different
programming languages (C++, C# and Java), where
the majority of data is duplicated. The present
architecture of the MSC definition is not centralized
(no single definition of the model) and without
control for the consistency. The lack of centralization
enormously increases the risk for data inconsistency
since the consistency depended on the accuracy of the
developers who edits the MSC definition in a source
code file. The development of the MSC definition is a
continuous process, and new MSCs are defined each
time when a new AMAS is developed (2-3 times per
year) or when a new trading transaction is introduced
(once per month). The current process flow is:

 A new AMAS is developed or a new
transaction is introduced.

 A MSC is added to the MSC definition in
each client component. The same information
must be added to several different files.

 All client components should be recompiled
in order to get the definition of the new MSC.

B. Dynamic Market Capabilities architecture

We have already done design plans for the new
DMC architecture. In the DMC architecture each
AMAS will be responsible to provide, to the client
components, information about the MSC that the
AMAS supports. The description of the MSC that the
AMAS supports will be saved in one XML file. An
example of an extract from a XML file, containing
the MSC definition for the AMAS called OMX, is
presented in the Figure 1. In this example, a MSC
defines that the market OMX supports trading
transaction order with the following commands:

enter, modify and delete, combined with the
following fields: price and quantity.

Figure 1. Market Server Capabilities for market OMX

On the AMAS start up, AMAS reads the MSC

definition from its XML file and sends them, in run
time, to all client components which connect to the
AMAS. In such way the client components do not
have to be recompiled if something changes in the
MSC definition. When a new AMAS is developed, a
new XML file containing MSC definitions for the
AMAS is created. On the AMAS start up, all client
components connect to the AMAS and dynamically
retrieve the MSC definition for that AMAS. So even
in this case there will be no need for the
recompilation of the client components.

C. Transition phase

The decision is that all AMAS components and all
client components should be upgraded to the DMC
architecture. But this transition is a complicated job.
There are over 30 AMAS components and more than
5 client components that are using MSC functionality
today. There is different prioritizing, from the
management side, within the components’ backlogs.
We know, right now, that some of these components
will be upgraded to the DMC in one or two years.
This transition project is not marked as a critical since
there is already a working architecture, although not
the best one. As long as there is at least one
component which has not been upgraded to the new
DMC architecture, the hard-coded MSC solution
must still be supported. The transition will occur
gradually and the transition phase will probably take
several years. Under the transition phase some new
components are going to be developed; some new
components are already under the development. To
develop new client components according to the
present architecture will introduce even more
duplication. Therefore an intermediate architecture,
which will eliminate the duplication, will be
introduced. Such a solution should have a short
implementation phase, since it must be ready before
the new components are completely developed. The
solution should be designed so that it eventually leads
towards the new DMC architecture. It would be good
if the new DMC architecture can benefit from it.

III. INTERMEDIATE SOLUTION

We work according Scrum in the company, trying
to apply Lean and Agile software development

9

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

philosophy. One of the key principles of the Lean
philosophy is to detect and eliminate wastes [3]. The
intermediate solution should eliminate, from the
present architecture, the three major points of waste.

 Duplication of the MSC information

 Amount of work done during the MSC
definition updates

 Amount of time used for communication
among groups, informing each other about
the MSC definition changes

In order to eliminate the duplication of data we
need a centralized MSC definition. In order to be able
to provide support for the MSC definition in different
programming languages we need to generate code in
different programming languages, from the
centralized MSC definition. We need a programming
language independent architecture. First we
considered a solution, where all client components
would be refactored to reference the same central
definition file, but this would require a lot of work.
We did not want to refactor client’s components too
often, since some of them will be refactored soon
regarding the DMC solution. That is why we believed
that the Model-Driven Architecture (MDA) [4]
approach can be the most suitable solution for the
intermediate architecture. With the MDA approach
we mean the general MDA concept: “A MDA defines
an approach to modeling that separates the
specification of system functionality from the
implementation on a specific technology platform”.
The common denominator for all MDA approaches is
that there is always a model (or models), as the
central architectural input point, from which different
artifacts are generated and developed.
Transformations, mapping rules and code generators
are called in common “MDA tools” [5].

The main idea is to have just one source, a union
of all present MSC definition that is programming
language independent. From such a source, which
will be a central MSC definition registry, the present
MSC definition source files are generated. All present
MSC definition files have a similar structure. The
main difference is the programming languages
syntax. Because of that the code generation should
not be too complicated. The way how the client
components work will not be changed, the MSC
definition will still be hard coded. Such a solution
does not require the refactoring of the client
components. But the way how the developers work
will be improved. They will work just with the central
MSC definition registry and add/edit the MSC
definition only there. Then the MSC definition files,
for each client component, will be automatically
generated from the central registry. The client
components will be automatically recompiled. In that
way all three mentioned wastes will be eliminated.

Another key Lean principle is to focus on long-
term results, which is the DMC architecture in our
case. That is why we must point out that one
important part of the DMC architecture is a MSC
XML description file. If the MDA approach is
introduced for the MSC definition, the central MSC

definition registry would be easily divided into
several files (one per AMAS), later on. It is clear that
the DMC architecture would benefit from having
such a central MSC registry. The creation of one
central MSC definition registry, with all MSC
definitions for all markets, would be a good step
towards the future DMC architecture introduction.

A. Limitations

Our company management is usually very careful
with introducing concepts not already used in the
company, since it often requires long implementation
and learning time. Additionally, an investment in an
intermediate solution is not always a very productive
investment. On the other side, the management was
aware that the intermediate architecture would
increase productivity directly and make some new
solutions possible right away. That is why the
management listened carefully to our needs and made
some general decisions. The intermediate architecture
can be introduced, but the time-frame could be only
several weeks. No new tools or licenses should be
bought. Only tools that are already used within the
company or some new, open-source tools, can be
used. No investment in change management. Time
for teaching/learning cannot be invested for the
intermediate solution. The concepts, which our
developers are already familiar with, should be used.

Considering these management decisions, we
decided to explore if the organization was mature
enough to introduce the MDA. Although the MDA
approach has been around for a long time, for many
companies it is still a new approach. A small survey
which we performed showed that the MDA approach
hasn't been used within the company and that a
majority of the developers has never used this
approach and that the UML modeling is not used in
general. Also, the introduction of the full scale MDA
usually implies: a long starting curve, which we
cannot afford having a short time-frame and the usage
of the MDA tools, which cannot be used since
developers don’t have enough knowledge about them
and there is no possibility to invest in learning. In the
following section it will be described how we
managed to overcome these problems and limitations.

IV. AGILE MDD APPROACH

Our goal is to find an intermediate solution with a
MDA philosophy, which satisfies the previously
mentioned requirements and fulfills the constraints. In
order to achieve this goal, we started from the basics
of the MDA concept (models, transformations and
code generators), and combined them with the
following Lean and Agile principles [6]:

 "Think big, act small": Think about the DMC
as a final architecture but act stepwise,
introduce the intermediate solution first.

 “Refactoring”: A change made to the
structure of software to make it easier to
understand and cheaper to modify without
changing its existing behavior [7]”

10

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 "Simplicity is essential": We have to find an
applicable solution that is simple, keeping in
mind that simple does not have to mean
simplistic [8].

In that way we got our own Agile MDD
approach, an applicable intermediate solution, which
will be described in detail in the following section.

A. Agile modeling and code generators

We need to model the MSC definition registry.
This modeling can be done on the different modeling
levels and in the different modeling languages.
Considering the limitations, the UML modeling
cannot be accepted as a modeling solution in our
project: it is not used in general and there is no time
for learning. Since the XML format is a standard
format and the developers are familiar with it, we
decided to use a XML description as a "natural
language" for the developers. XML was good
enough. We had to balance between the familiarity of
the XML and abstraction benefits of UML but also a
complexity of the related frameworks, keeping the
project within the time-frame.

We have created two models. One is a logical
model which describes the entities in the MSC
definition registry. Another is the MSC definition
registry by itself, expressed in a XML dialect. As a
consequence of that, the logical model is expressed as
a XSD schema and is used to validate the entries in
the registry.

The MDA defines different model categories, like
a Platform Independent Model (PIM) and a Platform
Specific Model (PSM) [5]. This is an important issue
if there are plenty of different platforms with
specifications that differ very much. In our case the
different PSMs didn't differ too much from each other
and, at the same time, didn't differ too much from the
PIM either. In order to keep it simple we made a
pragmatic solution: to have just one model, which
contains all info for all programming languages. The
code generators have the responsibility for creating
the right MSC information to the corresponding
programming language.

We needed code generators for generating the
different types of files: C++, C#, Java. We decided to
use XSL transformations as the code generators. They
satisfied our needs and could be widely used, since
the XSL is a common standard for all developers,
who program in the different programming
languages. In that way a "collective code ownership"
[9] is achieved for the code generators. The
maintainability is also better if all developers can
maintain/develop the transformations.

B. Reverse engineering of the Legacy code

We needed to do a one-time reverse engineering
in order to convert a large amount of the existing
MSC data, legacy code, to the new MSC XML
format. We developed our own tool for this purposes
since no open-source tool was completely suitable.
The main question was: when to start with the reverse
engineering? At the end or at the beginning of the

project? Very soon we realized that we could not
design our model in detail without the data from the
existing MSC definitions. We decided to adopt a
Spike principle. The Spike is a full cross-section of
the modeling and architecture aspects of the project
for a specific scenario. The aim of the Spike approach
is to develop the whole chain for only one, chosen
user scenario. The first chosen scenario is a simple
one, and during the incremental development process
every next scenario is a more complex one [10]. We
started with the round-tripping (the whole chain:
model – code generation – reversing back to the
model) for simple scenarios, which we expanded, in
each sprint, to the more complex scenarios. In that
way we could develop the reverse engineering tool,
the code generators and to design the model in
parallel. The results of the reverse engineering helped
us with the specification of the model objects for both
the logical model and for the central MCS registry.
Since we could do the round-tripping very early in the
project, it was a way in which we could start testing
our MDD approach early, under development. Round
tripping in combination with the Test Driven
Development (TDD) [11] will be explained in more
detail in the following section.

C. Round tripping with the TDD approach

According to the Lean principles, we wanted to
specify our model just according to the existing data,
without unnecessary objects or unnecessary
properties, which risk never to be used. In order to be
able to do that, we wanted to do the reversing first
and specify the logical model and fill the data in the
MSC registry upon these results. We used a TDD
approach and started with writing unit tests first. For
this purpose we used test framework developed and
already used in the company. This framework
simulates the execution of the TNP messages sent
among server and client components. Because of that
the test scenarios that we wrote can be reused later
on, for testing AMAS components, when the DMC is
introduced.

According to the TDD principles we wrote the
tests first, run them on “empty” code and developed
the code, until the tests passed. Since we had to test
several parts of our MDD approach (the logical
model, the central MSC registry, the code generators
and the reverse engineering tool), we established our
own TDD process for the MDD testing. The main
idea was to use the same test, which reflects one
Spike scenario, both to develop the reverse
engineering tool and the code generators, but with the
input from the different sources: the legacy code was
used as input when the reversing tool was developed
and the generated code files was used as input when
the code generators were developed. Our TDD
process is presented on the “Fig. 2”. Modules
presented on “Fig. 2” are parts of our MDD approach
where the following abbreviations are used: RE for
the reversing engineering tool, CG for the code
generators, LC for the legacy code and GC for the
generated code.

11

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 Figure 2. Our TDD process

Our TDD process will be described now through
one real Spike scenario. The chosen Spike scenario is
called “Get all markets” and the goal is to get all
existing markets, described in the present MSC files.
We started with writing a test, which consisted of
sending a TNP message “TNPGETALLMARKETS”.
The next step was to develop the reverse engineering
tool for this scenario. The legacy code was used as
input data. We developed the corresponding methods
in the reversing tool, which extract markets from the
existing data, producing the results in the XML
format, and inserted them in our MSC registry. It was
a list of all markets. Then we redesigned the model
and registry entities and refactored the reversing tool
according to the model changes. This process flow is
presented with full arrows on the Figure 2. The TDD
logic for the code generators were more complicated.
What we had, so far, was the reversing tool working
for the chosen scenario, and some data in the central
MSC registry. We used the same test, trying to get all
markets, but this time from the generated code instead
(which was empty when we started), via the reversing
tool (where we have some code implemented). We
developed the code generators using the mentioned
test. The final goal was to get the same entries in the
MSC registry by the reversing of the generated code
as we got by the reversing of the legacy code. After
this sprint we had a list of all markets in the MSC
registry, the code generators methods which generate
files containing such a list and the reversing tool
methods for extracting such a list from the generated
files. This process is marked with dashed arrows on
the Figure 2. In the following Sprints we used more
advanced scenarios, such as, for example, “Get all
markets where is Order supported with commands:
Enter, Modify”.

At the end of each Sprint we run the whole round
tripping, starting from the legacy code. In that way
we could confirm that both the newly implemented
code worked, as well as that the previously
implemented code was not broken. As the final
verification process we confirmed that all client
components could be compiled without errors. We
did the usual integration tests also, in order to confirm
that the communication among the client components
and the AMAS components has not been changed.
When we completely finished with the reversing, we
disabled this functionality. We needed the reversing
only for extracting the existing data. It has not been

possible do the reversing nor the round tripping since
the project was released.

It is important to say that we had to reverse the
legacy code from the code, which was written in the
different programming languages. We had to develop
separate methods for the reversing from C++, Java
and C#. Fortunately, the respective legacy code files
had a similar structure; the syntax was the main
difference. So we could develop the corresponding
reversing methods based on the common objects.

The introduction of the TDD approach was
important because of the following reasons:

 By developing and testing in parallel we
shortened the implementation phase.

 We did not produce any wastes in the logical
model (unnecessary info). We designed the
model just according to the data that we got
from the reverse engineering. We achieved to
avoid the usual modeling mistake when a
large amount of metadata is put in the model.

 We showed how the TDD can be an efficient
way to work with, since this development
method has not been yet widely spread within
the company. When it has been introduced
once, it would be easier to introduce the TDD
thinking in other projects too.

 We can reuse some of these tests later on, for
the DMC architecture testing.

D. Automation

We have automated some of the processes,
supporting a kind of continues integration also. We
reduced the amount of work and time spent for
working with the MSC definition architecture. We
use ClearCase (CC) as a configuration management
tool and we have a build server for automatic build
processes. Since all client MSC definition files were
in CC, we decided to keep even the generated files in
the CC repository, at least under some period. This
decision was made by the management.

When the MSC definition registry file is updated
and checked into CC, the following steps are
executed automatically:

 The MSC definition files with hard-coded
data, belonging to the client components, are
checked out from CC.

 The code generators are invoked by a CC
trigger script. All MSC definition files are
generated.

 All generated files are checked into CC, if the
generation did not fail. Otherwise the “undo
checkout” operation is done.

 All client components, affected by the
mentioned code generation, are recompiled.
If some compilation fails, the error report is
immediately sent to the component owners.

V. AGILE AND LEAN PRACTICES IN MDD

The Agile and Lean methods are light in contrast
to the MDA that can become complex, because of all
standards and OMG recommendations. Through the

12

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

application of the Agile and Lean principles, the
MDD becomes more pragmatic and more useful.
Some of the Agile and Lean principles, used in our
Agile MDD approach, are explained below.

 “Eliminating waste”: Eliminating the duplication
of information was also according to the XP’s
principle “Never duplicate your code” [9]. This
principle is the heart of the MDD – to have one
central input point, model (models) from which
everything else is generated.

“Think big, act small”: We were thinking on the
DMC as a final architecture but acted in a stepwise
way, via an intermediate solution.

“Deliver as fast as possible”: The implementation
phase of our Agile MDD approach was short.

“Empower the team”: Roles are turned – the
managers are taught how to listen to the developers
[3]. Despite the fact that managements put non-
technical constraints on our project, they allowed the
developers to make decisions, regarding the
intermediate solution, on their own. It contributed to
faster development, since the developers did not have
to wait for feedback from the management, for each
decision.

“Spike principle” applied on the reverse and
round-trip engineering made the introduction of the
TDD philosophy spontaneous and natural.

“Simplicity is essential.” We have simplified the
full scale MDA. Instead of the UML modeling
language we used the XML. The PIM and PSMs
were merged, avoiding the maintenance of several
models and transformations among them. On the
other side, by merging PIM and PSMs in one model
we lost a good Separation of Concerns but it was a
price worth paying.

 “Welcome changing requirements, even late in
development.” The case-study presented an iterative
development, which allowed late model changes. We
worked in sprints, according to the Spike principle,
which implied the frequent model changes, in each
sprint.

A. Benefits of the Agile MDD approach

We got a lot of benefits by introducing the Agile
MDD approach. Now we will list them:
1. Agile principles can make the starting curve for

the MDD shorter. Through the application of the
Agile principles the long learning curve and
introduction gap of MDD methods and tools
could be avoided.

2. We introduced the TDD approach, showing the
effectiveness of such an approach.

3. We have prepared, in advance, for the
introduction of the DMC architecture: the model
specification and the reverse engineering job are
already done. As well as the test cases, some of
them are going to be reused.

4. The Agile MDD approach could be used instead
of the full scale MDA. When all MDA
recommendations could not be applied, we

adjusted them to our system and organization,
with a help of Agile and Lean principles.

VI. CONCLUSION AND FUTURE WORK

The main point of this paper was to show how
Lean and Agile principles helped us with producing
an intermediate solution, with a short implementation
phase, for the architecture of the MSC definition. In
that way we coped successfully with the management
constraints, achieving the implementation within the
short time-frame and without investment in change
management.

Our Agile MDD approach is based on the general
MDA idea but is shaped then with the Lean and Agile
principles. “Eliminating waste” helped us to detect
main wastes. The most important was the duplication,
which we eliminated by applying the MDA
philosophy. “Simplicity” Agile principle reduced the
MDA concept to the single modeling level, expressed
in the XML dialect. By being aware of “Think big act
small”, we could produce such an intermediate
solution, which can be easily improved in the long-
term solution. The TDD logic improved the
development efficiency and decreased the total time
spent on the development and testing. We got a
simple and applicable solution which will easily grow
to a more complex one.

“A complex system that works has usually been
evolved from a simple system that worked. A
complex system designed from scratch never works
and cannot be patched up to make it work. You have
to start over with a simple system. [12]”

REFERENCES

[1] SunGard, www.sungard.com. Accessed in May 2011.

[2] TNP SDK documentation: SunGard Front Arena

[3] Mary Poppendieck, Tom Poppendieck: Lean Software
Development, An Agile toolkit. Addison Wesley,
2005.

[4] James McGovern, Scott Ambler, Michael Stevens: A
practical guide to Enterprise Architecture. Prentice
Hall PTR, 2003.

[5] MDA, www.omg.org/mda. Accessed in May 2011.

[6] AgileManifesto, www.agilemanifesto.org. Accessed in
May 2011.

[7] Martin Fowler: Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[8] James O. Coplien, Gertrud Bjornvig: Lean Architecture
for Agile Software Development, Wiley 2010.

[9] Ron Jeffries, Ann Anderson, Chet Hendrickson:
ExtremeProgramming. Addison Wesley, 2001.

[10] Ray Carroll, Claire Fahy, Elyes Lehtihet, Sven van
der Meer, Nektarios Georgalas, David Cleary:
Applying the P2P paradigm to management of large-
scale distributed networks using Model Driven
Approach, Network Operations and Management
Symposium, 2006. NOMS 2006. 10th IEEE/IFIP
Volume, Issue , 3-7 April 2006 Page(s):1 – 14.

[11] Michael C. Feathers: Working Effectively with
Legacy code. Prentice Hall PTR, 2005.

[12] John Gall: Systemantics: How Systems Really Work
and How They Fail. Quadrangle, 1975.

13

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://www.sungard.com/
http://www.omg.org/mda
http://www.agilemanifesto.org/

